Способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления призабойной зоны. Сущность изобретения: способ включает фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент. Согласно изобретению одновременно с фиксированием расхода газа и забойного давления отбирают пробы воды, в которых определяют содержание хлорид-иона. При содержании хлорид-иона, соответствующем его содержанию в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.

 

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений.

Известен способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины, включающий проведение газодинамических исследований методом установившихся отборов, определение коэффициентов фильтрационного сопротивления a и b, анализ динамики коэффициентов фильтрационного сопротивления a и b во времени, построение графиков их изменения во времени, сравнение значений коэффициентов фильтрационного сопротивления a и b с предыдущими, вывод о наличии пластовых вод в призабойной зоне пласта по скачкообразному увеличению значений коэффициентов фильтрационного сопротивления [патент РФ №2202692, опубл. 20.04.2003].

Недостатком данного способа являются сравнительно большие ошибки при определении даты изменения коэффициентов фильтрационного сопротивления за счет поступления пластовых и/или подошвенных вод, что обусловлено большими интервалами времени между датами проведения газодинамических исследований скважин методом установившихся отборов.

Наиболее близким к предлагаемому изобретению является способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны пласта, включающий фиксирование дебита газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод об изменении коэффициентов фильтрационного сопротивления за счет поступления воды в призабойную зону пласта при пересечении кривых первой и второй главных компонент [патент РФ №2447281, опубл. 10.04.2012].

Недостатком данного способа являются ошибки, связанные с неучетом изменения коэффициентов фильтрационного сопротивления за счет изменения напряженного состояния призабойной зоны и всего пласта при отборе газа в процессе разработки газового месторождения.

Задачей предлагаемого изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления призабойной зоны.

Технический результат достигается тем, что в способе контроля за изменением коэффициентов фильтрационного сопротивления, включающем фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент, проводят гидрохимический контроль за работой газовой скважины и при значениях гидрохимических показателей, соответствующих конденсационной воде, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.

Способ реализуется следующим образом. Между датами проведения гидродинамических исследований методом установившихся отборов фиксируют дебит газа и забойное давление при работе скважины на технологическом режиме, заданном проектом разработки газового месторождения.

Метод установившихся отборов предусматривает измерение дебита газа и забойного давления при нескольких (3-5) установившихся режимах эксплуатации скважины. Согласно Правилам разработки газовых месторождений такие исследования проводятся один раз в год (в начальный период разработки - два раза в год). Длительность этих исследований - несколько суток.

Весь остальной период в календарном году скважина работает на технологическом режиме, который предусмотрен проектом разработки газового месторождения.

На основании снимаемых в этот период данных по дебиту газа и забойного давления формируется многомерный сигнал, включающий ряд одномерных сигналов, показывающих изменение во времени:

- забойного давления;

- дебита газа;

- первой производной дебита газа по времени;

- дебита газа в квадрате;

- первой производной дебита газа в квадрате по времени.

Проводится дискретизация каждого одномерного сигнала.

Полученные последовательности чисел можно представить в виде матрицы:

X = | x 11 x 12 x 1 N x 21 x 22 x 2 N x M 1 x M 2 x M N | , ( 1 )

где N - число одномерных сигналов;

М - длина последовательности.

Значения xij, приведенные в матрице, представляют собой m-ю производную случайной функции Х(t), имеющей две составляющие: неслучайное воздействие, описываемое полиномом n-й степени K = 0 n a K t K (где a K - любые постоянные коэффициенты), и возмущающее случайное воздействие, представляющее собой белый шум [Лифшиц Н.А., Пугачев В.Н. Вероятностный анализ систем автоматического управления. - T.1. - М.: Советское радио, 1963. - 896 с.].

При m=0 и n=1 имеет место нулевая производная. В этом случае, например, для первого столбца матрицы X имеем

X 01 = i n 1 X i K 0 i Δ t ,

K = 0 i 4 T 6 T 2 t i ,

где T - интервал памяти;

ti - числовые значения переменной интегрирования;

Δt - шаг дискретизации;

n1 - число шагов на интервале памяти T.

При m=1 и n=1 имеет место первая производная. В этом случае, например, для третьего столбца имеем

X 03 = i n 1 X i K 1 i Δ t ,

K 1 i = 6 T 2 12 T 3 t i .

Далее значения xij матрицы (1) нормируются. Для матрицы нормированных значений находится ковариационная матрица, на основании которой определяются матрица собственных чисел и матрица собственных векторов. Главные компоненты определяются собственными векторами, которые соответствуют наибольшим собственным числам ковариационной матрицы исходных данных, приведенных в матрице (1). Для выделения главных компонент, описывающих процесс без существенной потери информации, используются критерий Кайзера и критерий каменистой осыпи Кэттелла. Используя метод преобразования переменных, можно ограничиться отбором только первых двух главных компонент. Тогда по мере увеличения числа шагов дискретизации при скользящем интервале памяти Т переход одного режима в другой режим сопровождается пересечением первых двух главных компонент.

Одновременно с замерами расхода газа, забойного давления и обработкой результатов измерений используется гидрохимический метод за работой газовой скважины. При этом, как показывает опыт промысловых работ в этом направлении, отбирают пробы воды в среднем через 30-50 суток. В пробах воды определяют содержание хлорид-иона (мг/л). Если содержание хлорид-иона соответствует содержанию его в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, то следует вывод, что пластовые воды в призабойную зону не поступают. И тогда пересечение первой и второй главных компонент свидетельствует об изменении режима работы скважины. При этом основным фактором, влияющим на значения коэффициентов фильтрационного сопротивления, является изменение напряженного состояния горных пород.

Данное техническое решение позволит изучать влияние изменения напряженного состояния горных пород на изменение коэффициентов фильтрационного сопротивления призабойной зоны пласта и в дальнейшем прогнозировать значения коэффициентов фильтрационного сопротивления при совместном действии двух влияющих вышеуказанных факторов.

Способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины, включающий фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент, отличающийся тем, что одновременно с фиксированием расхода газа и забойного давления отбирают пробы воды, в которых определяют содержание хлорид-иона, и при содержании хлорид-иона, соответствующем его содержанию в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.



 

Похожие патенты:

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока флюидов, поступающих в скважину из продуктивных пластов многопластовых коллекторов.

Изобретение относится к нефтедобывающей отрасли. Техническим результатом является получение максимальной информативности промыслового исследования с закачкой в пласт агента нагнетания и добычей флюидов из пласта в различных условиях, включая исследования в условиях автономии, при наличии толщи многолетнемерзлых пород, а также при низкой приемистости продуктивного интервала.
Изобретение относится к нефтяной промышленности и может быть использовано при определении интервалов скважины с заколонным движением жидкости. Технический результат направлен на повышение достоверности получаемых результатов при определении интервалов заколонного движения жидкости скважин, эксплуатируемых на залежах вязкой и сверхвязкой нефти.

Изобретение относится к способу, устройству и машиночитаемому носителю данных, предназначенным для построения геологической модели нефтяного или иного месторождения, в частности, для определения коэффициентов корреляции для комплекса кривых ГИС и нахождения положений глубин маркера, для которых значение коэффициента корреляции является максимальным.

Изобретение относится к нефтяной и газовой промышленности, в частности к ликвидации оценочных и разведочных скважин на месторождениях сверхвязкой нефти. Способ ликвидации скважины включает спуск колонны труб в обсадную колонну скважины, установку цементного моста в скважине от забоя до устья скважины.

Изобретение относится к области каротажа в процессе бурения скважин и предназначено для передачи сигналов измерения из скважины на поверхность по беспроводному каналу связи.

Изобретение относится к нефтяной промышленности и может найти применение при исследовании скважины. Техническим результатом является определение заколонных перетоков при потоке жидкости за скважиной сверху вниз.

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа при бурении подземных формаций. Способ проведения измерений акустического каротажа включает группирование полученных форм акустических сигналов в одну из множества групп.

Изобретение относится к шлангокабелям, предназначенным для работ в нефтяных и газовых скважинах и может быть использовано для перемещения предметов, в частности приборов в горизонтальных скважинах.

Изобретение относится к области газовой промышленности и может быть использовано при проведении газодинамических исследований скважин. Техническим результатом является повышение эффективности проведения газодинамических исследований.

Изобретение относится к области газового машиностроения, в частности к устройствам исследования газовых и газоконденсатных месторождений на разных технологических режимах. Технический результат заключается в снижении массогабаритных характеристик устройства, выполнении его транспортабельным, для перевозки и размещения на автомобильном транспорте или прицепе без предварительной разборки и последующей сборки и исключение необходимости гидроиспытаний перед проведением исследований, что значительно сокращает время подготовительных работ перед измерением. Блок для исследования газовых и газоконденсатных скважин включает сепаратор газожидкостной смеси, устройства: сужающее, замера продукции сепарации, замера давления, температур и расхода газа, сбора жидкостей и механических примесей и запорно-регулирующую арматуру. Блок расположен в каркасе с размерами, вписывающимися в габариты транспортных средств, при этом сепараторы, и устройства, входящие в состав блока, в число которых дополнительно введен сверхзвуковой сепаратор, обвязаны трубопроводами. Сепаратор газожидкостной смеси по входу соединен с выходом(ами) сверхзвукового сепаратора, а выход очищенного газа сверхзвукового сепаратора соединен с сепаратором газожидкостной смеси или с трубопроводом выхода очищенного газа. 5 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяной и газовой промышленности и используется для оптимизации процесса добычи нефти с помощью штанговых глубинных насосов. Техническим результатом является вывод скважины в автоматическом режиме на максимальный объем добычи нефти. Способ оптимизации процесса добычи нефти, в котором непрерывно контролируют параметры процесса добычи и регулируют частоту вращения электродвигателя насоса, причем в качестве основного контролируемого параметра процесса добычи выбирают коэффициент заполнения насоса, который рассчитывают по динамограмме, в качестве регулируемого параметра, подлежащего оптимизации, выбирают объем добываемой жидкости, а оптимизацию осуществляют за счет ступенчатого изменения частоты качаний насоса, при этом процесс управления осуществляют ступенчато в автоматическом режиме. Устанавливают частоту вращения электродвигателя, при которой частота качаний насоса много меньше номинальной, определяют площадь динамограммы работы качалки при максимальном наполнении насоса, значение которой принимают за базовое. После этого увеличивают частоту качаний насоса, непрерывно с заданной дискретностью фиксируют площадь динамограммы, а коэффициент заполнения насоса k3 рассчитывают как отношение измеренной площади динамограммы к базовой, при этом частоту качаний насоса не изменяют до тех пор, пока коэффициент заполнения насоса не перестанет изменяться, после этого определяют и фиксируют объем добываемой жидкости Si=nik3i, где n - число качаний насоса, k3 - коэффициент заполнения, после этого снова увеличивают частоту качаний насоса n и не изменяют ее до тех пор, пока коэффициент заполнения не перестанет изменяться, определяют и фиксируют объем добываемой жидкости, при новой частоте качаний, далее полученное значение Si=1 сравнивают с предыдущим Si и, если последующее значение окажется больше предыдущего, то следующий шаг изменения частоты осуществляют в ту же сторону, а если наоборот - в обратную сторону. 1 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу, в частности к нефтегазовой промышленности, и может использоваться для замера профиля насосно-компрессорных и обсадных труб нефтегазовых скважин. Техническим результатом является сокращение трудоемкости замера профиля труб нефтегазовых скважин. Устройство содержит немагнитный корпус, состоящий из двух идентичных частей, выполненных из немагнитного материала и соединенных между собой. На каждой части корпуса установлены диаметрально противоположные кинематические подвижные пары шарнирно соединенных измерительных и вспомогательных рычагов, оснащенные опорными роликами для контакта с внутренней стенкой трубы и расположены в перпендикулярных друг другу плоскостях, пересекающихся вдоль центральной оси корпуса. Измерительные рычаги функционально соединены со своими преобразователями линейного перемещения в электрический сигнал, выполненными в виде цилиндрических катушек индуктивности, размещенных внутри каждой части корпуса, и ферромагнитных втулок, подвижно установленных снаружи частей корпуса в зоне действия магнитного поля цилиндрических катушек индуктивности. Ферромагнитные втулки шарнирно соединены с концами измерительных рычагов и подпружинены в направлении кинематических подвижных пар до упора в буртики, выполненные на каждой части корпуса, ограничивающие линейные перемещения ферромагнитных втулок на длине обмотки цилиндрических катушек индуктивности. Цилиндрические катушки индуктивности электрически связаны с блоком электроники, размещенным внутри герметичного корпуса, измеряющим суммарную напряженность магнитного поля цилиндрических катушек индуктивности и намагниченности ферромагнитных втулок с возможностью преобразования возбуждаемой эдс в электрические сигналы и передачи их на поверхность скважины по геофизическому кабелю, герметично закрепленному в корпусе. Вспомогательные рычаги шарнирно соединены с кольцами, подвижно установленными снаружи частей корпуса и подпружиненными в направлении кинематических подвижных пар до упора во вторые буртики, выполненные на каждой части корпуса, ограничивающие возвратно-поступательные перемещения колец при взаимодействии вспомогательных рычагов и вторых пружин. Последние выполнены с допустимым начальным усилием сжатия, превышающим допустимое конечное усилие сжатия первых пружин. Головная часть корпуса снабжена головкой, снабженной буртиком для упора второй пружины. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам исследования газовых и газоконденсатных скважин, определению их оптимальных технологических режимов, а именно к определению режимов максимального извлечения жидких продуктов при минимальных энергетических затратах, то есть минимальных потерях давления при различных режимах течениях газожидкостного потока. Технический результат предлагаемого технического решения заключается в расширении области исследования скважин при более широких режимах сепарации газожидкостных смесей. Способ включает сепарацию продукции скважины, замер дебита газа и объема, выносимых твердых и жидких фаз, при замере жидкой фазы под давлением сепарации и после дегазации в отдельной емкости. Замер устьевых давлений и температур на нескольких установившихся режимах, проводимый до стабилизации замеряемых параметров при утилизации отделяемых фаз. Замер объема жидкости и механических примесей осуществляется поочередно: на режиме сепарации без сброса давления газожидкостного потока перед сепарацией, на режиме сепарации со сбросом давления на сужающих устройствах (дросселях) перед сепарацией, на режиме сепарации со сбросом давления на сверхзвуковом сепараторе. Максимальный объем отсепарированной жидкости определятся по замеренным величинам при минимальных гидравлических потерях газожидкостной смеси. Отделенные фазы смешиваются с отсепарированным газовым потоком на всех режимах сепарации. Сепарация газожидкостной смеси осуществляется путем равномерного распределения сепарируемых фаз на вертикальной пористой структуре и последующим отводе с нее накопленной жидкости. Потоки газа и жидкости направляются на сепарацию продукции после режима сверхзвуковой сепарации. 5 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной и газовой промышленности, в частности к ликвидации скважин, выполнивших свое назначение. Способ ликвидации скважины с заколонными перетоками включает спуск колонны труб и установку цементных мостов в обсадной колонне скважины. Геофизическими исследованиями определяют наличие цементного кольца за эксплуатационной колонной и выявляют нарушения герметичности эксплуатационной колонны. Затем при отсутствии цементного кольца за эксплуатационной колонной и выявлении нарушений герметичности эксплуатационной колонны тампонированием производят наращивание цементного кольца за эксплуатационной колонной и герметизацию зон нарушения эксплуатационной колонны. Определяют качество тампонирования эксплуатационной колонны проведением повторных геофизических исследований. Затем в скважину от устья до забоя спускают заглушенную снизу колонну труб малого диаметра. Далее до забоя скважины спускают дополнительную колонну труб и производят установку цементного моста тампонированием под давлением от забоя до устья скважины с использованием термостойкого цемента с добавлением фиброволокна в количестве 0,2% от массы сухого цемента. Затем извлекают дополнительную колонну труб из скважины, доливают в ствол скважины термостойкий цемент до устья. После чего заполняют колонну труб малого диаметра незамерзающей жидкостью. Далее в колонну труб малого диаметра до забоя спускают оптоволоконный кабель. После ликвидации скважины периодически фиксируют температурное распределение в стволе скважины. Техническим результатом является повышение эффективности и надежности ликвидации скважины. 4 ил.

Группа изобретений относится к технике для исследования движения жидкостных потоков и сыпучих материалов, газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных, наклонных трубопроводах и отдельных устройствах. Техническим результатом является повышение точности проведения экспериментов и расширение функциональных возможностей за счет обеспечения возможности визуализации с улучшенным качеством происходящих в объеме и по длине лифтовой колонны труб и трубопровода процессов, а также за счет определения газосодержания потока как вдоль выбранного произвольно сечения, так и на произвольно выбранном ограниченном участке лифтовой колонны труб. Устройство содержит лифтовую колонну труб, блоки ввода в колонну и отвода из колонны, фото-видеорегистратор, импульсные вспышки с установленными на них софтбоксами, радиосинхронизатор фотовспышек, состоящий из источника сигнала и приемника сигнала, экран, сливной патрубок и разветвитель для синхрокорда. 2 н.п. ф-лы, 5 ил.

Изобретение относится к способу, устройству и машиночитаемому носителю данных, используемых при построении геологической модели нефтяного или иного месторождения. Технический результат - повышение точности вычислений параметров, используемых при построении геологической модели расположения нефтяных или иных месторождений. Изобретение позволяет для маркеров, выбранных в качестве начального решения, вычислить такие глубины маркера на каждой скважине, которые обеспечивают наилучшую суммарную корреляцию. Для каждого маркера, входящего в набор, определяется функционал, представляющий собой сумму коэффициентов корреляции комплекса методов ГИС для пар скважин, расположенных не далее заданного расстояния друг от друга. Для этого функционала вычисляются частные производные ,и полученный таким образом вектор сглаживается и используется для нахождения большего значения функционала на некотором отрезке вдоль этого вектора. Если большего значения не найдено, то последнее положение отметок маркера считается решением задачи, а если найдено, то производится сглаживание точки решения и процесс повторяется снова. На каждой итерации алгоритма производится сортировка глубин маркеров. 3 н.п. ф-лы, 9 ил.
Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств. Технический результат заключается в более эффективной оценке свойств пористого пласта. Способ оценки свойств продуктивного пласта, пробуренного скважиной, включает закачку флюида с множеством индикаторных добавок субмикронного размера в ствол скважины и продуктивный пласт, ожидание обратного притока и определение свойств пласта. Данные свойства определяются посредством анализа изменений функции распределения индикаторов по размерам и типу в закачанном и добытом флюидах. 17 з.п. ф-лы.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при определении герметичности обсадной колонны в нагнетательной скважине в интервале, перекрытом НКТ. Техническим результатом изобретения является сокращение времени исследований для определения герметичности обсадной колонны в нагнетательной скважине выше воронки НКТ. Для этого способ предусматривает проведение серии измерений термометром во времени при квазистационарном режиме закачки в НКТ в интервале от его воронки вверх до 30-40 м. По этим измерениям определяется герметичность обсадной колонны выше воронки НКТ. 2 ил.

Изобретение относится к буровым долотам, включающим датчики для проведения измерений, относящихся к скважинным параметрам, способам изготовления таких буровых долот и буровым системам, использующим такие буровые долота. Техническим результатом является создание усовершенствованного бурового долота и способа, позволяющего скорректировать изменения в результатах измерений осевой нагрузки и крутящего момента, возникающие за счет перепада давления в буровом долоте. Способ, который, в одном варианте осуществления, включает бурение ствола скважины буровым долотом, определение осевой нагрузки на долото в процессе бурения ствола скважины, определение перепада давления на рабочей площади бурового долота в процессе бурения ствола скважины и определение скорректированной осевой нагрузки на долото по определенной осевой нагрузке на долото и определенному перепаду давления. 4 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления призабойной зоны. Сущность изобретения: способ включает фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент. Согласно изобретению одновременно с фиксированием расхода газа и забойного давления отбирают пробы воды, в которых определяют содержание хлорид-иона. При содержании хлорид-иона, соответствующем его содержанию в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.

Наверх