Способ обработки прискважинной зоны пласта

Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин, понизившегося вследствие кольматации призабойной зоны асфальтосмолопарафиновыми образованиями и механическими примесями. Способ обработки прискважинной зоны пласта включает спуск в скважину колонны труб, закачку в полость скважины жидкости, формирование депрессионного перепада давления между прискважинной зоной пласта и полостью скважины путем создания импульса давления в зоне перфорации с помощью источника жидкости, находящегося под давлением с последующим изливом скважинной жидкости в сливную емкость. Измеряют давление закачки и расход закачиваемой жидкости, причем закачивают жидкость с постепенным повышением давления до раскрытия трещин пласта и останавливают закачку жидкости после прекращения увеличения расхода закачиваемой жидкости. На устье скважины колонну труб оснащают снизу пакером, а выше эжекторной установкой. Спускают колонну труб в скважину так, чтобы пакер находился выше пласта. Производят посадку пакера, спускают полую насадку по колонне труб и устанавливают ее в эжекторную установку. При этом герметично отсекая колонну труб от межколонного пространства скважины. Далее с помощью источника жидкости, находящегося под давлением, закачивают жидкость по колонне труб через эжекторную установку в подпакерное пространство полости скважины и в пласт с постепенным повышением давления до раскрытия трещин пласта и прекращения увеличения расхода закачиваемой в пласт жидкости. Затем отсекают источник жидкости, находящийся под давлением, и изливают скважинную жидкость по колонне труб в сливную емкость. Далее извлекают из эжекторной установки по колонне труб полую насадку и спускают в эжекторную установку глухую насадку, при этом сообщая колонну труб через эжекторную установку с межколонным пространством скважины. С устья скважины закачивают жидкость по колонне труб в эжекторную установку. При этом под действием созданной на пласт депрессии скважинная жидкость из подпакерного пространства через эжекторную установку выносится по межколонному пространству в сливную емкость. Закачку жидкости в колонну труб прекращают после выравнивания подачи закачиваемой жидкости в колонну труб. Техническим результатом является повышение эффективности обработки призабойной зоны скважины. 2 ил.

 

Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин, понизившегося вследствие кольматации призабойной зоны асфальтосмолопарафиновыми образованиями и механическими примесями.

Известен способ обработки прискважинной зоны пласта (патент RU №2266404, МПК E21B 43/25, опубл. 20.12.2005 г.), включающий создание периодических импульсов давления в прискважинной зоне пласта в виде перемещающейся по полости скважины ударной волны, образующейся при периодическом открывании полости скважины на устье с применением вентилей, один из которых соединяет полость скважины со сливной емкостью, второй - с источником жидкости, находящейся под давлением.

Недостатком способа является то, что призабойная зона плохо промывается скважинной жидкостью, поскольку гидроудар имеет короткое время воздействия, в течение которого трещины пласта в течение ударного воздействия не успевают полностью раскрываться и смыкаться.

Известен способ обработки призабойной зоны скважины (патент RU №2383720, МПК E21B 43/25, опубл. 10.03.2010 г.), включающий формирование депрессионного перепада давления между призабойной зоной и полостью скважины путем создания периодических импульсов давления в призабойной зоне в виде перемещающейся по полости скважины волны движения массы жидкости, образующейся при периодическом открывании полости скважины на устье с периодичностью, обеспечивающей раскачку ее массы в режиме резонанса, причем излив осуществляют резким открыванием вентиля слива жидкости для формирования ударной волны депрессии.

Недостатком способа является то, что не производится контроль количества закачиваемой жидкости и скорости ее закачки в пласт, при которых возможны «схлопывание» трещин пласта или продавливание в глубину коллектора большого количества загрязнений.

Наиболее близким по технической сущности является способ обработки прискважинной зоны пласта (патент RU №2444620, МПК E21B 43/25, опуб. 10.03.2012 г.), включающий закачивание в полость скважины жидкости, формирование депрессионного перепада давления между прискважинной зоной пласта и полостью скважины путем создания периодических импульсов давления в зоне перфорации в виде перемещающейся по полости скважины волны, образующейся при периодическом открывании на устье полости скважины, находящейся под давлением, и ее закрывании с применением вентилей, один из которых - вентиль слива жидкости соединяет полость скважины со сливной емкостью и открывает полость скважины для вытекания скважинной жидкости и формирования ударной волны депрессии, второй - вентиль долива жидкости соединяет полость скважины с источником жидкости, находящейся под давлением, и периодическим открыванием повышает давление в скважине, открывание вентилей осуществляют с периодичностью, обеспечивающей раскачку ее массы, при этом измеряют давление закачки и расход закачиваемой жидкости, закачку осуществляют с постепенным повышением давления в течение времени, достаточного для раскрытия трещин пласта, закрытие вентиля долива и открытие вентиля излива производят после полного повышения давления закачки и прекращения увеличения расхода жидкости.

Недостатком способа являются:

- во-первых, низкая эффективность очистки прискважинной зоны пласта, связанная с тем, что при изливе жидкости из скважины в сливную емкость происходит лишь частичный вынос загрязнений (асфальтосмолопарафиновых образований и механических примесей) кольматирующих призабойную зону, так как давление жидкости на устье падает до атмосферного, после чего вынос прекращается, а на прискважинную зону пласта продолжает действовать гидростатический столб жидкости в скважине;

- во-вторых, низкая надежность реализации способа, связанная с тем, что при раскрытии трещин пласта возникают очень высокие давления до 30-35 МПа, и при последующем резком изливе высока вероятность повреждения стенок обсадной колонны и как следствие потеря герметичности скважины, особенно это касается старых скважин со сроком службы 20 лет и более.

Технической задачей изобретения является повышение эффективности реализации способа за счет полного выноса загрязнений из раскрытых трещин пласта и повышение надежность реализации способа за счет исключения повреждения стенок обсадной колонны в скважине под действием высокого давления при изливе скважинной жидкости в сливную емкость.

Поставленная техническая задача решается способом обработки прискважинной зоны пласта, включающим спуск в скважину колонны труб, закачку в полость скважины жидкости, формирование депрессионного перепада давления между прискважинной зоной пласта и полостью скважины путем создания импульса давления в зоне перфорации с помощью источника жидкости, находящегося под давлением с последующим изливом скважинной жидкости в сливную емкость, измерение давления закачки и расход закачиваемой жидкости, причем закачивают жидкость с постепенным повышением давления до раскрытия трещин пласта и останавливают закачку жидкости после прекращения увеличения расхода закачиваемой жидкости.

Новым является то, что на устье скважины колонну труб оснащают снизу пакером, а выше эжекторной установкой, спускают колонну труб в скважину так, чтобы пакер находился выше пласта, производят посадку пакера, спускают полую насадку по колонне труб и устанавливают ее в эжекторную установку, при этом герметично отсекая колонну труб от межколонного пространства скважины, далее с помощью источника жидкости, находящегося под давлением, закачивают жидкость по колонне труб через эжекторную установку в подпакерное пространство полости скважины и в пласт с постепенным повышением давления до раскрытия трещин пласта и прекращения увеличения расхода закачиваемой в пласт жидкости, затем отсекают источник жидкости, находящийся под давлением, и изливают скважинную жидкость по колонне труб в сливную емкость, далее извлекают из эжекторной установки по колонне труб полую насадку и спускают в эжекторную установку глухую насадку, при этом сообщая колонну труб через эжекторную установку с межколонным пространством скважины, с устья скважины закачивают жидкость по колонну труб в эжекторную установку, при этом под действием созданной на пласт депрессии скважинная жидкость из подпакерного пространства через эжекторную установку выносится по межколонному пространству в сливную емкость, закачку жидкости в колонну труб прекращают после выравнивания подачи закачиваемой жидкости в колонну труб.

На фиг.1 и 2 схематично изображен процесс реализации способа.

Предлагаемый способ реализуется следующим образом.

На устье скважины колонну труб 1 (см. фиг.1) оснащают снизу пакером 2, а выше - эжекторной установкой 3. Спускают колонну труб 1 в скважину 4 так, чтобы пакер 2 находился выше пласта 5.

В качестве пакера 2 применяют проходной пакер любой известной конструкции, например производства научно-производственной фирмы «Пакер» г.Октябрьский, Республика Башкортостан, Российская Федерация, обеспечивающий герметичность обсадной колонны при давлении раскрытия трещин, например применяют пакер с механической осевой установкой марки ПРО-ЯМО3 на 100 МПа.

В качестве эжекторной установки 3, например, применяют устройство эжекторное геофизического исследования скважин (УЭГИС-2), выпускаемое в г.Бугульма, Республика Татарстан, Российская федерация, обеспечивающее регулируемое снижение давления в подпакерном пространстве скважины 4.

Производят посадку пакера 2, например на 3 м выше пласта 5. По колонне труб 1 спускают полую насадку 6 и устанавливают ее в эжекторную установку 3. Например, сбрасывают полую насадку 6 с устья скважины 4 в колонну труб 1 или спускают по колонне труб 1 с помощью геофизического кабеля (на фиг.1 и 2 не показано). Полая насадка 6 (см. фиг.1) садится в проходной канал эжекторной установки 3 и герметично отсекает колонну труб 1 от межколонного пространства 7 скважины 4.

Далее с помощью источника жидкости, находящегося под давлением, например, с применением цементировочного агрегата ЦА-320, производят закачку жидкости, например, сточной воды плотностью 1180 кг/м3 по колонне труб 1 через эжекторную установку 2 в подпакерное пространство 8 скважины 4, а оттуда в пласт 5 через интервалы перфорации 9 с постепенным повышением давления до раскрытия (на фиг.1 и 2 не показано) трещин пласта 5 (см. фиг.1), например до 22 МПа, при котором происходит раскрытие трещин пласта 5 и прекращение увеличения расхода закачиваемой в пласта 5 жидкости. Скорость нарастания давления закачки подбирают опытным путем, исходя из геологических и эксплуатационных скважинных условий. При увеличении давления закачки жидкости ее расход увеличивается и при полном давлении 22 МПа достигает максимума. После наполнения и расширения трещин пласта 5 в прискважинной зоне, а также за счет упругих свойств породы коллектора рост расхода прекращается.

Затем отсекают источник жидкости, находящийся под давлением (ЦА-320), например перекрывают вентиль на нагнетательной линии ЦА-320 (на фиг.1 и 2 не показано) и изливают скважинную жидкость по колонне труб 1 (см. фиг.1) в сливную емкость (на фиг.1 и 2 не показано), при этом давление жидкости на устье резко падает до атмосферного, формируется волна разрежения, которая перемещается от устья к забою скважины и формирует в призабойной зоне импульс депрессии.

Импульс депрессии способствует отрыву адсорбционных отложений от стенок поровых каналов и трещин, а также их выносу в полость скважины для последующего извлечения на дневную поверхность.

После излива извлекают из эжекторной установки 3 по колонне труб 1 полую насадку 6. Для этого, например, на геофизическом кабеле спускают в колонну труб 1 внутреннюю труболовку (на фиг.1 и 2 не показано), захватывают полую насадку 6 за внутреннюю поверхность и извлекают ее из эжекторной установки 3 по колонне труб 1 на поверхность.

Затем спускают в эжекторную установку 3 (см. фиг.2) глухую насадку 10, которая сообщает колонну труб 1 через эжектор 3 с межколонным пространством 7 скважины 4.

С помощью источника жидкости, находящегося под давлением (ЦА-320) (на фиг.1 и 2 не показано) закачивают жидкость (сточную воду плотностью 1180 кг/м3) в колонну труб 1 (см. фиг.2) и приводят в действие эжекторную установку 3.

Жидкость по колонне труб 1 поступает в камеру 11 эжекторной установки 3, где создается разрежение, передающееся в подпакерное пространство 8 скважины 4. Под действием созданной на пласт 5 депрессии скважинная жидкость из подпакерного пространства 8 скважины 4 поступает в камеру 11, захватывается струей жидкости, подаваемой в колону труб 1, и через камеру 11 выносится в межколонное пространство 7, по которому попадает в сливную емкость (на фиг.1 и 2 не показано). Снижение давления в подпакерном пространстве 8 скважины 4 зависит от скорости прохождения жидкости через сопло и регулируется давлением, создаваемым с помощью источника жидкости, находящегося под давлением (ЦА-320). Закачку жидкости в колонну труб 1 (см. фиг.2) прекращают после выравнивания подачи закачиваемой жидкости в колонну труб 1, например измеряют объем закачанной жидкости из емкости насосного агрегата ЦА-320 по истечению 1 ч закачки и объем поднятой из скважины жидкости в сливной емкости за тот же промежуток времени. Таким образом, производят обработку прискважинной зоны пласта 5. При необходимости по решению геологической службы предприятия производят повторную обработку прискважинной зоны пласта 5. Для этого сначала спускают наружную труболовку на геофизическом кабеле, захватывают глухую насадку 10 за «головку» (на фиг.2 показано условно) и извлекают глухую насадку 10 (см. фиг.2) из эжекторной установки по колонне труб 1 на поверхность, после чего вышеописанный цикл повторяют. По окончанию обработки прискважинной зоны пласта 5 распакеровывают пакер 2 и извлекают скважинное оборудование на поверхность.

Использование эжекторной установки 3 позволяет снизить забойное давление и исключить влияние гидростатического столба жидкости в скважине и тем самым гарантировано обеспечить полный вынос загрязнений из раскрытых трещин пласта 5. Благодаря наличию пакера 2 снижение давления происходит только в подпакерном пространстве скважины, по остальному стволу скважины сохраняется нормальное гидростатическое давление, что полностью исключает возможность выброса и/или повреждения стенок обсадной колонны скважины 4.

Предлагаемый способ обработки прискважинной зоны пласта позволяет повысить эффективность реализации способа за счет полного выноса загрязнений из раскрытых трещин пласта, а также повысить надежность реализации способа за счет исключения повреждения стенок обсадной колонны в скважине под действием высокого давления при изливе скважинной жидкости в сливную емкость.

Способ обработки прискважинной зоны пласта, включающий спуск в скважину колонны труб, закачку в полость скважины жидкости, формирование депрессионного перепада давления между прискважинной зоной пласта и полостью скважины путем создания импульса давления в зоне перфорации с помощью источника жидкости, находящегося под давлением с последующим изливом скважинной жидкости в сливную емкость, измерение давление закачки и расход закачиваемой жидкости, причем закачивают жидкость с постепенным повышением давления до раскрытия трещин пласта и останавливают закачку жидкости после прекращения увеличения расхода закачиваемой жидкости, отличающийся тем, что на устье скважины колонну труб оснащают снизу пакером, а выше эжекторной установкой, спускают колонну труб в скважину так, чтобы пакер находился выше пласта, производят посадку пакера, спускают полую насадку по колонне труб и устанавливают ее в эжекторную установку, при этом герметично отсекая колонну труб от межколонного пространства скважины, далее с помощью источника жидкости, находящегося под давлением, закачивают жидкость по колонне труб через эжекторную установку в подпакерное пространство полости скважины и в пласт с постепенным повышением давления до раскрытия трещин пласта и прекращения увеличения расхода закачиваемой в пласт жидкости, затем отсекают источник жидкости, находящийся под давлением, и изливают скважинную жидкость по колонне труб в сливную емкость, далее извлекают из эжекторной установки по колонне труб полую насадку и спускают в эжекторную установку глухую насадку, при этом сообщая колонну труб через эжекторную установку с межколонным пространством скважины, с устья скважины закачивают жидкость по колонне труб в эжекторную установку, при этом под действием созданной на пласт депрессии скважинная жидкость из подпакерного пространства через эжекторную установку выносится по межколонному пространству в сливную емкость, закачку жидкости в колонну труб прекращают после выравнивания подачи закачиваемой жидкости в колонну труб.



 

Похожие патенты:
Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения объема откачиваемого флюида, повышения коэффициента извлечения нефти, ее дебита, а также для уменьшения выпадения на элементах скважинного пространства естественных гидратных и гидрато-углеводородных отложений.

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано для имплозионного воздействия на пласт. Устройство содержит трубчатый корпус с присоединительной резьбой, упор и толкатель.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов и разрабатываемых термическим методом.

Изобретение относится к системе питания наземного оборудования буровой скважины. Техническим результатом является повышение эффективности, гибкости и производительности системы питания наземного скважинного оборудования.
Изобретение относится к нефтяной промышленности и может быть использовано при обработке призабойной зоны добывающей скважины. Способ обработки призабойной зоны добывающей скважины включает заполнение интервала продуктивного пласта скважины растворителем асфальтосмолистых и парафиногидратных отложений с частичной его задавкой в призабойную зону скважины.
Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов с целью повышения безопасности работ в шахтах, а также для добычи метана из угольных пластов через скважины, пробуренные с поверхности или из горных выработок.
Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных нефтяных и газовых скважин, понизившегося вследствие кольматации призабойной зоны асфальтосмолопарафиновыми образованиями и мехпримесями.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи добывающих скважин при многократном гидроимпульсном воздействии на пласт.

Изобретение относится к области нефтедобычи, а именно к способам возбуждения скважин. Техническим результатом является упрощение способа при повышении производительности.

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано при акустическом воздействии на продуктивные пласты для интенсификации добычи нефти, воды и других текучих сред из скважин.

Группа изобретений относится к нефтяной промышленности, а именно к импульсной гидроударной обработке призабойной зоны пласта - ПЗП и освоению скважин. Обеспечивает повышение эффективности и технологичности способа и устройства за счет увеличения мощности и вариативности гидравлического воздействия на ПЗП при упрощении устройства и способа. Сущность изобретений: способ включает изоляцию пласта кольцевым пакером, барообработку призабойной зоны пласта циклическими импульсами давления репрессии и депрессии на призабойную зону пласта с откачкой пластовой жидкости. Для создания импульсов давления репрессии и депрессии разъединяют подпакерное пространство с надпакерным пространством. Дают время на выравнивание подпакерного давления с пластовым. Давление в надпакерной зоне без прокачки рабочего агента с поверхности обеспечивают выше пластового для прямого гидротарана или ниже пластового для обратного гидротарана. Объединяют подпакерное пространство с насосно-компрессорной трубой - НКТ или подпакерное пространство с надпакерным пространством для прямого или обратного гидротарана. Возможность разъединения или объединения подпакерного пространства с надпакерным пространством или насосно-компрессорной трубой обеспечивают применением скважинной компоновки с гильзой, седлом на ней и кольцевым пакером, поршня с крестовиной, который перемещают в гильзе с помощью колонны НКТ с возможностью входа и выхода поршня из гильзы, управляемого поршневого клапана на нижнем торце НКТ, взаимодействующего с седлом гильзы, для его открывания и закрывания при перемещении НКТ с поршнем. 3 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для воздействия на призабойную зону импульсом депрессии для повышения производительности скважин, эксплуатирующихся штанговыми глубинно-насосными установками. Устройство для импульсно-депрессионного воздействия на призабойную зону пласта содержит полый корпус с направляющей и приемными отверстиями, входящую в него депрессионную камеру. На полом корпусе телескопически установлена и зафиксирована срезным винтом крышка. При этом в полый корпус концентрично установлен полый шток переменного сечения, соединяющий депрессионную камеру полого корпуса с дополнительной депрессионной камерой. Полый шток переменного сечения взаимодействует с переточным отверстием полого корпуса, на цилиндрической поверхности крышки размещены пакер и клин. Наружная коническая поверхность клина взаимодействует с плашками, имеющими возможность радиального перемещения. Крышка оснащена упором с возможностью взаимодействия с клином. Полый корпус выполнен с опорой на забой скважины. На цилиндрической поверхности крышки ниже плашек установлены упорное кольцо и дополнительные плашки, имеющие возможность радиального перемещения, дополнительный клин, жестко соединенный с направляющей полого корпуса. Снизу полый шток переменного сечения оснащен боковыми отверстиями и оснащен заглушкой в нижней торцовой части. В полом штоке переменного сечения размещен плунжер с нагнетательным клапаном. Плунжер с помощью колонны штанг соединен со станком-качалкой. В исходном положении переточное отверстие полого корпуса взаимодействует с полым штоком переменного сечения и гидравлически разобщает приемные отверстия полого корпуса с боковыми отверстиями полого штока переменного сечения. В рабочем положении переточное отверстие полого корпуса выходит из взаимодействия с полым штоком переменного сечения и гидравлически сообщает приемные отверстия полого корпуса с боковыми отверстиями полого штока переменного сечения. Техническим результатом является повышение эффективности очистки призабойной зоны пласта без проведения многократных спускоподъемных операций устройства. 1 ил.

Изобретение относится к области нефте- и газодобычи, а именно к способам восстановления проницаемости скважин, и может быть использовано для ремонта скважин. Способ включает воздействие на скважинную жидкость с помощью лазерного излучения с энергией, обеспечивающей возникновение в жидкости плазменных пробоев. При этом сначала осуществляют предварительное воздействие лазерным излучением в импульсном или непрерывном режиме с возникновением пробоя, после которого измеряют частоту возникающего при пробое акустического сигнала. Затем осуществляют последующие воздействия в импульсном режиме с указанной частотой лазерного излучения. Технический результат - повышение эффективности воздействия на стенки скважины и увеличение ее проницаемости (нефтеотдачи). 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для воздействия на продуктивный пласт. Устройство для гидроударного воздействия на пласт в составе колонны насосно-компрессорных труб включает гидроцилиндр с переводником, плунжер с радиальными отверстиями, подпружиненный толкатель с кольцевой проточкой и кольцевой поршень. При этом гидроцилиндр жестко связан с камерой, в осевом канале которой установлено посадочное кольцо с продольными пазами с внешней стороны. Толкатель снабжен наружным выступом, седлом и шаровым клапаном в осевом канале. Нижний конец толкателя пропущен в осевой канал посадочного кольца и снабжен стопорным кольцом, связанным с толкателем срезным элементом. Осевой канал камеры перекрыт снизу упорным кольцом и снабжен полым штоком с торцовым клапаном, поджимаемым пружиной к посадочному кольцу. Причем в теле торцового клапана выполнена расточка, в которой свободно установлено стопорное кольцо, а плунжер снабжен кольцевым поршнем с образованием кольцевого зазора с гидроцилиндром, гидравлически связанным перепускными отверстиями с затрубным пространством. Техническим результатом является повышение эффективности гидроударного воздействия на пласт. 4 ил.

Сваб // 2540728
Изобретение относится к оборудованию - свабу для снижения уровня жидкости и интенсификации притока прдукции при освоении нефтяных, газовых, водозаборных скважин. Технический результат - повышение надежности работы и расширение технологических возможностей сваба. Сваб содержит корпус с центральным внутренним каналом, сквозными верхними и нижними боковыми отверстиями и обратным клапаном. Этот клапан оснащен центральным верхним штоком, внутренним подпружиненным предохранительным клапаном и сквозными вертикальными отверстиями в верхней торцевой стенке. Корпус состоит из двух соосных втулок, верхней и нижней, и опорной секции, смонтированных на штоке с возможностью вращения. Под острым углом наклона к центральной оси корпуса выполнен межвтулочный кольцевой зазор. Его периферийные кромки расположены на боковых поверхностях втулок. Верхняя втулка выполнена со сквозными наклонными отверстиями. Они сообщены с зазором с возможностью образования гидроуплотнения между корпусом сваба и колонной труб при перемещении сваба. Нижняя втулка выполнена со сквозными боковыми отверстиями в верхней части. Грани кольцевого зазора, верхнее основание верхней втулки, цилиндрическая поверхность каждого из наклонных отверстий верхней втулки выполнены сопряженными. Кроме того, обратный клапан, смонтированный внутри опорной секции с возможностью вертикального перемещения, снабжен боковыми сужающимися соплами. Они совмещены с боковыми сквозными окнами опорной секции. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. Представлен способ генерирования волнового поля на забое нагнетающей скважины и настройки струйного резонатора Гельмгольца на поддержание постоянной частоты колебаний давления в потоке жидкости, нагнетаемой в пласт, при изменении пластового давления. Способ заключается в автоматическом регулировании площади проходного сечения выходного отверстия в соответствии с изменением пластового давления. Это необходимо для поддержания постоянной скорости струи на срезе сопла, определяющей частоту генерации, для обеспечения стабильно высокого коэффициента усиления. Новым является установка в выходном отверстии струйного резонатора Гельмгольца (СРГ) подвижного конического золотника с гидроприводом, обеспечивающим автоматическое перемещение золотника при изменении перепада давления на устройстве. Техническим результатом является повышение эффективности поддержания постоянной частоты тона отверстия. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению коллекторских свойств прискважинной зоны продуктивных пластов добывающих нефтегазовых скважин и вовлечению в разработку трудноизвлекаемых и нерентабельных запасов углеводородов, а также может быть использовано для декольматажа фильтров и прифильтровых зон гидрогеологических скважин. Способ обработки прискважинной зоны продуктивного пласта, включающий спуск в скважину на колонне труб установленные последовательно снизу вверх гидроимпульсное устройство и струйный насос. Подают жидкостную среду в гидроимпульсное устройство и воздействуют этой средой на прискважинную зону продуктивного пласта с одновременной откачкой с помощью струйного насоса жидкостной среды вместе с кольматирующими частицами на поверхность. Дополнительно на колонне насосно-компрессорных труб перед гидроимпульсным устройством установлен глубинный манометр. Причем в качестве гидроимпульсного устройства используют ротационный гидравлический вибратор для создания гидромониторного и импульсно-кавитационного истечения вдоль интервала перфорации. Воздействие на структуры пласта с флюидом осуществляют путем возбуждения резонансных колебаний столба жидкости в скважине за счет совпадения частоты пульсаций ротационного гидравлического вибратора и собственной резонансной частоты обсадной колонны с флюидом, находящейся ниже ротационного гидравлического вибратора и являющейся резонатором типа «органная труба». Требуемую частоту колебаний f, Гц, определяют по приведенному математическому выражению. Техническим результатом является повышение эффективности проводимых исследований и обработки прискважинной зоны пласта с совмещением воздействий гидромониторным эффектом на перфорационные отверстия или фильтры эксплуатационной колонны и импульсно-кавитационным истечением на структуру пласта с флюидом с контролем параметров обработки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при освоении скважин с целью очистки и улучшения фильтрационной характеристики призабойной зоны пласта. Устройство для освоения пласта скважины включает сваб, колонну насосно-компрессорных труб (НКТ) с ограничителем хода сваба и фильтром для сообщения с пластом, пакер, устанавленный выше пласта. При этом колонна НКТ выше пакера, но ниже ограничителя хода сваба оснащена рядом сквозных отверстий. Отверстия в начальном положении герметично перекрыты полой втулкой под сбрасываемый запорный элемент. Причем запорный элемент имеет возможность герметичной посадки и фиксации в полой втулке, а также возможность ограниченного осевого перемещения совместно с полой втулкой вниз до упора во внутреннюю кольцевую выборку колонны НКТ под действием создаваемого избыточного давления в колонне НКТ с последующей фиксацией полой втулки пружинным разрезным стопорным кольцом в насечках для сообщения внутреннего пространства колонны НКТ с надпакерной зоной после сброса запорного элемента. Насечки выполнены на внутренней поверхности колонны НКТ. Запорный элемент выполнен в форме ступенчатого глухого цилиндра, верхний диаметр - Дз которого больше внутреннего диаметра полой втулки - d, но меньше внутреннего диаметра ограничителя хода сваба - D. Техническим результатом является упрощение конструкции устройства и сокращение освоения скважины. 4 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначена для повышения нефтеотдачи продуктивных пластов. Способ генерирования волнового поля на забое нагнетательной скважины с автоматической настройкой резонансного режима генерации заключается в формировании колебаний давления в потоке жидкости, закачиваемой в продуктивный пласт по насосно-компрессорным трубам (НКТ), путем ее прокачивания через струйный резонатор Гельмгольца (СРГ). При этом поддерживают в соответствии скорость струи на срезе питающего сопла и объем СРГ. Причем поддерживают в соответствии скорость струи на срезе питающего сопла и объем СРГ за счет перемещения его заднего, в направлении по потоку, днища, обеспечивая увеличение объема СРГ при уменьшении скорости струи и уменьшение объема СРГ при увеличении скорости струи. Устройство для осуществления способа состоит из СРГ, установленного внутри НКТ, и представляет собой полую цилиндрическую камеру с плоскими днищами. В переднем днище камеры размещают сопло питания, а в заднем днище выполняют выходное отверстие с острыми кромками. При этом заднее днище выполнено подвижным, а внутри НКТ, за СРГ, установлен неподвижно гидроцилиндр с подпружиненным поршнем, соединенным штоком с подвижным задним днищем. Причем полость внутри гидроцилиндра перед поршнем, в направлении по потоку, соединена с внутренним объемом НКТ, а полость за поршнем сообщена с затрубным пространством. Техническим результатом является повышение эффективности поддержания стабильно высокой интенсивности волнового поля на забое. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. Способ генерирования волнового поля на забое нагнетательной скважины с автоматической настройкой постоянной частоты генерации заключается в формировании колебаний давления в потоке жидкости, закачиваемой в продуктивный пласт по насосно-компрессорной трубе (НКТ) путем ее прокачивания через струйный резонатор Гельмгольца (СРГ). При этом поддерживают в соответствии скорость струи на срезе входного сопла и расстояние между входным соплом и втулкой с выходным отверстием. Причем поддерживают в соответствии скорость струи на срезе входного сопла и расстояние между входным соплом и втулкой с выходным отверстием за счет перемещения втулки с выходным отверстием, обеспечивая увеличение этого расстояния при увеличении скорости струи и уменьшение этого расстояния при уменьшении скорости струи. Устройство для осуществления способа состоит из СРГ, установленного внутри НКТ и представляющего собой полую цилиндрическую камеру с плоскими днищами, в переднем днище которой размещают входное сопло, а в заднем днище размещают втулку с выходным отверстием. Втулка с выходным отверстием выполнена подвижной, а внутри НКТ, за СРГ, установлен неподвижно гидроцилиндр с подпружиненным поршнем, соединенным штоком с подвижной втулкой с выходным отверстием. Причем полость внутри гидроцилиндра перед поршнем, в направлении по потоку, сообщена с затрубным пространством, а полость за поршнем соединена с внутренним объемом НКТ. Техническим результатом является повышение эффективности стабильной частоты генерации колебаний давления на забое скважины. 2 н. и 2 з.п. ф-лы, 1 ил.
Наверх