Мультиэпитаксиальная структура кристалла двухинжекционного высоковольтного гипербыстровосстанавливающегося диода на основе галлия и мышьяка

Изобретение относится к области полупроводниковых приборов. Мультиэпитаксиальная структура кристалла двухинжекционного высоковольтного гипербыстровосстанавливающегося диода на основе соединений галлия и мышьяка содержит высоколегированную монокристаллическую подложку p+-типа проводимости, с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 3·1018 см-3 и толщиной не менее 200 мкм, выполненный на ней эпитаксиальный GaAs слой p-типа проводимости толщиной не менее 5,0 мкм и изменяющейся разностной концентрацией донорной и акцепторной легирующих примесей от концентрации в подложке до значений не более чем , p-n-переходный по типу проводимости эпитаксиальный GaAs i-слой толщиной 5÷100 мкм, содержащий область пространственного заряда и внутрирасположенную мультиэпитаксиальную металлургическую переходную зону, и эпитаксиальный GaAs слой на p-n переходном эпитаксиальном i-слое, выполненный n+-типа проводимости с разностной концентрацией акцепторной и донорной легирующих примесей в приповерхностном слое не менее чем 1·1017 см-3 и толщиной не менее 0,1 мкм. Изобретение обеспечивает снижение прямого падения напряжения, повышение плотности тока прямого включения и повышение быстродействия. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области полупроводниковых приборов, в частности к конструированию сильноточных ультрабыстровосстанавливающихся (Ultrafast Recovery diodes - UFRED) и гипербыстровосстанавливающихся (Hyperfast Recovery diodes - Hyper-FRED) высоковольтных диодов с низкими прямыми падениями напряжения, высокой рабочей температурой, низкими временами восстановления тока обратного переключения. В высокочастотных корректорах коэффициента мощности высокочастотных источников вторичного электропитания, в частотнорегулируемом электроприводе, в ВЧ выпрямителях и других устройствах применяются быстровосстанавливающиеся диоды на основе арсенида галлия (GaAs) с конструктивным исполнением по типу диодов Шоттки или биполярных диодов, выполненные на эпитаксиальном GaAs материале с биполярным диффузионным или диффузионно-дрейфовым механизмом переноса носителей заряда. Диоды Шоттки на основе арсенида галлия (GaAs) выпускаются фирмой IXYS (США) (www.ixys.com) и фирмой ТТ Electronics Semelab (www.semelab.com). Данные диоды имеют значительные ограничения максимально допустимых токов (≤50 А/чип), напряжений (до 250÷300 В) из-за структурных несовершенств применяемых MOCVD эпитаксиальных структур GaAs и, как следствие, невысокой надежности перехода барьер Шоттки - полупроводник; другим серьезным ограничением является достаточно высокая барьерная емкость Шоттки-перехода, ограничивающая частотный потолок коммутации данных диодов и, следовательно, ограничение применяемости в высокочастотных преобразователях.

Наиболее близким техническим решением является структура кристалла силового диода на основе соединения арсенида галлия, изложенная в патенте United States Patent №5,733,815, Mar. 31, 1998, авторы Г.А. Ашкинази и др. [1]. Кристалл силового диода, приведенного в вышеуказанном авторском свидетельстве, (анодная часть), содержит монокристаллическую подложку из арсенида галлия р+-типа проводимости, однородно легированную цинком с концентрацией свыше 5×1018 см-3. На указанную монокристаллическую подложку методом жидкостной эпитаксии наносятся слои p- и n-типов из арсенида галлия, при этом p-типа проводимости эпитаксиальный слой имеет толщину не менее 10 мкм, а n-типа эпитаксиальный слой (катодная часть) - толщину не менее 15 мкм. Между эпитаксиальными слоями p- и n-типов проводимости находится область с разностной концентрацией акцепторных и донорных примесей менее чем 1012 см-3, разностная концентрация акцепторной и донорной примесей в эпитаксиальном слое p-типа проводимости, в данном случае цинка, плавно уменьшается от значения 5·1018 см-3, на границе раздела монокристаллическая подложка - эпитаксиальный слой до значения разностных концентраций акцепторных и донорных примесей менее чем 1012 см-3. Далее располагается эпитаксиальная i-область толщиной 3÷70 мкм с разностной концентрацией донорной и акцепторной примеси менее чем 1012 см-3, и на эту область создается в едином технологическом процессе эпитаксиальный слой (катодной части) n-типа толщиной не менее 15 мкм, с плавным увеличением разностной концентрации от 1012 см-3 до значений 1,0·1016 см-3. Ограничение разностной концентрации донорной и акцепторной примеси значением 1016 см-3 связано, по мнению авторов [1], с резким увеличением плотности дислокаций кристаллической решетки GaAs эпитаксиального, приводящих к значительному уменьшению обратного напряжения.

Внутри i-области находится металлургический p-n переход с разностной концентрацией донорной и акцепторной примеси менее чем 1012 см-3. Ширина указанной области составляет в конкретном случае [1] при максимальных обратных напряжениях 200÷700 В - 3÷15 мкм, 700÷1500 В - 30÷50 мкм, 1500÷2000 В - 40÷60 мкм.

Указанное техническое решение [1] имеет ряд противоречивых требований и недостатков:

1). «…максимальное значение разностной концентрации в эпитаксиальном слое n-типа, которое имеет место на поверхности диода, не должно превышать величину 1016 см-3, в противном случае за счет повышения плотности дислокаций обратное напряжение уменьшается». [1]

Но известно, что при поверхностной концентрации на эпитаксиальных или монокристаллических подложках GaAs n-типа меньше чем 1018 см-3 создать хороший омический контакт или невыпрямляющий контакт с низким значением паразитного сопротивления чрезвычайно сложно, скорее невозможно, а это противоречит формуле и конструкции известного решения [1], направленного на увеличение максимальных токов на единицу площади GaAs диода.

2). Наличие плавно спадающей концентрации акцепторной примеси в решении [1], в данном случае цинка, в эпитаксиальном слое p-типа от значений 5·1019 см-3 до 1012 см-3 от границы раздела до области с разностной концентрацией 1012 см-3 не является гарантией резкого снижения плотности дислокаций в слое p-типа проводимости, что влияет на уровень дислокаций в области между p и n эпитаксиальными слоями с разностной концентрацией в 1012 см-3, а это влияет на максимально допустимые обратные напряжения. Чем выше содержание акцепторной примеси (Zn) в p+-подложке, тем выше уровень дефектности подложки.

3). Указанное в известном решении [1] ограничение объемной разностной концентрации донорной и акцепторных примесей в эпитаксиальном слое n-типа значением 1,5·1015 см-3÷1,0·1016 см-3 и, следовательно, необходимой толщины высокоомного эпитаксиального слоя n-типа проводимости, из-за значительных величин ширины области пространственного заряда, приводит к резкому снижению возможности создания высокоэффективных быстродействующих, с гипермалыми временами восстановления обратного тока GaAs диодов (<50 наносек), в частности, в диапазоне рабочих напряжений 600÷800 В для создания однофазных ультрабыстрых и гипербыстрых диодных мостов и полумостов для высокочастотных преобразователей с частотой коммутации до 2,0 МГц, а также однофазных инверторов, построенных на основе комбинированных высокоскоростных ключей в GaAs диодами.

4). Наличие толстого высокоомного и эпитаксиального слоя n-типа в указанном известном решении [1] является исключительно важным фактором, ограничивающим быстродействие данной p-i-n GaAs структуры и снижением эффективности инжекции носителей заряда p-i-n GaAs структуры.

Техническим результатом данного изобретения является:

- снижение прямого падения напряжения вольт-амперной характеристики;

- резкое повышение плотности тока прямого включения;

- повышение быстродействия до уровня нескольких десятков наносекунд.

Технический результат достигается тем, что в известном решении [1] исключается высокомный n-типа эпитаксиальный слой, примыкающий к i-области, а взамен его вводятся эпитаксиальные высоколегированные n+-типа проводимости слои из соединений GaAs или комбинаций GaAs и AlGaAs (соединений алюминия, галлия и мышьяка), легированные такими примесными атомами, образующими донорные уровни, как кремний (Si), теллур (Те), олово (Sn), с уровнем легирования на несколько порядков выше, чем в примыкающей к ним i-области.

Решение данной задачи заключается в том, что, в отличие от известного решения силового GaAs диода [1], содержащего высоколегированную монокристаллическую GaAs подложку 1 p+-типа проводимости с разностной концентрацией акцепторной и донорной легирующих примесей ≥5·1018 см-3, на которой последовательно выполнены: эпитаксиальный GaAs слой p-типа проводимости 2 с изменяющейся разностной концентрацией акцепторной и донорной легирующих примесей от 5·1018 см-3 до разностной концентрации не более чем 1012 см-3 и толщиной не менее 10 мкм; p-n - переходный эпитаксиальный GaAs i-слой 3 толщиной 3÷70 мкм с областью пространственного заряда и внутренним мультиэпитаксиальным металлургическим p-n переходом с разностной концентрацией акцепторной и донорной легирующих примесей не более чем 1012 см-3; высокоомный эпитаксиальный GaAs слой n-типа проводимости 4 с изменяющейся разностной концентрацией акцепторной и донорной легирующих примесей от уровня на границе раздела с p-n переходным i-слоем до уровня 1016 см-3 и толщиной не менее 15 мкм, выполнено следующее:

- высоколегированная монокристаллическая GaAs подложка 1 p+-типа проводимости имеет разностную концентрацию акцепторной и донорной легирующих примесей не менее чем 3·1018 см-3 и толщину не менее чем 200 мкм;

- эпитаксиальный слой 2 p-типа проводимости имеет толщину не менее 5,0 мкм и содержит изменяющуюся разностную концентрацию акцепторной и донорной легирующих примесей от значений концентрации легирующих примесей в монокристаллической p+-типа проводимости GaAs подложке до значений не более чем (*3начение корня квадратного от количества атомов в 1,0 см3 арсенида галлия);

- p-n переходный по типу проводимости эпитаксиальный GaAs i-слой 3, имеющий толщину 5,0÷100 мкм, содержащий область пространственного заряда и внутрирасположенную мультиэпитаксиальную металлургическую переходную зону с разностной концентрацией акцепторной и донорной легирующих примесей в мультиэпитаксиальной металлургической переходной зоне меньше либо равной ;

- из конструкции известного решения [1] p-i-n GaAs диода исключается высокоомный эпитаксиальный GaAs слой 4 n-типа проводимости, выполненный на i-эпитаксиальном слое 3 с изменяющейся разностной концентрацией акцепторной и донорной легирующих примесей от концентрации примесей на границе раздела с i-переходным слоем 3 до 1016 см-3 и толщиной не менее 10 мкм;

- взамен высокоомного эпитаксиального GaAs слоя 4 n-типа проводимости вводится одно из двух последующих конструктивно-технологических решений:

1) высоколегированный эпитаксиальный GaAs слой 5 n+-типа проводимости с разностной концентрацией акцепторной и донорной легирующих примесей в приповерхностном слое не менее чем 1017 см-3 и толщиной не менее 0,1 мкм;

2) или - два последовательных высоколегированных n+-типа проводимости эпитаксиальных слоя: GaAs буферного эпитаксиального слоя 5 с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 1017 см-3 и толщиной не менее 0,1 мкм и AlGaAs слоя 6 с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 3·1017 см-3 и толщиной не менее 0,1 мкм;

На Фиг.1 показано известное решение прототипа [1], где приводятся профили распределения легирующих акцепторной и донорной примесей в GaAs p-i-n структуре, где показаны:

- монокристаллическая сильнолегированная GaAs подложка 1 p+-типа проводимости с концентрацией акцепторной примеси 5·1019 см-3 толщиной не менее 300 мкм;

- GaAs эпитаксиальный p-типа проводимости слой 2 с меняющейся концентрацией акцепторной примеси от 5·1019 см-3 до 1012 см-3 и менее и имеющий толщину не менее 10 мкм;

- p-n-переходный эпитаксиальный GaAs i-слой 3 толщиной 3÷70 мкм, содержащий металлургический переход, с разностной концентрацией акцепторной и донорной легирующих примесей не более чем 1012 см-3;

- высокоомный GaAs эпитаксиальный слой 4 n-типа проводимости с изменяющейся концентрацией донорной и акцепторной легирующих примесей от концентрации на границе раздела с i-слоем 3 до 1016 см-3 и толщиной не менее 15 мкм.

Сущность предлагаемого изобретения поясняется на Фиг.2, 3, где приводятся распределения легирующих акцепторных и донорных примесей в p-i-n GaAs и p-i-n AlGaAs/GaAs структурах. На Фиг.2, 3 показано следующее:

- высоколегированная монокристаллическая GaAs подложка 1 с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 3·1018 см-3;

- эпитаксиальный GaAs слой 2 с изменяющейся разностной концентрацией акцепторной и донорной легирующих примесей от концентрации в высоколегированной подложке до значений меньше либо равных и толщиной не менее 5 мкм;

- p-n переходный по типу проводимости эпитаксиальный GaAs i-слой 3, имеющий толщину 5÷100 мкм с разностной концентрацией акцепторной и донорной легирующих примесей в мультиэпитаксиальной металлургической переходной зоне меньше либо равной ;

- высоколегированный эпитаксиальный GaAs слой n+-типа 5 с разностной концентрацией акцепторной и донорной легирующих примесей в приповерхностном слое не менее чем 1017 см-3 и толщиной не менее 0,1 мкм;

- высоколегированный гетероэпитаксиальный AlGaAs слой 6 n+-типа проводимости с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 3·1017 см-3 и толщиной не менее 0,1 мкм.

Концентрация легирующей акцепторной примеси атомов Zn в монокристаллической подложке оказывает определяющее влияние на плотность дефектов на поверхности исходной GaAs подложки p+-типа, чем выше концентрация легирующей примеси, тем выше плотность дефектов, тем выше вероятность перенести данные дефекты в процессе эпитаксиального роста в эпитаксиальную p-i-n GaAs, AlGaAs структуры, поэтому в подложке необходимо снижать уровень легирования акцепторной примеси до до уровня намного ниже чем 5·1019 см-3. Это благоприятно сказывается при выращивании слоя p-типа проводимости, концентрацию примесей в котором легче регулировать, управлять процессом подавления дефектов в p-слое.

Определяющую роль в p-i-n GaAs, AlGaAs/GaAs структурах выполняет p-n переходный i-слой (физический p-n переход), содержащий область пространственного заряда и внутренний мультиметаллургический переход разностной концентрацией акцепторной и донорной примесей меньше либо равной . Данный слой получается за счет сложных технологических приемов во время жидкостной эпитаксии с использованием амфотерных свойств легирующих атомов кремния (Si).

Уникальность i-слоя в следующем:

- через него достаточно эффективно выполняется инжекция носителей;

- он имеет высокую электропрочность, превышающую 3·105 В/см (~30 В/мкм);

- вследствие обеспечения большой по значению ширины физического p-n перехода резко, в 20÷30 раз, снижается емкость по сравнению с кремниевыми, карбид-кремниевыми p-n или барьерными переходами;

- увеличивает частотные и динамические свойства.

Исключение GaAs n-типа проводимости высокоомного слоя направлено на повышение быстродействия и увеличение плотности токов создаваемой p+-i-n+ структуры, поскольку в высокоомном слое n-типа (базе) аккумулируются большие значения заряда накопления во время протекания прямого тока за счет большой плотности неосновных носителей тока, в данном случае - дырок, а это увеличивает время восстановления обратного тока и, следовательно, ухудшает динамику диода.

Таким образом, в предлагаемом изобретении конструкция диода приобретает вид p+-i-n+ структуры без использования традиционной высокоомной базовой области диодных структур, в частности кремниевых. Вследствие этого p+- и n+-области новой конструкции диода способны инжектировать в i-переходную область дырки и электроны соответственно, т.е. носители заряда. В i-зоне одновременно оказываются инжектированные с анодной и катодной областей дырки и электроны с неравновесной концентрацией носителей, образующих токопроводящую электронно-дырочную плазму высокой плотности и высокой проводимости, вследствие этого возрастает плотность прямосмещенного тока и нет составляющей роста прямого падения напряжения за счет высокоомной n-типа базы.

Такой двухинжекционный диод является новым решением или модификацией известной модели Шокли p-n перехода, фактически это p+-n+ высоковольтный диод, содержащий физический p-n переход в виде i-области, с отсутствием в конструкции диодной структуры общепринятой (классической) высокоомной базы.

Инжекция электронов со стороны катодной области диода осуществляется либо из n+-GaAs слоя, либо из n+-AlGaAs слоя, либо комбинации буферного GaAs слоя (т.е. слоя, предохраняющего переходную гетерообласть от электрического поля при больших напряжениях, но позволяющего производить эффективную инжекцию из гетерослоя) и n+-AlGaAs слоя, который за счет большей ширины запрещенной зоны обеспечивает более эффективную инжекцию электронов через буферный слой или напрямую в i-область, или возможна комбинация n+-типа GaAs, AlGaAs и GaAs последовательных слоев с целью снижения механических напряжений, обеспечения высокой гетероэффективной инжекции электронов в i-область и выполнения надежного омического контакта к приповерхностному GaAs n+-эпитаксиальному слою.

Концентрации легирующих примесей в катодных n+-областях в каждом случае подбираются экспериментально.

В процессе переключения тока в p+-i-n+ приведенной структуре с прямого на обратный (приложение обратного напряжения), в отличие от традиционной диодной структуры с высокоомной базой, механизм переключения и рассасывания накопленного заряда в i-области (электронно-дырочной плазмы) становится преимущественно дрейфово-диффузионным, а не диффузионно-дрейфовым, как, к примеру, в обычных кремниевых высоковольтных быстровосстанавливающихся диодах, т.е. происходит экстракция носителей приложенным электрическим полем - дырок в анод (p-зону), электронов - в катод (n-зону), с одновременной рекомбинацией на глубоких уровнях. Данный механизм рассасывания накопленного заряда в электронно-дырочной плазме оказывает определяющее влияние на частотные свойства и динамику предложенной новой конструкции диодов («безбазовой» конструкции диодного кристалла).

По вышеуказанной конструкции были получены экспериментальные образцы:

1). p+-i-n+ GaAs диодов с n+ GaAs катодом толщиной до 3,0 мкм и концентрацией донорной примеси 1·1018 см-3, с прямым напряжением UF≤1,2 В при прямом токе IF=3 А, с обратными пробивными напряжениями URRM≥920 В (при толщине i-слоя около 50 мкм) и временем восстановления при переключении из открытого в закрытое (непроводящее) состояние τrr<30 нсек. При di/dt=200 А/мкс URRM=200 В;

2). Экспериментальные образцы p+-i-n+/n+ AlGaAs/GaAs диодов с катодом n+-n+ типа, выполненного на основе последовательных эпитаксиальных слоев n+-GaAs и n+-AlGaAs, на которых получены прямые падения напряжения ниже на 0,15÷0,2 В, чем в диодной конструкции p+-i-n+ на моноэпитаксиальном GaAs.

Конкретный пример выполнения p+-i-n+ диодных структур следующий:

На исходную GaAs монокристаллическую подложку толщиной 300 мкм, ⌀ 50,6 мм, легированную Zn до концентрации 1·1019 см-3, в едином технологическом процессе жидкофазной эпитаксии в кварцевом реакторе из раствора GaAs в Ga из промежутка между двумя р+ GaAs подложками, легированными Zn (с NA>1019 см-3) в потоке Н2 с принудительным охлаждением, выращивались последовательно p-слой 2, i-переходный слой 3, n-высоковольтная область 4, высоколегированная n+ GaAs область 5. Полученная эпитаксиальная p-i-n структура имеет металлургические переходы внутри i-эпитаксиальной области 3. Процессы жидкостной эпитаксии проводились при относительно низкой температуре ~950°C. Измерение диффузионной длины электронов Ln проводилось на тестовых р+-р-n+ структурах с разностной концентрацией акцепторной и донорной примесей в пределах от 1014 до 1017 см-3. Профиль распределения донорной и акцепторной примесей определялся C-V методом характеристик р-n перехода, а также на установках косого шлифа.

Время жизни неравновесных носителей - дырок определялось по фотоотклику. Были установлены значения Lp и τp в зависимости от разностной концентрации донорной и акцепторной примесей, а также зависимость τp и Lp от уровня инжекции и плотности внесенного заряда.

В случае создания гетероструктуры AlGaAs использовался тот же метод жидкостной эпитаксии с наращиванием эпитаксиального слоя из расплава мышьяка в галлии с добавкой алюминия с использованием легирующих примесей теллура (Те) или олова (Sn) при температурах на 120÷150°C ниже, чем при процессе создания эпитаксиальной p-i-n структуры.

С учетом коэффициента сегрегации примесей вышеуказанных легирующих добавок задается трехступенчатый температурный градиент рекристаллизации эпитаксиального слоя из жидкого раствора AlxGa1-xAs для обеспечения высокого преобладания донорной примеси над акцепторной.

1. Мультиэпитаксиальная структура кристалла двухинжекционного высоковольтного гипербыстровосстанавливающегося диода на основе соединений галлия и мышьяка, содержащая высоколегированную монокристаллическую подложку p+-типа проводимости, выполненный на ней эпитаксиальный GaAs слой p-типа проводимости, p-n-переходный по типу проводимости эпитаксиальный GaAs i-слой, содержащий область пространственного заряда и внутрирасположенную мультиэпитаксиальную металлургическую переходную зону, эпитаксиальный GaAs слой, выполненный на p-n-переходном i-эпитаксиальном слое, отличающаяся тем, что:
- высоколегированная монокристаллическая GaAs подложка p+-типа проводимости выполняется с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 3·1018 см-3 и толщиной не менее 200 мкм;
- эпитаксиальный слой p-типа проводимости выполняется с толщиной не менее 5,0 мкм и изменяющейся разностной концентрацией донорной и акцепторной легирующих примесей от концентрации в монокристаллической p+-типа проводимости GaAs подложке до значений не более чем ;
- p-n переходный по типу проводимости эпитаксиальный GaAs i-слой, содержащий область пространственного заряда и внутрирасположенную мультиэпитаксиальную металлургическую переходную зону, выполняется с разностной концентрацией акцепторной и донорной легирующих примесей меньше либо равной значению и толщиной 5÷100 мкм;
- эпитаксиальный GaAs слой на p-n переходном эпитаксиальном i-слое выполняется высоколегированным n+-типа проводимости с разностной концентрацией акцепторной и донорной легирующих примесей в приповерхностном слое не менее чем 1·1017 см-3 и толщиной не менее 0,1 мкм.

2. Мультиэпитаксиальная структура кристалла двухинжекционного высоковольтного гипербыстровосстанавливающегося диода на основе соединений галлия и мышьяка по п.1, отличающаяся тем, что на поверхности высоколегированного эпитаксиального GaAs слоя n+-типа проводимости выполняется высоколегированный эпитаксиальный слой AlGaAs n+-типа проводимости с разностной концентрацией донорной и акцепторной примесей не менее чем 3·1017 см-3 и толщиной не менее 0,1 мкм.



 

Похожие патенты:

Изобретение относится к полупроводниковым приборам, в частности, к формированию самосовмещенных высоковольтных диодов. .

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов. .

Изобретение относится к импульсной технике и может быть использовано в источниках питания полупроводниковых лазеров, мощных полупроводниковых светодиодов, диодов Ганна, системах сверхширокополосной локации.

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока в радиоаппаратуре, радиоизмерительных приборах и системах.

Изобретение относится к технологическим процессам производства компонентов микроэлектроники и вычислительных схем. .

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах.

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах.

Изобретение относится к области силовой промышленной электронной техники. .

Изобретение относится к области конструирования полупроводниковых приборов и может быть использовано в производстве мощных кремниевых диодов с улучшенной термостабильностью.

Изобретение относится к промышленной электронике и может быть использовано в электрических устройствах, эксплуатируемых в экстремальных условиях: космос, повышенная радиация, высокие температуры.

Изобретение относится к области полупроводниковой электроники. В диоде с отрицательным дифференциальным сопротивлением согласно изобретению объединены два комплементарных полевых транзистора в единую вертикальную структуру с параллельно расположенными каналами, между которыми образуется электрический переход, при этом исток р-канала расположен напротив стока n-канала, а сток р-канала - напротив истока n-канала. Истоки каналов соединены между собой с помощью проводника и дополнительной области с n+-типом проводимости, на которой расположен исток n-канала, а стоки каналов имеют отдельные выводы. Изобретение позволяет уменьшить размеры, повысить быстродействие и увеличить ток и выходную мощность диода. 1 з.п. ф-лы, 3 ил.

Изобретение относится к полупроводниковым электронным приборам. В полупроводниковом диоде на полупроводниковой GaAs подложке расположены катодный слой, обедненный слой, барьерный слой, обедненный узкозонный слой, анодный узкозоный слой, анодный слой. Металлизированный катодный контакт с омическим сопротивлением сформирован к катодному слою. Металлизированный анодный контакт с омическим сопротивлением сформирован к анодному слою. На границе анодного слоя и анодного узкозонного слоя и на границе барьерного слоя и обедненного узкозонного слоя сформированы гетеропереходы. Технический результат - снижение обратного тока и увеличение пробивного напряжения диода. 1 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к полупроводниковым приборам. В полупроводниковом конструктивном элементе, имеющем полупроводниковое тело (21) с первой стороной (22), второй стороной (23) и краем (24), внутреннюю зону (27) с основным легированием первого типа проводимости, расположенную между первой стороной (22) и внутренней зоной (27) первую полупроводниковую зону (61) первого типа проводимости с концентрацией легирования, которая выше концентрации легирования внутренней зоны (27), расположенную между второй стороной (23) и внутренней зоной (27) вторую полупроводниковую зону (29) второго типа проводимости, с концентрацией легирования выше концентрации легирования внутренней зоны (27), по меньшей мере один первый краевой скос, который проходит под первым углом (30) к плоскости прохождения перехода от второй полупроводниковой зоны (29) к внутренней зоне (27) по меньшей мере вдоль края (24) второй полупроводниковой зоны (29) и внутренней зоны (27), второй краевой скос со вторым углом (71), величина которого меньше величины первого угла, который проходит вдоль края (24) первой полупроводниковой зоны (61) или скрытой полупроводниковой зоны (41), при этом по меньшей мере одна скрытая полупроводниковая зона (41) второго типа проводимости с концентрацией легирования, которая выше, чем во внутренней зоне (27), предусмотрена между первой полупроводниковой зоной (61) и внутренней зоной (27) и проходит по существу параллельно первой полупроводниковой зоне (61). Изобретение позволяет исключить повышенные пики силы поля в краевой области, возникающие во время процесса выключения полупроводникового конструктивного элемента, а также обеспечивает повышенную воспроизводимость и меньший разброс электрических свойств. 9 з.п. ф-лы, 7 ил.

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции электронов на протекание тока при обратном смещении π-ν-перехода до переключения S-диода, повышение напряжения переключения по сравнению со структурами, полученными легированием только хромом или железом, повышение надежности работы таких структур в схемах импульсного питания. В S-диоде, выполненном на основе n-π-ν-n-структуры из арсенида галлия, компенсированного хромом, между n- и π-областями введена дополнительная область p-типа проводимости, толщина этого p-слоя не превышает 5·Ln, где Ln – диффузионная длина электронов в p-области. 2 ил.

Изобретение относится к быстродействующим диодам. Диод содержит полупроводниковый слой, имеющий первую сторону и противоположную первой стороне вторую сторону, полупроводниковый слой имеет толщину между первой стороной и второй стороной, при этом толщина полупроводникового слоя сравнима со средней длиной свободного пробега носителей заряда, эмитированного в полупроводниковый слой. Диод содержит первый металлический слой, осажденный на первой стороне полупроводникового слоя, второй металлический слой, осажденный на второй стороне полупроводникового слоя, первый гетеропереход между полупроводниковым слоем и первым металлическим слоем или между полупроводниковым слоем и вторым металлическим слоем, причем полупроводниковый слой, первый металлический слой и второй металлический слой выполнены с возможностью осуществления баллистической проводимости носителя заряда из первого металлического слоя через полупроводниковый слой во второй металлический слой. Изобретение обеспечивает получение диода с высокой плотностью тока термоионной эмиссии, высокой нелинейностью и выпрямлением. 5 н. и 20 з.п. ф-лы, 7 ил., 1 табл.
Наверх