Высокотемпературный полупроводниковый преобразователь давления на основе структуры "поликремний-диэлектрик"

Изобретение относится к области измерительной техники, в частности, к преобразователям малых давлений и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах. Сущность: полупроводниковый преобразователь давления содержит упругий элемент (1), выполненный из кремния с поверхностью, покрытой изолирующим слоем двуокиси кремния (2), на котором сформированы тензорезисторы (3) из поликристаллического кремния, объединенные при помощи коммутационных шин (4) в многоэлементную мостовую схему (5). Схема (5) содержит три измерительных моста, каждый из которых состоит из четырех тензорезисторов (6) одинакового номинала, и четыре дополнительных тензорезистора (7), номинальное сопротивление которых в четыре раза меньше сопротивления тензорезисторов (6). Узлы измерительных диагоналей каждого моста последовательно соединены между собой, а дополнительные тензорезисторы (7) включены в цепи питания первого и третьего мостов таким образом, что они образуют разомкнутый измерительный мост, плечи которого подключены к трем замкнутым мостам. Выходное напряжение схемы снимается с крайних узлов измерительной диагонали первого и третьего мостов. Технический результат: повышение точности и чувствительности преобразователя в диапазоне высоких температур. 2 ил.

 

Предлагаемое техническое решение относится к области измерительной техники, в частности, к преобразователям давлений высокотемпературных сред и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Известен преобразователь давления, содержащий кремниевый профилированный кристалл, на котором сформирована тензорезистивная мостовая схема из поликристаллического кремния, изолированная от подложки диоксидом кремния [1].

Известен преобразователь давления, в котором тензорезисторы выполнены из высоколегированного кремния и через диэлектрический слой нанесены на профилированную кремниевую мембрану [2].

Недостатками известных устройств являются низкая чувствительность преобразования, обусловленная ограничениями формирования малых толщин мембран и малой величиной тензочувствительности поликристаллического кремния.

Наиболее близким по технической сущности к изобретению является полупроводниковый преобразователь давления, содержащий кремниевую мембрану, покрытую изолирующим слоем двуокиси кремния, на которой размещены тензорезисторы из поликристаллического кремния, легированного бором с концентрацией легирующей примеси (бора) не менее 5·10 см-3, объединенные в мостовую измерительную схему и соединенные алюминиевыми коммутационными шинами. Тензорезисторы и коммутационные шины, за исключением окон для выводных проводников, покрыты сверху пассивирующим слоем двуокиси кремния [3].

Недостатками известного устройства являются низкая точность и чувствительность преобразователя.

Изобретение направлено на повышение чувствительности и точности преобразователя в диапазоне высоких температур.

Поставленная цель достигается тем, что в полупроводниковом преобразователе давления, содержащем упругий элемент, выполненный из кремния с поверхностью, покрытой изолирующим слоем двуокиси кремния, на котором сформированы тензорезисторы из поликристаллического кремния, легированные бором и объединенные при помощи коммутационных шин в мостовую схему, согласно изобретению, многоэлементная мостовая схема (ММС) содержит три измерительных моста, каждый из которых состоит из четырех тензорезисторов одинакового номинала и четыре дополнительных тензорезистора, номинальное сопротивление которых в четыре раза меньше сопротивления тензорезисторов в составе измерительных мостов, при этом узлы измерительных диагоналей каждого моста последовательно соединены между собой, а дополнительные тензорезисторы включены в цепи питания первого и третьего мостов таким образом, что они образуют разомкнутый измерительный мост, плечи которого подключены к трем замкнутым мостам, при этом выходное напряжение схемы снимается с крайних узлов измерительной диагонали первого и третьего мостов.

Введение предложенной конструкции, содержащей мембрану с тензорезисторами, расположенными в местах наибольшей деформации мембраны и объединенными в ММС, позволит увеличить чувствительность преобразователя за счет возрастания полного тока и перераспределения тока внутри ММС, а также снизить погрешность начального выходного сигнала, обусловленную разбросом номиналов и ТКС тензорезисторов при изготовлении за счет того, что по мере увеличения количества элементов в ММС снижается влияние разброса параметров схемы на величину начального выходного сигнала [3, 4].

На фиг.1 изображен полупроводниковый преобразователь давления, где:

1 - упругий элемент, выполненный из кремния;

2 - изолирующий слой двуокиси кремния;

3 - тензорезисторы из поликристаллического кремния;

4 - коммутационные шины;

5 - многоэлементная мостовая схема;

6 - тензорезисторы одинакового номинала;

7 - дополнительные тензорезисторы, номинальное сопротивление которых в четыре раза меньше сопротивления тензорезисторов (6).

На фиг.2 представлена принципиальная электрическая схема, где:

R1-R4, R5-R8, R9-R12 - тензорезисторы (6), объединенные соответственно в три замкнутых измерительных моста;

R13-R16 - тензорезисторы (7), представляющие собой разомкнутый измерительный мост, плечи которого подключены к трем замкнутым мостам для образования ММС.

Выходное напряжение ММС представляет собой разность потенциалов узлов u1 и u2.

Принцип работы преобразователя заключается в следующем.

Измеряемое давление, воздействуя на мембрану, деформирует тензорезисторы, которые расположены на мембране в местах наибольшей деформации таким образом, что под воздействием измеряемого давления тензорезисторы R1, R4, R5, R8, R9, R12, R13, R16, получают положительное приращение сопротивления, а тензорезисторы R2, R3, R6, R7, R10, R11, R14, R15 получают такое же по абсолютной величине отрицательное приращение сопротивления. При этом увеличивается чувствительность преобразователя по сравнению с прототипом и снижается погрешность начального выходного сигнала, представляющего собой разбаланс ММС под действием деформации, вызванная разбросом параметров тензорезисторов при изготовлении.

Температурная зависимость выходного сигнала определяется посредством коэффициентов функции влияния температуры α (температурный коэффициент ухода чувствительности) и β (температурный коэффициент ухода начального выходного сигнала) [5]. По мере увеличения количества элементов в многоэлементной мостовой схеме происходит уменьшение среднего квадратичного отклонения σ, характеризующего влияние разброса параметров на величину начального выходного сигнала схемы [3].

Следует отметить, что существенное влияние на начальный выходной сигнал оказывает разбаланс мостовой схемы, обусловленный разбросом характеристик тензорезисторов, вызывающий температурную погрешность начального выходного сигнала.

Для схемы обычного полного измерительного моста при максимальном разбросе номиналов тензорезисторов, равном 10%, и значениях ТКС тензорезисторов, изменяющихся в диапазоне 0,05-0,07%/°C, по результатам схемотехнического моделирования в программе Micro-Cap получены следующие значения: α=1,317265%/°C, β=0,132127%/°C для диапазона изменения температур, равного 300°C.

Для разработанной ММС, тензорезисторы которой характеризуются аналогичным разбросом характеристик, в результате схемотехнического моделирования в программе Micro-Cap получены следующие значения: α=-0,01656%/°C, β=-0,01709%/°C для диапазона изменения температур, равного 300°C. Таким образом, применение ММС позволяет снизить температурный коэффициент ухода начального выходного сигнала на порядок, а температурный коэффициент ухода чувствительности на два порядка по сравнению с прототипом.

При использовании мостовых схем чувствительность схемы определяется как отношения выходного напряжения при максимальном входном воздействии к напряжению питания, которая выражается в мВ/В. Для схемы обычного полного измерительного моста с заданным разбросом параметров при питании постоянным напряжением 6 В чувствительность составила 4,6 мВ/В, а для разработанной ММС 22,9 мВ/В. Увеличение чувствительности преобразования обусловлено возрастанием полного тока и перераспределением тока внутри ММС [3]. Таким образом, применение разработанной ММС позволяет повысить чувствительность преобразователя практически в 5 раз по сравнению с обычным измерительным мостом.

Полученные результаты подтверждают возможность повышения точности и чувствительности преобразования давления с применением предложенной конструкции в диапазоне высоких температур (до 300°C).

Технико-экономическим преимуществом предлагаемого преобразователя по сравнению с известными является повышение точности и чувствительности преобразователя в диапазоне высоких температур.

Источники информации

1. Гридчин В.А., Головко В.П. Интегральный тензопреобразователь мембранного типа с поликремниевыми тензорезисторами // тез. докл. всесоюзн. конф. «Датчики на основе технологии микроэлектроники» М.: МДНТП им. Ф.Э.Дзержинского. 1986. С.62.

2. А.с. (СССР) №605131 МКИ G01L 9/04 Тензометрический преобразователь // Михайлов П.Г., Саяпин В.М., Саблин А.В. - Опубл. 1978. - Бюл. №16.

3. Гридчин В.А. Драгунов В.П. Физика микросистем Новосибирск, 2004. - 416 с.

4. Кобзев Ю.В. Полупроводниковый тензопреобразователь давления, содержащий многократную мостовую схему // Датчики на основе технологии микроэлектроники. М., 1983. - с.168 - 169.

5. ГОСТ 92-4279-80. Преобразователи измерительные. Методы определения метрологических характеристик.

Полупроводниковый преобразователь давления, содержащий упругий элемент, выполненный из кремния с поверхностью, покрытой изолирующим слоем двуокиси кремния, на котором сформированы тензорезисторы из поликристаллического кремния, легированные бором и объединенные при помощи коммутационных шин в мостовую схему, отличающийся тем, что тензорезисторы объединены при помощи коммутационных шин в многоэлементную мостовую схему, которая содержит три измерительных моста, каждый из которых состоит из четырех тензорезисторов одинакового номинала, и четыре дополнительных тензорезистора, номинальное сопротивление которых в четыре раза меньше сопротивления тензорезисторов в составе измерительных мостов, при этом узлы измерительных диагоналей каждого моста последовательно соединены между собой, а дополнительные тензорезисторы включены в цепи питания первого и третьего мостов таким образом, что они образуют разомкнутый измерительный мост, плечи которого подключены к трем замкнутым мостам, причем выходное напряжение схемы снимается с крайних узлов измерительной диагонали первого и третьего мостов.



 

Похожие патенты:

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Изобретение относится к измерительной технике, предназначено для измерения давления при автоматизации контроля технологических процессов. Техническим результатом изобретения является уменьшение температурной погрешности и повышение быстродействия.

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с жестким центром, заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных сред. Заявленная группа изобретений включает способ измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы (НиМЭМС) и интеллектуальный датчик давления на основе НиМЭМС.

Изобретение относится к измерительной технике, в частности к датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС), предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования.

Изобретение относится к области измерительной техники и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Изобретение относится к измерительной технике и может быть использовано для измерения давления в жидких и газообразных агрессивных средах. Датчик абсолютного давления содержит корпус со штуцером, герметизирующую контактную колодку, металлическую мембрану, несжимаемую жидкость, полупроводниковый чувствительный элемент, состоящий из стеклянного основания и квадратного профилированного полупроводникового кристалла, в центре тонкой части которого сформирован жесткий центр квадратной формы, на рабочей части полупроводникового кристалла сформирована мостовая измерительная цепь, состоящая из четырех тензорезисторов.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования.

Изобретение относится к приборостроению и может быть использовано при разработке полупроводниковых датчиков давления, выполненных по технологии МЭМС (микроэлектромеханические системы).

Изобретение относится к измерительной технике. В способе измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы (НиМЭМС), в режиме измерения значение измеренного давления Pi вычисляют путем бигармонической сплайн интерполяции по контрольным точкам, исходя из сохраненного на этапе калибровки вектор-столбца W(Pэ, Uiz, Upt, X1…Xn) по формуле: Pi=GT×W, где GT - транспонированный вектор-столбец G; символ «×» обозначает матричное произведение.

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур. Изобретение позволяет расширить температурный диапазон работы датчика на основе тонкопленочной нано- и микроэлектромеханической системы, повысить воспроизводимость таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления (ТКС), снизить температурную чувствительность датчиков. Способ изготовления тонкопленочной нано- и микроэлектромеханической системы высокотемпературного датчика механических величин заключается в том, что на планарной стороне упругого элемента методами вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, тензорезистивные и контактные слои, формируют тензорезисторы, контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент со сформированным на нем диэлектрическим слоем устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель с упругим элементом, при этом задают определенные плотности токов в зонах распыления мишеней. После этого упругий элемент выдерживают в вакууме при повышенной температуре. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и направлено на повышение точности измерения и стабильности технических характеристик датчиков давления. Способ измерения давления заключается в размещении датчика давления на основе тензорезистивного моста в исследуемую среду, регистрации напряжений с питающей и измерительной диагоналей моста, их преобразовании в аналоговый сигнал постоянного тока и определении по этим сигналам давления. Напряжение питания периодически изменяют путем кратковременной смены его полярности, а измерение давления осуществляют во время периодической кратковременной смены полярности напряжения питания. После кратковременной смены полярности напряжения питания осуществляют возврат полярности на первоначальную, после чего осуществляют измерение давления. Техническим результатом изобретения является повышение точности измерения и стабильности технических характеристик датчика давления. 1 ил.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью. Техническим результатом изобретения является повышение временной стабильности, ресурса, срока службы, уменьшение погрешности при воздействии нестационарных температур и повышенных виброускорений. Способ изготовления тензорезисторного датчика давления заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя в виде полос, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, подключении к выходу НиМЭМС регистратора, включении напряжения НиМЭМС, создании на мембране нормированного нестационарного, симметричного относительно центра мембраны поля температур и температурных деформаций. Регистрируют на регистраторе выходного сигнала НиМЭМС во время воздействия на мембрану нестационарное поле температур и температурных деформаций. Сравнивают полученный выходной сигнал испытуемой НиМЭМС по амплитуде спектральных составляющих с аналогичным сигналом эталонной НиМЭМС. Если разницы амплитуд выходных сигналов или амплитуд спектральных составляющих выходных сигналов не превышают предельно допустимых значений, которые принимаются за критерии временной стабильности, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур. Изобретение обеспечивает расширение температурного диапазона работы датчика, повышение воспроизводимости таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления, снижение температурной чувствительности датчиков. В способе изготовления тонкопленочной нано- и микроэлектромеханической системы высокотемпературного датчика механических величин на планарной стороне упругого элемента методами вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, тензорезистивные и контактные слои. Формируют тензоэлементы (тензорезисторы), контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент со сформированным на нем диэлектрическим слоем устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель, при этом задают плотности токов в зонах распыления первой и второй мишеней, исходя из их определенного соотношения. После этого упругий элемент выдерживают в вакууме при повышенной температуре в течение нескольких часов. 5 ил.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС). Техническим результатом изобретения является повышение временной и температурной стабильности, ресурса, срока службы и чувствительности, а также уменьшение погрешности от нелинейности статической характеристики датчика. Датчик содержит корпус со штуцером, мембрану, упругую балку в виде прямоугольного параллелепипеда, на внешней поверхности которого размещены тензорезисторы. В боковых гранях балки под зонами размещения тензорезисторов выполнены сквозные выемки, образующие утолщения вне зон размещения тензорезисторов и перемычку, соединяющую концы балки между собой. В центральной части перемычки выполнено отверстие с размерами, превышающими поперечные размеры штока. Сквозные выемки выполнены в виде элементов торовых поверхностей, размещенных симметрично относительно поперечной оси балки, а перемычка - в виде цилиндрического кольца и элементов торовых поверхностей, отделенных от рабочей части балки прорезями, выполненными параллельно продольной оси балки. Тензорезисторы размещены симметрично продольной оси балки на минимально возможном расстоянии друг от друга. Радиус торовых поверхностей и расстояние между внешней поверхностью балки и центрами радиусов торовых поверхностей связаны соответствующими соотношениями. 2 ил.

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах. Полупроводниковый преобразователь давления содержит мембрану с утолщенным периферийным основанием. Мембрана имеет толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика. Тензорезисторы объединены с помощью проводников, имеющих соединенные с ними металлизированные контактные площадки, в мостовую измерительную схему. Мембрана содержит профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров. Кроме того, преобразователь содержит дополнительно сформированный слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны и равный по толщине и свойствам слою диэлектрика, закрепленному на мембране со стороны тензорезисторов. Техническим результатом изобретения является повышение надежности преобразователя, повышение прочности мембраны и повышение стабильности параметров при повышенных температурах. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления. Датчик абсолютного давления содержит корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу, выполненному в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием, на плоской поверхности профилированного монокристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь. Центры тензорезисторов расположены на расстоянии l от взаимно перпендикулярных осей Ox и Oy, проведенных через центр мембраны, лежащих в ее плоскости и параллельных границам тонкой части мембраны с основанием полупроводникового чувствительного элемента, которое определено из соотношения: где ам - размер мембраны полупроводникового кристалла; hм - толщина мембраны полупроводникового кристалла. Технический результат - повышение чувствительности устройства. 3 ил.

Датчик давления с нормализованным или цифровым выходом содержит корпус с установленными в нем чувствительным элементом давления (ЧЭД) с кристаллом интегральной микросхемы преобразователя давления (ИПД) и контактными площадками, кристалл интегральной микросхемы (ИС) преобразователя сигнала ИПД, защитную крышку ЧЭД и ИС, выходные контакты, средства электрических соединений ЧЭД, ИС и выходных контактов и по меньшей мере один канал в корпусе для подвода давления среды. ЧЭД снабжен контактными площадками, такое выполнение ЧЭД упрощает и позволяет автоматизировать процесс соединения электрическими проводниками ИПД, ИС и выходных контактов. Крышка выполнена из кремния по технологии производства ИС встроенной, т.е. размещена внутри полости корпуса на кристалле ИПД, а соединение ее с кристаллом ИПД также выполнено низкотемпературной пайкой стеклом, что, как известно, позволяет в кристалле ИПД уменьшить термические напряжения при работе. Размещение кристалла ИС на встроенной защитной крышке ИПД и их соединение клеем-герметиком улучшает условия работы и упрощает технологию сборки, т.к ЧЭД соединяется с корпусом таким же образом. 6 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Микромеханический волоконно-оптический датчик давления выполнен на основе оптического волокна, содержащего участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса. При этом пропускной канал включает участок для размещения оптического кабеля параллельно основанию корпуса и выполнен в виде паза с рифленой поверхностью в основании. Волокно в пазу прижато к вершинам выступов рифленой поверхности пластинами и выполнено с решетками Брега. Пластины выполнены в виде кремниевых кристаллов, на которых сформированы мембраны одинаковой толщины hм, при этом первая мембрана имеет один квадратный жесткий центр, размещенный в центре, вторая мембрана - два одинаковых квадратных жестких центра, расположенных вдоль участка оптического волокна на расстоянии l по обе стороны от центра мембраны. Техническим результатом является повышение точности измерения за счет повышения чувствительности микромеханического волоконно-оптического датчика давления. 3 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Техническим результатом изобретения является повышение временной и температурной стабильности, ресурса, срока службы. Определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и второй дополнительные критерии стабильности по соотношениям Ψτ01j=|(α2j+α4j)-(α1j+α3j)|, Ψτ02j(α)=αij, где α1j, α2j, α3j, α4j - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и если |Ψτ01j|<|Ψτ01jmax|, Ψτ02jmin<Ψτ02j(α)<Ψτ02jmax, где Ψτ01jmax, Ψτ02jmin, Ψτ02jmax - соответственно предельно допустимое максимальное значение первого дополнительного критерия стабильности, предельно допустимые минимальное и максимальное значение второго дополнительного критерия стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
Наверх