Устройство для передачи микроволновой энергии от генератора в камеру микроволновой печи

Устройство для передачи микроволновой энергии от генератора в камеру микроволновой печи (МВП) представляет из себя сборочную единицу, состоящую из магнетронного генератора и двухэлементной полосковой антенны, установленной внутри камеры МВП и возбуждающей электромагнитное поле (ЭМП) с круговой поляризацией. Вывод энергии магнетрона непосредственно соединен электрически с излучателем антенны, что позволило значительно уменьшить (до 4%) потери микроволновой энергии в линии магнетрон-антенна-камера МВП. Конструкция двухэлементной полосковой антенны с синфазным питанием, согласованная с камерой МВП до КСВН (коэффициент стоячей волны по напряжению) ~1,5 с помощью трех КЗ стоек диаметром 10 мм и длиной 26 мм, обеспечила возбуждение в полости камеры МВП ЭМП с круговой поляризацией, коэффициент равномерности распределения энергии которого в эквивалентной поглощающей нагрузке составил 94%. Изобретение обеспечивает повышение эффективности работы и равномерное распределение микроволновых источников. 3 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к микроволновой технике, в частности к электронагревательным аппаратам, использующим энергию микроволнового поля, и предназначено для передачи микроволновой энергии от генератора в камеру микроволновой печи.

Предшествующий уровень техники

Известно устройство для передачи микроволновой энергии от генератора в камеру микроволновой печи, представляющее собой пирамидальную укороченную рупорную антенну, подключенную через отверстие связи к прямоугольному волноводному резонатору, в полость которого погружен вывод микроволновой энергии из источника - магнетронного генератора [1]. (Такие устройства используются практически во всех моделях МВП Samsung Electronics, LG и ряда других компаний).

Основными недостатками этого устройства являются существенно неравномерное распределение энергии микроволнового поля в полости камеры, зависимость указанного распределения и эффективности работы печи от объема, массы и месторасположения в камере обрабатываемого продукта, что приводит к неравномерному нагреву и некачественному приготовлению блюд, а также к увеличению потребления электроэнергии от сети питания.

Коэффициент равномерности распределения источников нагрева α=(38÷40)% при отсутствии вращения и α=64% при вращении обрабатываемого продукта на диэлектрической платформе. (Измерения выполнены согласно [7]. Эффективность передачи энергии от магнетрона в камеру уменьшается на (18÷20)% в связи с активными и реактивными потерями в многозвенной линии передачи.

Наиболее близкими техническими решениями к изобретению являются микроволновая печь с диагональным возбудителем ЭМП с круговой поляризацией в рабочей камере [2] и устройство для передачи микроволновой энергии в замкнутый объемный резонатор [3].

В этих устройствах основным элементом является полосковая антенна, возбуждающая в рабочей камере ЭМП с круговой поляризацией и формирующая равномерное распределение источников микроволнового нагрева (α>90%) в эквивалентной нагрузке [2, 3].

В устройстве [2] двухэлементная полосковая антенна состоит из излучателя, которой имеет форму сжатой восьмерки и изготовлен как единое и целое из листового металла с высокой электропроводимостью, и экрана квазиэллипсоидальной формы, также изготовленного из листового металла с высокой электропроводностью и закрепленного через отверстие в центре жестко механически с хорошим гальваническим контактом на внешнем проводнике коаксиального отрезка коаксиально-волноводного перехода (КВП), при этом каждая из ветвей излучателя - «восьмерки» для обеспечения синфазного питания соединена механически и гальванически в характерных точках с помощью втулок из металла с высокой электропроводностью с экраном, а центр симметрии «восьмерки» соединен с центральным проводником коаксиального отрезка КВП, к волноводному входу которого поступает энергия от микроволнового генератора.

Основными недостатками этого устройства являются:

a) заметные активные и реактивные потери (10÷12%) микроволновой энергии в многозвенной линии передачи между генератором и камерой МВП;

b) сложность индивидуального согласования импеданса полосковой антенны с полным сопротивлением камеры нагрева (резонатор с нагрузкой), что приводит к увеличению объема работ в процессе создания МВП с различными размерами камер нагрева;

c) невысокий уровень технологичности конструкции полосковой антенны, что существенно в серийном производстве.

Устройство [3] представляет из себя сборочную единицу, включающую магнетрон, вывод энергии которого погружен в настраиваемый прямоугольный резонатор, а из его полости с помощью встроенного волноводно-коаксиального перехода микроволновая энергия подается на вход полосковой антенны. Последняя используется в качестве возбудителя ЭМП с круговой поляризацией в резонаторных камерах нагрева различного назначения.

Основные недостатки этого устройства те же, что и у [2], однако уровень потерь энергии меньший (~8%), в связи с чем данное устройство применяется в технологическом оборудовании с микроволновым нагревом мощностью более 3 кВт.

Существенные потери энергии при ее канализации от микроволнового генератора в камеру нагрева, недостаточный уровень технологичности конструкций возбудителей ЭМП в полости рабочих камер препятствуют широкому применению полосковых антенн в бытовых и промышленных приборах, использующих микроволновый нагрев.

Раскрытие изобретения.

Основной задачей, на решение которой направлено изобретение, является повышение эффективности работы устройства для передачи микроволновой энергии от генератора в камеру микроволновой печи, реализация высокоравномерного распределения источников микроволнового нагрева в нагрузке камеры и достижение уровня технологичности конструкции, соответствующего Требованиям организации серийного производства.

Это достигается за счет того, что устройство для передачи микроволновой энергии от генератора в камеру МВП, представляющее из себя сборочную единицу, включающую магнетрон, вывод энергии которого погружен в настраиваемый прямоугольный резонатор, а из его полости с помощью встроенного волноводно-коаксиального перехода микроволновая энергия подается на вход полосковой антенны, установленной и закрепленной на одной из стенок внутри камеры нагрева МВП и возбуждающей в камере ЭМП с круговой поляризацией, согласно изобретению, устройство для передачи микроволновой энергии от генератора в камеру МВП формализуется в виде узловой сборочной единицы, включающей в себя, Рис.1: магнетронный генератор 1, фланец 2 крепления магнетрона на стенке 3 рабочей камеры МВП, вывод микроволновой энергии из резонатора магнетрона, сверху закрытый керамической оболочкой 8, а снизу - металлическим колпачком 9 из тонкого (толщиной 0,24 мм) высокотемпературного металла; двухэлементную полосковую антенну с синфазным питанием, деталями которой являются излучатель 6, Рис.1, выполненный в виде цельного вытянутого в направлении оси ОХ, Рис.2, квазиэллипсоидального диска длиной ~λ и шириной λ/2 (λ - длина волны в свободном пространстве) и изготовленного из листового с высокой электропроводностью металла толщиной 1 мм; экран 3 как часть поверхности стенки камеры нагрева МВП; три короткозамыкающие (КЗ) стойки 4 из хорошо проводящего металла сверху, Рис.1, разъемно механически с хорошим гальваническим контактом соединенные с поверхностью экрана (стенки 3), а снизу КЗ стойки соединены механически с хорошим гальваническим контактом винтами 7 через отверстия 10, 11, 12, Рис.2, с излучателем 6, в центральное отверстие которого 13 с D=15,2 мм установлен и соединен пайкой по всему периметру металлический колпачок 9 вывода энергии из магнетрона 1.

Благодаря тому что конструкция узловой сборки устройства для передачи микроволновой энергии от генератора в камеру нагрева МВП, Рис.1, обеспечивает прямую связь вывода энергии магнетрона с полосковой антенной и рабочей камерой МВП, а также благодаря хорошему согласованию антенны с нагруженной камерой, потери энергии в тракте магнетрон-антенна-камера нагрева существенно уменьшены и составляют ~4%.

Благодаря качественному согласованию двухэлементной полосковой антенны с нагрузкой (1 л воды в стеклянном сосуде) камеры нагрева МВП, достигнутому при расстоянии = 26 мм, Рис.1, между излучателем 6 и экраном 3 и оптимальном положении фазового центра антенны при ее подключении к камере нагрева через отверстие 5 в верхней стенке, реализовано высокоравномерное распределение источников микроволнового нагрева, которому соответствует α≈94%.

Так как конструкция узловой сборки, Рис.1, не содержит прямоугольного резонатора и КВП, ее уровень технологичности значительно повышен, а затраты на изготовление существенно снижены. Это делает преобразователь микроволновой энергии весьма перспективным устройством для применения в бытовых МВП и в промышленном оборудовании.

Краткое описание чертежей.

На Рис.1 представлен эскиз сборочной единицы устройства для передачи микроволновой энергии от генератора в камеру МВП, выполненный в масштабе 1:1. Это устройство изготовлено и исследовано, а полученные результаты стали базой для подготовки настоящей заявки.

Ниже приводится описание деталей и элементов устройства согласно Рис.1, а также сведения о магнетроне и МВП, которые использовались при изготовлении и исследовании макета этого устройства.

Магнетрон 1, модель M24FA-410A, производитель Galanz, выпуск 2011 г; фланец магнетрона 2; стенка рабочей камеры 3 МВП, производитель «Saturn», объем рабочей камеры 17 л, выпуск 2011 г; КЗ стойка 4, материал латунь ЛС-59, диаметр 10 мм, высота 26 мм; излучатель 6, материал сталь н/ж листовая, толщина 1 мм, на Рис.2 приведен эскиз излучателя 6 в масштабе 1:1, соответственно, отверстия 10, 11, 12 предназначены для соединения винтами 7 излучателя 6 с КЗ стойками 4, а отверстие 13, Рис.2, для соединения пайкой излучателя 6 с металлическим колпачком 9 вывода энергии из магнетрона 1; керамическая оболочка 8 обеспечивает защиту вывода энергии магнетрона 1. Следует отметить, что выбор типа магнетрона и модель МВП не является принципиальным.

Лучший вариант осуществления изобретения.

Устройство для передачи микроволновой энергии от генератора в камеру МВП, Рис.1, представляет собою узловую сборочную единицу, включающую в себя двухэлементную с синфазным питанием полосковую антенну, вывод энергии из магнетрона, являющийся неотъемлемой частью конструкции антенны, и часть поверхности стенки камеры нагрева МВП, выполняющей функции экрана полосковой антенны.

Сборка и монтаж устройства в полости камеры МВП выполняются в следующем порядке. Три КЗ стойки 4 механически с хорошим гальваническим контрактом устанавливаются на внутренней поверхности стенки 3 и фиксируются винтами (на Рис.1 не показаны).

Затем устанавливается магнетрон 1, вывод энергии которого погружается в полость камеры МВП через отверстие 5 в стенке 3.

После этого монтируется излучатель 6: через соответствующие отверстия 10, 11, 12 крепится к КЗ стойкам 4 винтами 7, а металлический колпачок 9 с цанговым разъемом (на Рис.1 не показан) соединяется с оболочкой из керамики 8 вывода энергии из магнетрона 1.

Как следует из описания устройства для передачи микроволновой энергии от генератора в камеру МВП, его узлы и элементы по конструкции простые, их изготовление не предоставляет трудностей и не нуждается в уникальном оборудовании. Исключением является металлический колпачок 9, тем не менее технология производства таких деталей давно освоена в точном приборостроении.

Промышленная применяемость.

В процессе создания устройства для передачи микроволновой энергии от генератора в камеру МВП был выполнен комплекс исследований и испытаний опытного образца. В результате этих работ установлены оптимальные размеры КЗ стоек 4 (диаметр 10 мм, длина 26 мм), а также координаты точек 10, 11, 12 их соединения с излучателем 6, соответственно, точка 10 (-30, 12), точка 11 (40, 15), точка 12 (36, -22), Рис.2. Двухэлементная полосковая антенна с излучателем квазиэллипсоидальной формы в виде тонкого диска с размерами длина ~λ, ширина λ/2, толщина 1 мм была согласована в режиме излучения в свободное пространство до КСВН входа 1, 2 в полосе частот (2,4÷2,5) ГГц и до КСВН входа 1,52 при установке в полости камеры МВП с эквивалентной кассетной нагрузкой согласно международному стандарту [7].

Координаты фазового центра антенны совпадают с координатами центра симметрии поверхности верхней стенки камеры МВП «Saturn». Оптимальному режиму работы устройства соответствует положение излучателя 6, при котором угол между его главной осью симметрии и горизонтальной осью симметрии поверхности верхней стенки 3 камеры МВП составляет ±6°.

Согласно [7] определено значение коэффициента равномерности распределения источников микроволнового нагрева α=94%, а также измерены потери энергии при ее передачи от генератора в камеру МВП, составившие 4%.

Экспериментально подтверждено, что без полосковой антенны устройство способно передавать от генератора в камеру МВП 100% выходной энергии магнетрона, однако при этом коэффициент α≈72%. Тем не менее, установленное свойство преобразователя расширяет возможности его применения.

Есть все основания утверждать, что по эксплуатационным и технологическим критериям устройство для передачи микроволновой энергии от генератора в камеру МВП имеет перспективы для промышленного применения.

Источники информации

1. Microwave Owen M245. (Owner's Instruction Code №6861707A (2007), Samsung Electronics. RK.

2. Микроволновая печь. Патент №2393650 РФ, 27.06.2010, Автор Патентообладатель Жилков В.С.

3. Device for transfer of microwave energy into a defined volume. US, Patent Application Publication. Zhylkov et al. Pub-No its 2010/0126987 A1, May 27, 2010.

4. Е.И. Нефедов и др. Микрополосковые излучающие и резонансные устройства. Из-во «Техника», 1990 г.

5. Ю.В.Шубарин. Антенны сверхвысоких частот. Изд-во ХГУ, 1960 г.

6. Антенны и устройство СВЧ. Под ред. проф. Д.И.Воскресенского. Изд-во «Соврадио», 1972 г.

7. Norme International CEI IEC. International Standard 60705. Edition 3.2.2006-03.

1. Устройство для передачи микроволновой энергии от генератора в камеру микроволновой печи (МВП), представляющее из себя сборочную единицу, включающую магнетрон, вывод энергии которого погружен в настраиваемый прямоугольный резонатор, а из его полости с помощью волноводно-коаксиального перехода микроволновая энергия подается на вход полосковой антенны, установленной и закрепленной на одной из стенок внутри камеры МВП и возбуждающей электромагнитное поле (ЭМП) с круговой поляризацией, отличающееся тем, что устройство для передачи энергии от генератора в камеру МВП выполнено в виде узловой сборочной единицы, включающей в себя магнетронный генератор, фланец крепления магнетрона на стенке рабочей камеры МВП, вывод микроволной энергии из резонатора магнетрона, сверху закрытый керамической оболочкой, а снизу - металлическим колпачком из тонкого высокотемпературного металла, двухэлементную полосковую антенну с синфазным питанием, деталями которой являются излучатель, выполненный в виде цельного вытянутого в направлении оси ОХ, квазиэллипсоидального диска длиной ~λ, шириной λ/2 (λ - длина волны в свободном пространстве) и изготовленного из листового с высокой электропроводностью металла толщиной 1 мм, экран как часть поверхности стенки камеры нагрева МВП, три короткозамыкающие (КЗ) стойки из хорошо проводящего металла сверху, разъемно механически с хорошим гальваническим контактом соединенные с поверхностью экрана (стенки), а снизу КЗ стойки соединены механически с хорошим гальваническим контактом винтами через отверстия с излучателем, в центральное отверстие которого с D=15,2 мм установлен и соединен пайкой по всему периметру металлический колпачок вывода микроволновой энергии из магнетрона.

2. Устройство по п.1, отличающееся тем, что для обеспечения синфазного питания левой и правой ветвей двухэлементной полосковой антенны металлический колпачок вывода энергии из магнетрона электрически (с хорошим гальваническим контактом) соединен с излучателем антенны через отверстие, при этом координаты центров симметрии металлического колпачка и квазиэллипсоидального диска излучателя совпадают.

3. Устройство по п.1, отличающееся тем, что его оптимальный режим работы, при котором коэффициент равномерности распределения источников микроволнового нагрева α=94%, а потери энергии на передачу от магнетора к антенне ~4%, имеет место, если: линейные размеры КЗ стоек составляют диаметр 10 мм, длина 26 мм; внешний диаметр металлического колпачка вывода энергии из магнетрона равен 15,2 мм; угол между продольной осью симметрии излучателя и продольной осью симметрии верхней стенки камеры МВП составляет ±6°.

4. Устройство по п.1, отличающееся тем, что в качестве экрана двухэлементной полосковой антенны с синфазным питанием используется металлическая стенка камеры нагрева МВП.



 

Похожие патенты:

Изобретение предназначено для химической промышленности и может быть использовано при производстве гибких изделий, композитов, прокладок, уплотнений, покрытий, антифрикционных и теплозащитных материалов, сорбентов.

Изобретение относится к способу получения биологически активного кремниймодифицированного порошка гидроксиапатита с использованием СВЧ-излучения. Способ включает приготовление и перемешивание водных растворов нитрата кальция, гидрофосфата аммония и аммиака и раствора тетраэтоксисилана в этаноле с последующим воздействием СВЧ-излучения, отстаиванием, сушкой при температуре 90°С в течение 3 часов и прокаливанием при 800°С в течение 1 часа.

Изобретение относится к установкам для сушки сельскохозяйственного сырья. Сушильная бытовая СВЧ-печь включает магнетрон с системой электропитания и управления, корпус с волноводом, рабочую камеру с полками для сырья, по крайней мере одна из стенок которой выполнена с перфорацией для прохода воздуха, вытяжной вентилятор с диффузором и индивидуальным выключателем, причем большим основанием диффузор присоединен к перфорированной стенке рабочей камеры, а площадь перфорированной поверхности стенки, охватываемая диффузором, составляет 0,5-1,0 площади поперечного сечения рабочей камеры, согласно изобретению, в рабочую камеру монтируются как минимум два электрода из немагнитного металла, они крепятся посредством диэлектрических изоляторов к рабочей камере.

Изобретение относится к производству и использованию бытовых сверхвысокочастотных печей, применяемых для приготовления, переработки пищи и сушки сельскохозяйственной продукции.

Изобретение относится к СВЧ-технике, а именно к установкам, предназначенным для тепловой обработки различных сыпучих продуктов. .

Изобретение относится к оборудованию для тепловой обработки пищевых продуктов, в частности для варки сосисок и сарделек. .

Изобретение относится к бытовой электронагревательной технике и может быть использовано в производстве микроволновых печей. .

Изобретение относится к оборудованию для производства топленого масла, в частности для растопления сливочного масла в электромагнитном поле сверхвысокой частоты.

Изобретение относится к области радиоэлектроники и может быть использовано, например, в устройстве ввода датчика магнитного курса летательного аппарата. .

Изобретение относится к микроволновой технике, к электронагревательным аппаратам для тепловой обработки продуктов и т.п. Микроволновая печь имеет двухблочную конструкцию, функционально объединяющую эллипсоидальную камеру нагрева (1, 3) и электронный блок, в корпусе (6) которого установлены два автономных генератора магнетронного типа (5, 9) и устройство для управления режимом работы печи. Возбуждение электромагнитного поля в камере осуществляется с помощью двух короткозамкнутых однопроводных линий, длины которых отличаются между собой на λ/4, при этом вдоль этих линий формируются две стоячие волны, сдвинутые по фазе на π/2 и перекрывающие частично одна другую в пространстве, суммарным полем которых равномерно нагревается обрабатываемый продукт. Изобретение благодаря возможности унификации конструкций элементов и узлов системы возбуждения электромагнитного поля и реализации распределения источников микроволнового нагрева обеспечивает высокую равномерность и эффективность. 2 ил.

Изобретение относится к устройству для приготовления пищи и способу управления. Содержит камеру для приготовления пищи, чтобы вмещать продукты, которые должны быть приготовлены в ней, модуль микроволнового нагрева, чтобы излучать микроволны в камеру для приготовления пищи, модуль конвекционного нагрева, чтобы подавать горячий воздух в камеру для приготовления пищи, модуль гриль-нагрева, чтобы подавать излучаемое тепло в камеру для приготовления пищи, имеющую специальное покрытие тарелку, сконфигурированную, чтобы нагреваться посредством микроволн, модуль ввода, чтобы принимать пользовательскую команду обжаривания, и модуль управления. Когда пользовательская команда обжаривания вводится, модуль управления выполняет стадию микроволнового нагрева, на которой активируется, по меньшей мере, один из модулей конвекционного нагрева и модуля гриль-нагрева и активируется модуль микроволнового нагрева, и выполняет стадию обжаривания тонким слоем, на котором активируется модуль гриль-нагрева и модуль конвекционного нагрева без активирования модуля микроволнового нагрева. Устройство для приготовления пищи выполняет процесс обжаривания с помощью микроволн, излучаемого тепла и конвекционного тепла без погружения продуктов, которые должны быть приготовлены, в масло. Изобретение также упрощает управление процессами приготовления пищи. 2 н. и 13 з.п. ф-лы, 25 ил.
Изобретение относится к сорбционным процессам и может быть использовано, например, для регенерации цеолита, использованного при осушке природного газа. Предложен способ регенерации сорбента, в котором сорбент помещают в емкость, нагревают СВЧ-излучением для отделения сорбата от сорбента, пропускают через емкость продувочный газ для удаления паров сорбата. Сорбент располагают в емкости так, что концентрация сорбата в сорбенте увеличивается от нижнего слоя сорбента к верхнему слою, при этом СВЧ-излучение направляют в сторону увеличения концентрации сорбата. Отработавшим продувочным газом, выходящим из емкости, обдувают стенки емкости снаружи. Изобретение обеспечивает повышение производительности процесса. 2 з.п. ф-лы.

Свч-печь // 2581689
Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода. При этом вывод источника СВЧ энергии расположен в устройстве распределения энергии, а часть широкой стенки волновода является частью верхней стенки рабочей камеры, в которой выполнено более двух одинаковых щелевых отверстий. Прямоугольный волновод выполнен в виде последовательно соединенных участков регулярного и нерегулярного прямоугольного волновода с плавно сужающейся узкой стенкой. При этом вывод источника СВЧ энергии расположен в участке регулярного волновода. Щелевые отверстия выполнены в широкой стенке участка нерегулярного волновода, находящейся в одной плоскости с широкой стенкой участка регулярного волновода. Поперечное сечение волновода в точке перехода от регулярного к нерегулярному участку проходит через край щелевого отверстия. Технический результат заключается в повышении равномерности нагрева диэлектрического материала. 3 ил.

Изобретение относится к системам СВЧ-обработки материалов и может быть использовано для обеззараживания осадков промышленных, бытовых и сельскохозяйственных сточных вод. Установка СВЧ-обработки осадков сточных вод содержит по меньшей мере один СВЧ-генератор 1, камеру обработки осадков 2, корпус установки 3, шлюзы загрузки 4 и выгрузки 5, выполненные в виде туннелей, закрывающихся и открывающихся с помощью заслонок 6, ленточный транспортер 7 и средство придания грузонесущей ленте 8 транспортера 7 вогнутой вниз формы в зонах шлюзов загрузки 4 и выгрузки 5 и камеры обработки 2. Заслонки 6 выполнены из эластичного материала, поглощающего СВЧ-энергию. Камера обработки осадков 2 образована снизу грузонесущей лентой 8 транспортера 7 с вогнутой вниз формой, а сверху металлическим кожухом, закрепленным на корпусе установки 3. СВЧ-генераторы 1 установлены на внешней стороне металлического кожуха, с внутренней его стороны к СВЧ-генераторам 1 подсоединены волноводные облучатели, направленные в сторону грузонесущей ленты 8 транспортера 7. Шлюз загрузки 4 включает бункер для размещения подготовленных к обработке осадков и сменный шибер, регулирующий высоту осадков на грузонесущей ленте 8 транспортера 7. Шлюз выгрузки 5 выполнен в виде металлического кожуха, примыкающего к камере обработки осадков 2 и закрепленного на корпусе установки 3. Изобретение обеспечивает возможность непрерывной обработки таких материалов, склонных к растеканию, как осадков сточных вод, обезвоженных до влажности 60-90%, при этом обеспечивается безопасность окружающего пространства от СВЧ-излучения. 4 з.п. ф-лы, 5 ил.

Изобретение относится к СВЧ технике и предназначено для повышения однородности СВЧ поля при нагреве, сушке и других применениях теплового воздействия электромагнитного излучения СВЧ диапазона. Резонансная камера нагрева для устройств с источником излучения СВЧ диапазона, выполненная в форме прямоугольного параллелепипеда, у которой профиль хотя бы одной из стенок содержит одну или несколько выпуклостей, причем радиусы кривизны и высота их не менее λ/10, где λ - длина волны СВЧ излучения. Технический результат заключается в снижении неоднородности электрического поля в объеме камеры. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области микроволновых технологий и может найти применение при проектировании микроволновых установок предпосевной обработки семян в диапазоне сверхвысокой частоты (СВЧ) и диапазоне крайне высокой частоты (КВЧ). В излучателе для микроволновых установок, содержащем излучатель СВЧ диапазона (1) и излучатель КВЧ диапазона (2), имеющие соответствующие элементы ввода мощности (3), излучатель СВЧ диапазона в излучающем элементе имеет сквозное отверстие, в которое помещен излучающий элемент излучателя КВЧ диапазона так, что раскрыв излучающего элемента (5) излучателя КВЧ диапазона и раскрыв излучающего элемента излучателя СВЧ диапазона находятся в одной плоскости. Изобретение обеспечивает повышение качества формирования диаграммы направленности излучателя для микроволновой установки предпосевной обработки семян. 1 ил.

Изобретение относится к технологическому оборудованию пищевого предприятия и предназначено для термообработки сырья в оболочке, например колбасных изделий в оболочках, яиц, консервов в диэлектрической банке и т.п. В сверхвысокочастотной установке для термообработки сырья на монтажном каркасе вертикально установлен цилиндрический экранирующий корпус 1, на основаниях которого имеются патрубки для загрузки 7 и выгрузки. Внутри корпуса, на боковой поверхности жестко закреплены сферические резонаторы 2. Внутри каждого резонатора 2 по горизонтальной оси расположен ячеистый дозатор 3 из неферромагнитного материала. Ячейки дозатора образованы дисковыми сегментами, покрытыми термостойким гофрированным силиконовым материалом. Вращение дозаторов обеспечивается от мотора-редуктора 5. Изобретение обеспечивает возможность варки сырья в поточном режиме. 11 ил.

Изобретение относится к устройству (4) тепловой обработки для содержащих белок продуктов, которые транспортируются через устройство транспортировочным средством (5) и мимо по меньшей мере одной сверхвысокочастотной радиометрической антенны (1), причем сверхвысокочастотная радиометрическая антенна (1) расположена в защитном средстве (6), которое, по меньшей мере частично, простирается вокруг поперечного сечения транспортировочного средства (5), и, по меньшей мере частично, изолирует сверхвысокочастотную радиометрическую антенну (1) от внешних источников электромагнитного излучения. Изобретение повышает точность отсчета температуры и точность управления условиями нагревания в устройстве тепловой обработки. 10 з.п. ф-лы, 4 ил.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование малиновой выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку корня одуванчика, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев корня одуванчика до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием корня одуванчика, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Наверх