Способ определения в опытовом бассейне в прямом движении аэродинамических характеристик горизонтального оперения экраноплана



Способ определения в опытовом бассейне в прямом движении аэродинамических характеристик горизонтального оперения экраноплана
Способ определения в опытовом бассейне в прямом движении аэродинамических характеристик горизонтального оперения экраноплана
Способ определения в опытовом бассейне в прямом движении аэродинамических характеристик горизонтального оперения экраноплана

 


Владельцы патента RU 2531783:

Открытое акционерное общество "Центральное конструкторское бюро по судам на подводных крыльях им. Р.Е. Алексеева" (ОАО "ЦКБ по СПК им. Р.Е. Алексеева") (RU)

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки. Модель испытывается в опытовом бассейне в прямом движении. Модель крепится на пилоне буксировочной тележки через динамометр, используемый для гидродинамических исследований, в зоне отсутствия вихреобразования от движения тележки. Моделирование струи силовой установки производится моделированием диаметра сопла и тяги. При движении тележки на фиксированной скорости и обдувки горизонтального оперения струями двигателей маршевой силовой установки определяются аэродинамические характеристики при различных сочетаниях углов атаки горизонтального оперения, тяги двигателей, отклонения рулей высоты, что позволяет экспериментально-расчетным способом оперативно определять параметры, являющиеся одним из основных элементов инструкции в обеспечении расчета управляемости на всех эксплуатационных режимах движения экраноплана и в чрезвычайных нестандартных ситуациях. Достигается осуществление полного аэродинамического расчета экраноплана в целом. 3 ил.

 

Изобретение относится к судостроению и касается проектирования экранопланов (Э). Подробное описание всех построенных опытных, серийных и учебных экранопланов, а также самоходных моделей описано в книге "Экранопланы: транспортные суда 21 века" / Под редакцией д.т.н., профессора А.И Маскалика. СПб, Судостроение, 2005.

Некоторые виды экранопланов, особенно экранопланы с раздельными силовыми установками, имеют маршевые силовые установки, расположенные на горизонтальном оперении (ГО). Например, СМ-6 на стр.47, "Орленок" на рис.54(вкладыш), упомянутой книги.

Особенностью экранопланов таких компоновок является то, что расположенные на горизонтальном оперении маршевые двигатели (турбовинтовые, турбовинтовентиляторные и т.д.) отработанными газами или воздушными потоками за винтами обдувают не только плоскости самого горизонтального оперения, но и расположенные в его конструкции рули высоты, а в некоторых случаях и руль направления. При этом на самом горизонтальном оперении возникают дополнительные аэродинамические силы, а на рулях высоты - дополнительные управляющие моменты, необходимые для выполнения расчетов управляемости на всех эксплуатационных режимах движения экраноплана.

Для экранопланов, движущихся вблизи экрана на границе двух сред вода-воздух, теоретического решения оценки влияния обдувки на образование дополнительных аэродинамических сил на горизонтальном оперении не имеется. А в книге А.И. Маскалика описания даже приблизительной формулы для учета влияния работы маршевой силовой установки на аэродинамические характеристики ГО и руля высоты не приводится.

Экспериментальные методы определения этих характеристик в аэродинамических трубах в обращенном движении для самолетов, основные эксплуатационные режимы которых выполняются на больших высотах, неприемлемы для экранопланов, движущихся вблизи экрана (воды, суши и т.п.). Кроме того, испытания в аэродинамической трубе требуют значительных материальных затрат и высокого качества изготовления аэродинамической модели.

Для решения этой задачи предлагается разработанный экспериментальный метод определения в оптовом бассейне в прямом движении на буксировочной тележке влияния обдувки на аэродинамические характеристики горизонтального оперения и рулей высоты.

Проектируется и изготавливается модель ГО с частью ВО (вертикального оперения) и моделируемой СУ (силовой установкой), при этом геометрия модели, силовой установки, диаметра выходного сопла или винта согласно законов подобия выполняется в масштабе м, а тяга силовой установки - в масштабе м3.

Силовая установка представляет собой осевые вентиляторы с приводом от электродвигателей, изменением напряжения на клеммах которых моделируется тяга.

Модель ГО с силовой установкой закрепляется на пилоне впереди буксировочной тележки опытового бассейна вне зоны влияния обтекания тележки. Далее устанавливается однокомпонентный динамометр, к которому крепится модель ГО с возможностью изменения его углов атаки и углов отклонения рулей высоты. Модель в целом устанавливается на высоте Н=2Вср от воды, где Вср - средняя хорда ГО. Для исключения влияния водного экрана на аэродинамические характеристики модели она устанавливается на высоте Н>4Вср от воды, где Вср - средняя аэродинамическая хорда ГО. Схема модели ГО и ее установка на буксировочной тележке опытового бассейна изображена на фиг.1, где обозначено:

1. Тележка опытового бассейна.

2. Пилон.

3. Динамометр.

4. Горизонтальное оперение.

5. Имитатор турбовинтовентиляторного двигателя.

6. Рули высоты.

На фиг.2 приведена фотография модели ГО в сборе с имитаторами турбовинтовентиляторных двигателей.

На фиг.3 приведена фотография крепления имитатора турбовинтового двигателя модели ГО на буксировочной тележке. На фотографии хорошо виден динамометрический элемент.

Определение аэродинамических характеристик производится следующим путем.

После монтажа модели ГО с двигателями на буксировочной тележке опытового бассейна составляется программа испытаний, в которой учитываются все переменные элементы, влияющие на аэродинамические характеристики, а именно:

- угол установки ГО;

- угол отклонения рулей высоты;

- режим работы силовой установки модели;

- скорость буксировки.

На каждом реальном сочетании переменных элементов производится буксировка тележки с заданной скоростью и регистрируется с помощью динамометра вертикальная подъемная сила на ГО.

Определение аэродинамических характеристик изолированного ГО в заданном диапазоне переменных величин при его обдувке струями маршевых двигателей в опытовом бассейне в прямом движении осуществляется в следующей технологической последовательности:

- определятся подъемная сила на ГО в диапазоне заданных переменных параметров без обдувки двигателями маршевой силовой установки;

- рассчитывается продольный момент;

- определяется подъемная сила на ГО в диапазоне заданных переменных параметров с обдувкой двигателями маршевой силовой установки;

- рассчитывается продольный момент;

- определятся приращение продольного момента за счет обдувки изолированного ГО струями маршевых двигателей;

- рассчитывается пикирующий момент от тяги маршевой силовой установки;

- с учетом скоса потока от основного крыла, полученного по результатам испытаний зеркальных моделей в аэродинамической трубе, определяется продольный внешний момент.

Результаты испытаний модели горизонтального оперения с силовой установкой, полученные в опытовом бассейне в прямом движении с помощью контрольно-измерительной аппаратуры, разработанной и изготовленной для гидродинамических исследований, позволяют выполнять аэродинамические расчеты экраноплана в целом.

Способ определения аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями, заключающийся в изготовлении геометрически подобной модели горизонтального оперения и двигателей силовой установки в масштабе м, отличающийся тем, что модель испытывается в опытовом бассейне в прямом движении, причем модель крепится на пилоне буксировочной тележки через динамометр, используемый для гидродинамических исследований, в зоне отсутствия вихреобразования от движения тележки, моделирование струи силовой установки производится моделированием диаметра сопла в масштабе м и моделированием тяги в масштабе м3, при движении тележки на фиксированной скорости и обдувки горизонтального оперения струями двигателей маршевой силовой установки определяются аэродинамические характеристики при различных сочетаниях углов атаки горизонтального оперения, тяги двигателей, отклонения рулей высоты, что позволяет экспериментально-расчетным способом оперативно определять параметры, являющиеся одним из основных элементов инструкции в обеспечении расчета управляемости на всех эксплуатационных режимах движения экраноплана и в чрезвычайных нестандартных ситуациях.



 

Похожие патенты:

Изобретения относятся к области экспериментальной аэродинамики летательных аппаратов и могут быть использованы для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов в аэродинамической трубе.

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана.

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана.

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. .

Изобретение относится к области испытаний на прочность, в частности к изготовлению и конструкции образцов лопасти модели воздушного винта, предназначенных для таких испытаний.

Изобретение относится к области приборостроения и может быть использовано, в частности, в устройствах нагрева газа для импульсных установок. .

Изобретение относится к области экспериментальной аэродинамики, а именно к способам определения аэродинамических характеристик воздушных судов. .

Изобретение относится к области машиностроения и предназначено для использования преимущественно в авиационной промышленности при проведении наземных испытаний объектов авиационной техники, подвергающихся обледенению в естественных условиях.

Изобретение относится к области испытательной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Изобретения относятся к области судостроения, в частности к экспериментальным методам испытания моделей в опытовых и ледовых бассейнах при проведении испытаний заякоренных объектов, и могут быть использованы для непосредственных измерений инерционных характеристик изучаемой модели.

Группа изобретений относится к области гидродинамики, в частности к стендовому оборудованию для моделирования гидроабразивного износа насосов. Способ гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материал подают с рабочей жидкостью из узла подвода во вращающийся насос.

Изобретение относится к области судостроения, касается вопроса экспериментального определения характеристик нестационарных сил, возникающих на элементах судовых движителей.

Изобретение относится к области экспериментальной гидродинамики морского транспорта. .

Изобретение относится к области экспериментальной техники для исследований гидродинамики и динамики судов и касается создания опытовых бассейнов с возможностями моделирования в них волнения.

Изобретение относится к области экспериментальной техники и может быть использовано для испытаний различных подводных объектов и пусковых устройств, в частности пусковых устройств торпедных аппаратов.

Изобретение относится к испытательной технике, в частности к методам и средствам проверки технического состояния скважинных установок электроцентробежных насосов (УЭЦН) при проведении мероприятий по техническому обслуживанию.

Изобретение относится к области двигателестроения и может быть использовано в испытаниях топливной аппаратуры дизельных двигателей. .

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Изобретение относится к области судостроения, касается вопроса экспериментального определения характеристик нестационарных сил, возникающих на элементах судовых движителей.
Наверх