Сканирующее устройство и способ визуализации с обратнорассеянным пучком излучения



Сканирующее устройство и способ визуализации с обратнорассеянным пучком излучения
Сканирующее устройство и способ визуализации с обратнорассеянным пучком излучения
Сканирующее устройство и способ визуализации с обратнорассеянным пучком излучения
Сканирующее устройство и способ визуализации с обратнорассеянным пучком излучения

 


Владельцы патента RU 2532495:

ТСИНХУА ЮНИВЕРСИТИ (CN)
НЬЮКТЕК КОМПАНИ ЛИМИТЕД (CN)

Использование: для недеструктивного исследования тела человека. Сущность изобретения заключается в том, что сканирующее устройство для визуализации с обратнорассеянным пучком излучения содержит источник излучения, фиксированную экранирующую плиту и вращающееся экранирующее тело, расположенное между источником излучения и сканируемым объектом соответственно, в котором фиксированная экранирующая плита является стационарной относительно источника излучения, а вращающееся экранирующее тело выполнено с возможностью вращения относительно фиксированной экранирующей плиты. Фиксированная экранирующая плита имеет область пропускания луча, которая позволяет пучку излучения от источника излучения проходить сквозь фиксированную экранирующую плиту, а на вращающемся экранирующем теле имеются области падения луча и выхода луча соответственно. Во время вращения вращающегося экранирующего тела область пропускания луча фиксированной экранирующей плиты непрерывно пересекает область падения луча и область выхода луча вращающегося экранирующего тела для генерирования коллимированных отверстий для сканирования. Область пропускания луча фиксированной экранирующей плиты является прямолинейной щелью, вращающееся экранирующее тело является цилиндром, а области падения и выхода пучка излучения сконфигурированы как последовательность небольших дискретных отверстий, расположенных по спиральной линии соответственно. Дополнительно раскрывается способ сканирования для визуализации с обратнорассеянным пучком излучения. Технический результат: обеспечение возможности создания равномерного бегущего луча при визуализации объекта посредством обратнорассеянного пучка излучения. 2 н. и 10 з.п. ф-лы, 5 ил.

 

Сопутствующая заявка

В настоящей заявке испрашивается приоритет по заявке на патент КНР № 201010624252.3, поданной 31 декабря 2010 года в Государственное ведомство по интеллектуальной собственности КНР.

Предпосылки к созданию изобретения

1. Область изобретения

Настоящее изобретение относится к области ядерных технологий, более конкретно, к устройству и к способу недеструктивного (неразрушающего) детектирования для человека и объекта. По существу, оно относится к сканирующему устройству и к способу визуализации с обратнорассеянным (обратным) пучком излучения.

2. Описание уровня техники

В области неразрушающего детектирования и исследования тела человека используются два подхода к формированию изображений с помощью пучков излучения: трансмиссионная визуализация и визуализация с помощью обратнорассеянного пучка излучения. Принцип визуализации с помощью обратнорассеянного пучка излучения (визуализация в отраженном свете) заключается в том, что объект сканируют пучком излучения и одновременно детектором принимают сигналы обратного рассеяния, рассеиваемые сканируемым объектом. На последующем этапе обработки данных поочередно сопоставляют положения сканирования и сигналы обратного рассеяния и тем самым получают отраженное изображение сканируемого объекта. Ключевым компонентом системы визуализации в обратнорассеянном излучении является механизм управления сканирующим пучком, который осуществляет коллимацию пучка так, чтобы выполнять двухмерное сканирование.

В механизме управления сканирующим лучом по предшествующему уровню техники для выполнения одномерного сканирования (именуемого сканированием первой размерности) используют вращающееся экранирующее тело со множеством коллимированных отверстий, вращая его в пределах сектора сканирования луча, а для выполнения другого сканирования (именуемого сканированием второй размерности) вращают или поступательно перемещают сектор сканирования луча. Для сканирования пучка первой размерности осуществляют сканирование с неравномерной скоростью в вертикальной плоскости объекта, и при сканировании скорость сканирования увеличивается и у переднего и у заднего концов по линии сканирования. Кроме того, пятно сканирования в продольном направлении еще больше увеличивается на основе деформации геометрии, поэтому изображение в дополнение к геометрической деформации имеет деформацию сжатия в продольном направлении из-за изменения скорости сканирования.

При выполнении сканирования второй размерности путем поступательного перемещения сектора сканирования луча необходимо поступательно перемещать генератор луча и вращаемое экранирующее тело. В результате конструкция и конфигурация сканирующего устройства становятся довольно сложной. С другой стороны, если сектор сканирования луча во время этапа сканирования поворачивается, требуется преодолеть инерцию вращения для поворота экранирующего тела. Это приводит к очень высоким нагрузкам на устройство, приводящее во вращение экранирующее тело, и на структуру подшипников, поддерживающих экранирующее тело во время выполнения этапа вращения.

Другой известный механизм управления сканирующим лучом содержит фиксированную экранирующую плиту, расположенную перед источником излучения, и вращающееся экранирующее тело. Фиксированная экранирующая плита остается неподвижной относительно источника излучения, а вращающееся экранирующее тело вращается относительно фиксированной экранирующей плиты. Фиксирующая экранирующая плита снабжена прямолинейной щелью, а вращающееся экранирующее тело имеет спиральную щель, соответственно. При выполнении сканирования вращением вращающегося экранирующего тела прямолинейная щель непрерывно пересекает спиральную щель, чтобы генерировать коллимированные отверстия для сканирования, которые всегда сохраняют заранее определенную форму относительно источника излучения так, что профиль сечения пучка излучения, проходящего через это коллимированное отверстие для сканирования, сохраняется постоянным.

В вышеописанной конфигурации, поскольку спиральная щель расположена на вращающемся экранирующем теле, можно легко управлять формой и размером коллимированного отверстия для сканирования. В то же время необходимо дополнительно улучшить и усилить экранирование пучков излучения.

Кроме того, поскольку вращающееся экранирующее тело должно быть обработано с высокой точностью, так чтобы в нем была выполнена спиральная щель, это влечет за собой проблемы и жесткие требования к изготовлению вращающегося экранирующего тела.

Кроме того, вращающееся экранирующее тело во время сканирования должно вращаться, что приводит к возникновению проблемы учета веса и инерции при сканировании.

Соответственно, имеется потребность в создании нового сканирующего устройства для визуализации с обратнорассеянным пучком излучения, которое отвечает по меньшей мере одному аспекту вышеприведенных проблем или недостатков.

Краткое описание изобретения

Учитывая вышеописанные недостатки уровня техники, целью настоящего изобретения является устранение по меньшей мере одного аспекта описанных проблем и дефектов.

Соответственно, целью настоящего изобретения является создание усовершенствованного сканирующего устройства и способа визуализации с обратнорассеянным пучком излучения, в котором форма и размер коллимированного отверстия для сканирования может использоваться для создания равномерного бегущего луча сканирования.

Другой целью настоящего изобретения является создание усовершенствованного устройства и способа визуализации с обратнорассеянным пучком излучения, имеющих преимущества при механической обработке и надежности работы устройства.

Согласно одному аспекту настоящего изобретения предлагается сканирующее устройство для визуализации с обратнорассеянным пучком излучения, содержащее: источник излучения; фиксированную экранирующую плиту и вращающееся экранирующее тело, соответственно размещенное между источником излучения и сканируемым объектом, в котором фиксированная экранирующая плита расположена стационарно относительно источника излучения, а вращающееся экранирующее тело выполнено с возможностью вращения относительно фиксированной экранирующей плиты, в котором фиксированная экранирующая плита имеет область пропускания пучка, который позволяет пучку излучения от источника излучения проходить сквозь фиксированную экранирующую плиту, а вращающееся экранирующее тело имеет на своих боковых поверхностях область падения пучка и область выхода пучка соответственно во время сканирования за счет вращения вращающегося экранирующего тела, при этом область пропускания пучка фиксированной экранирующей плиты непрерывно пересекает область падения пучка и область выхода пучка вращающегося экранирующего тела для генерирования коллимированных отверстий для сканирования. Область пропускания пучка фиксированной экранирующей плиты является прямолинейной щелью, вращающееся экранирующее тело является цилиндром, и области падения и выхода выполнены как последовательность небольших дискретных отверстий, расположенных по спирали соответственно.

Предпочтительно, фиксированная экранирующая плита расположена между источником излучения и вращающимся экранирующим телом.

В одном варианте осуществления сканирующее устройство для визуализации с обратнорассеянным пучком излучения содержит устройство управления для управления скоростью сканирования пучком излучения путем управления частотой вращения вращающегося экранирующего тела и для определения направления выхода пучка излучения путем измерения угла поворота вращающегося экранирующего тела.

В одном варианте осуществления вращающееся экранирующее тело содержит множество гильз, вставленных одна в другую, при этом внешняя и внутренняя гильзы выполнены из материала, имеющего определенную жесткость и твердость соответственно, и по меньшей мере одна средняя гильза расположена между внешней гильзой и внутренней гильзой и выполнена из материала, экранирующего излучение.

Более конкретно, множество гильз состоит из трех гильз, при этом внешняя и внутренняя гильзы соответственно выполнены из алюминия или стали, а средняя гильза, расположенная между внешней и внутренней гильзами, выполнена из свинца, сплава свинец-сурьма или вольфрама.

Альтернативно, небольшие дискретные отверстия имеют круглую, квадратную или овальную форму.

В вышеописанных технических решениях формой и размером коллимированных отверстий для сканирования в разных положениях можно управлять, управляя формой и размером последовательности небольших дискретных отверстий во вращающемся экранирующем теле в разных положениях так, чтобы управлять формой и размером пучка излучения, проходящего сквозь коллимированные отверстия для сканирования и попадающего на сканируемый объект.

Предпочтительно, ось вращения вращающегося экранирующего тела расположена в плоскости, определенной источником излучения и прямолинейной щелью в фиксированной экранирующей плите.

Согласно другому аспекту настоящего изобретения предлагается способ сканирования для визуализации с обратнорассеянным пучком излучения, содержащий этапы, на которых: обеспечивают источник излучения для испускания пучка излучения; размещают фиксированную экранирующую плиту и вращающееся экранирующее тело соответственно между источником излучения и сканируемым объектом, при этом фиксированная экранирующая пластина является стационарной относительно источника излучения, а вращающееся экранирующее тело выполнено с возможностью вращения относительно фиксированной экранирующей плиты, при этом фиксированная экранирующая плита снабжена областью пропускания пучка, позволяющей пучку излучения от источника излучения проходить сквозь фиксированную экранирующую плиту, а на вращающемся экранирующем теле расположены область падения пучка и область выхода пучка соответственно; и вращают вращающееся экранирующее тело так, чтобы область пропускания пучка на фиксированной экранирующей плите непрерывно пересекалась с областями падения и выхода пучка на вращающемся экранирующем теле для генерирования коллимированных отверстий для сканирования, при этом область пропускания пучка в фиксированной экранирующей плите является прямолинейной щелью, вращающееся экранирующее тело является цилиндром, области падения и выхода пучка излучения сконфигурированы как последовательность небольших дискретных отверстий, расположенных по спиральной линии соответственно.

Предпочтительно способ сканирования с обратнорассеянным пучком излучения, кроме того, содержит этап, на котором управляют скоростью сканирования пучком излучения, управляя скоростью вращения вращающегося экранирующего тела, и определяют направление выхода пучка излучения, измеряя угол поворота вращающегося экранирующего тела.

Вышеописанные, не являющиеся ограничивающими варианты осуществления настоящего изобретения обеспечивают по меньшей мере одно или более из следующих преимуществ и эффектов:

1. Настоящее изобретение обеспечивает сканирующее устройство, включающее новую структуру формирования бегущего луча и способ его формирования, что упрощает структуру сканирования в отраженном свете, в то же время создавая хороший эффект экранирования.

2. В одном варианте осуществления механизм сканирования и способ по настоящему изобретению могут обеспечивать управляемое сканирование целевого объекта и исследовать целевой объект по мере необходимости. Соответственно, изображение, полученное сканирующим устройством и способом визуализации с обратнорассеянным пучком излучения, оказывается приемлемым. Например, сканирующий механизм и способ по настоящему изобретению позволяют сканировать целевой объект с равномерной скоростью и удобно и равномерно исследовать целевой объект. Следовательно, изображение, полученное посредством устройства сканирования с обратнорассеянным излучением, и способ его осуществления не имеют деформации сжатия в продольном направлении.

3. Дополнительно, в настоящем изобретении при вращении сектора сканирования пучка для сканирования второй размерности направление углового момента вращающегося экранирующего тела не меняется, поскольку сектор сканирования пучка и вращающее экранирующее тело могут выполнять вращательное движение в одной плоскости.

Следовательно, нет необходимости преодолевать инерцию вращения вращающегося экранирующего тела, и поэтому можно легко выполнять сканирование второй размерности, вращая сектор сканирования пучка.

4. Поскольку в настоящем изобретении области падения и выхода пучка сконфигурированы как последовательность небольших дискретных отверстий, расположенных вдоль спиральной линии, соответственно, формой и размером коллимированных отверстий для сканирования можно эффективно управлять, управляя формой и размером небольших дискретных отверстий так, чтобы получить равномерный бегущий луч.

5. Кроме того, принимая во внимание проблемы известного производственного процесса, механизм сканирования по настоящему изобретению имеет структуру вложенных одна в другую гильз. Это уменьшает вес сканирующего механизма и решает проблемы экранирования излучения/пучка. В настоящем изобретении область пропускания пучка сформирована путем сверления цилиндра. В прототипе наоборот, спиральная щель формируется механической обработкой цилиндра, которая очень трудоемка и является дорогостоящей. Следовательно, настоящее изобретение дает преимущество, существенно снижая трудозатраты на изготовление сканирующего устройства.

6. Далее, вместо обработки спиральной щели в цилиндре на цилиндре формируют последовательность небольших дискретных отверстий. Соответственно, изображение, полученное сканированием, показывает, что световые пятна, формируемые на сканируемом объекте, являются прерывистыми выборками, а не непрерывными, что в определенной степени уменьшает дозу излучения, поглощаемую измеряемым объектом.

7. Дополнительно, поскольку в настоящем изобретении источник излучения расположен не внутри вращающегося экранирующего тела, механизм сканирования компонуется путем сопряжения механического интерфейса на серийно производимом рентгеновском аппарате. Как таковое, сканирующее устройство имеет компактную конфигурацию и не требует новой конструкции экранирующего тела рентгеновского аппарата, тем самым значительно уменьшая себестоимость сканирующего устройства.

Краткое описание чертежей

Фиг. 1 - схематический вид структуры сканирующего устройства для обратнорассеянного излучения по варианту осуществления настоящего изобретения.

Фиг. 2 - вид в поперечном сечении, демонстрирующий сканирующее устройство для обратнорассеянного излучения согласно фиг.1.

Фиг. 3 - разнесенный вид в перспективе, иллюстрирующий соотношение между составом и положением сканирующего устройства по фиг. 1.

Фиг. 4 - схематический вид, иллюстрирующий состав и структуру вращающегося экранирующего тела в устройстве по фиг. 1-3.

Фиг. 5 - схематический вид в увеличенном масштабе, иллюстрирующий форму небольших отверстий в областях падения и выхода пучка в сканирующем устройстве по фиг. 1-3.

Подробное описание вариантов осуществления изобретения

Далее следует более подробное описание предпочтительных вариантов настоящего изобретения со ссылками на прилагаемые чертежи, на которых одинаковые детали обозначены одними и теми же позициями. Настоящее изобретение может быть реализовано во многих разных формах и не должно толковаться как ограниченное описанными вариантами. Эти варианты приведены для полноты и точности описания и полностью передают концепцию настоящего изобретения, понятную для специалистов в этой области техники.

На фиг. 1-3 показано сканирующее устройство для визуализации с обратнорассеянным излучением по одному конкретному варианту осуществления настоящего изобретения. Устройство содержит источник 13 излучения, например рентгеновский аппарат; и фиксированную экранирующую плиту 4, а также вращающееся экранирующее тело 1, соответственно, расположенное между источником 13 излучения и сканируемым объектом (на чертеже не показан, например на левой стороне фиг. 2), в котором фиксированная экранирующая плита 4 установлена стационарно относительно источника 13 излучения, а вращающееся экранирующее тело 1 выполнено с возможностью вращения относительно фиксированной экранирующей пластины 4. Далее, на фиксированной экранирующей пластине 4 имеется область пропускания, например продольная щель 5 на фиг. 1-3, которая позволяет пучку излучения (т.е. лучу) от источника 13 излучения проходить сквозь фиксированную экранирующую плиту 4. На вращающемся экранирующем теле 1 имеется область 3 падения луча, например последовательность небольших дискретных отверстий 32, расположенных по спиральной линии (см. фиг. 1-5), и область 2 выхода луча, например последовательность небольших дискретных отверстий 22, расположенных по спиральной линии (см. фиг. 1-5). Во время этапа сканирования при вращении вращающегося экранирующего тела 1 область 5 пропускания фиксированной экранирующей плиты 4 непрерывно пересекается областью 3 падения луча и областью 2 выхода луча вращающегося экранирующего тела 1 для генерирования коллимированных отверстий, т.е. бегущие лучи (пятна) для сканирования. В вышеописанном варианте осуществления фиксированная экранирующая плита 4 расположена между источником 13 излучения и вращающимся экранирующим телом 1.

В вышеописанном варианте осуществления настоящего изобретения генератор луча содержит кожух 11 генератора луча и источник 13 излучения, расположенный в этом кожухе 11. При такой конструкции источником 13 излучения может быть рентгеновский аппарат, источник гамма-излучения или изотопный источник излучения и т.п. Как показано на фиг. 1 и 3, кожух 11 генератора луча в одном конкретном варианте по существу имеет форму прямоугольного короба и снабжен коллимированной щелью 31, которая позволяет лучу, исходящему из источника 13 излучения, выходить из кожуха 11. Пучок 14 излучения, исходящий из целевой точки Р источника 13 излучения, проходит сквозь коллимированную щель 31 для формирования сектора луча и сквозь пропускающую область фиксированной экранирующей плиты 4 (например, продольная щель 5 на Фиг. 1-3). Далее, он проходит сквозь область 3 падения луча вращающегося экранирующего тела 1, например, выполненную как последовательность небольших дискретных отверстий 32, расположенных по спиральной линии, как показано на фиг. 1-5, и сквозь область 2 выхода луча, например, выполненную как последовательность небольших дискретных отверстий 22, расположенных по спиральной линии, как показано на фиг. 1-5. За счет регулировки относительного положения между продольной щелью 5, фиксированной экранирующей плитой 4 и небольшими дискретными отверстиями 32 и 22 вращающегося экранирующего тела 1 область 5 пропускания фиксированной экранирующей плиты 4 непрерывно пересекается с небольшими дискретными отверстиями 32 в области 3 падения луча и с небольшими дискретными отверстиями 22 в области 2 выхода луча вращающегося экранирующего тела 1 во время вращающегося сканирования вращающегося экранирующего тела 1, таким образом формируя коллимированные отверстия для сканирования. Другими словами, небольшие дискретные отверстия 22 в области 2 выхода луча вращающегося экранирующего тела 1 взаимодействуют с продольной узкой щелью 5 фиксированной экранирующей плиты для формирования коллимированных отверстий для луча. Альтернативно, как показано на фиг. 5, небольшие дискретные отверстия 32 и 22 имеют круглую, квадратную или овальную форму, предпочтительно являясь круглыми.

Как показано на фиг. 1-3, область 5 пропускания луча в фиксированной экранирующей плите 4 является прямолинейной щелью (т.е. прямой линией), вращающееся экранирующее тело 1 является цилиндром, а области 3 и 2 падения и выхода луча сконфигурированы как последовательность небольших дискретных отверстий 32 и 22, расположенных по спиральной линии соответственно. Более конкретно, как показано на фиг. 2, любое небольшое дискретное отверстие в областях 3 и 2 падения и выхода луча (например, точки А и В) совершает равномерное и направленное по окружности по цилиндрической плоскости вращающегося экранирующего тела 1 и синхронно совершает прямолинейное движение в соответствии с определенным градиентом скорости в радиальном направлении вращающегося экранирующего тела 1, тем самым генерируя некоторую цилиндрическую спиральную линию. В одном конкретном варианте осуществления любая точка в областях 3 и 2 падения и выхода, как показано на чертеже (например, точки А и В), совершает равномерное движение по окружности в цилиндрической плоскости вращающегося экранирующего тела 1 и синхронно совершает равномерное и прямолинейное движение в радиальном направлении вращающегося экранирующего тела 1, тем самым генерируя равномерную цилиндрическую спиральную линию.

Как показано на фиг. 2, при определении целевой точки Р источника 13 излучения и точки А в области 3 падения луча можно получить точку В выхода в области 2 выхода луча пучком 14 излучения, которая формируется путем соединения целевой точки Р источника 13 излучения и точки А падения в области 3 падения луча.

Поскольку областям 3 и 2 падения и выхода луча придана форма равномерной и проходящей по окружности спиральной линии, когда вращающееся экранирующее тело 1 равномерно вращается, положения коллимированных отверстий для луча движутся вместе с вращением вращающегося экранирующего тела 1, и поэтому пучок выходящего луча 14 движется. В результате коллимированные отверстия для сканирования непрерывно и равномерно движутся вдоль прямолинейной щели 5.

Хотя в вышеописанном варианте областям 3 и 2 падения и выхода луча придана форма равномерной и проходящей по окружности спиральной линии, настоящее изобретение не ограничивается этой конфигурацией, например, областям 3 и 2 падения и выхода луча может быть придана форма определенной спиральной линии, как описано выше. Более конкретно, она совершает равномерное и направленное по окружности движение по цилиндрической плоскости вращающегося экранирующего тела 1 и синхронно совершает прямолинейное движение в соответствии с определенным градиентом скорости вдоль радиального направления вращающегося экранирующего тела 1, тем самым образуя определенную и цилиндрическую спиральную линию. Соответственно, когда вращающееся экранирующее тело 1 равномерно вращается, положения коллимированных отверстий для луча перемещаются вместе с вращением вращающегося экранирующего тела 1, и поэтому выходящий пучок 14 движется, и коллимированные отверстия для сканирования движутся вдоль прямолинейной щели 5 в соответствии с заранее определенным градиентом скорости. Таким образом, сканирующее устройство по настоящему изобретению может осуществлять управляемое сканирование целевого объекта, осуществлять выборку целевого объекта в соответствии с конкретными требованиями и позволяет удовлетворительно визуализировать изображения при сканировании с обратнорассеянным излучением, тем самым повышая качество и разрешающую способность визуализации с обратнорассеянным излучением, повышая точность и эффективность детектирования с обратнорассеянным излучением и удовлетворяя различным требованиям.

Далее, сканирующее устройство содержит приводное устройство 6 для приведения в действие и вращения вращающегося экранирующего тела 1, например электродвигатель с регулируемой частотой вращения и т.п. Как показано на фиг. 4, в одном варианте осуществления вращающееся экранирующее тело 1 содержит множество гильз, вставленных одна в другую. Более конкретно, наружная и внутренняя гильзы сформированы из материала, имеющего определенную жесткость и твердость, соответственно, а по меньшей мере одна промежуточная гильза, расположенная между наружной и внутренней гильзами, выполнена из материала, экранирующего излучение. В одном конкретном варианте осуществления вращающееся экранирующее тело 1, как показано на фиг. 4, содержит три гильзы 101, 102 и 103. Более конкретно, наружная и внутренняя гильзы 101 и 103 сформированы из алюминия или стали соответственно, а одна промежуточная (средняя гильза) 102, расположенная между наружной и внутренней гильзами, сформирована из свинца, сплава свинец-сурьма или вольфрама.

Более конкретно, в вышеописанных вариантах осуществления сканирующее устройство (см. фиг. 1) также содержит вращающееся кодирующее дисковое считывающее устройство 7 для определения угловых положений вращающегося экранирующего тела 1 и сигнальную линию 8 для передачи сигнала считывания кодирующего диска и ввода информации об измеренном угловом положении вращающегося экранирующего тела 1 в устройство 10 управления. Таким образом, угловое положение вращающегося экранирующего тела определяет положения коллимированных отверстий для сканирования. В вышеописанной конфигурации можно обнаруживать положения, образованные коллимированными отверстиями для сканирования. Как показано на фиг. 1, устройство 10 управления может дополнительно управлять вращением вращающегося экранирующего тела 1 по линии 9 управления электродвигателем 6. Скоростью сканирования пучка излучения можно управлять, управляя частотой вращения вращающегося экранирующего тела 1, в то же время направление выхода пучка излучения можно получить, измеряя угловое положение вращающегося экранирующего тела 1. Как показано на фиг. 2, в одном варианте ось L вращения вращающегося экранирующего тела 1 может проходить в плоскости, определенной источником 13 излучения и прямолинейной щелью 5 в фиксированной экранирующей плите 4.

В вышеописанных вариантах осуществления формой и размером коллимированных отверстий для сканирования в разных положениях можно управлять, управляя формой и размером последовательности небольших дискретных отверстий 32 и 22 во вращающемся экранирующем теле 1 в разных положениях так, чтобы можно было управлять формой и размером пучка излучения, проходящего сквозь коллимированные отверстия и падающего на исследуемый объект. Например, размер, например диаметр, небольших дискретных отверстий 32 и 22 в областях 3 и 2 падения и выхода луча, расположенных на обоих продольных концах вращающегося экранирующего тела 1, может быть меньше, чем размер небольших дискретных отверстий, расположенных в его центральных позициях, тогда как коллимированные отверстия для сканирования, сформированные небольшими дискретными отверстиями 32 и 22, расположенными на обоих продольных концах вращающегося экранирующего тела 1, расположены под определенным углом к коллимированным отверстиям для сканирования, которые расположены в его центральных позициях. В вышеописанной структуре можно обеспечить то, что коллимированные отверстия для луча всегда будут выровнены с целевой точкой и не будут заблокированы, а форма сечения пучка излучения, который проходит сквозь коллимированные отверстия для сканирования и падает на сканируемый объект в разных положениях, остается постоянной. Однако настоящее изобретение этим не ограничивается. Например, формой и размером коллимированных отверстий для сканирования в разных положениях можно управлять, управляя небольшими дискретными отверстиями 32 и 22 в областях 3 и 2 падения и выхода луча во вращающемся экранирующем теле 1 и, соответственно, формой и размером пучка излучения, проходящего сквозь коллимированные отверстия для сканирования и падающего на сканируемый объект, можно управлять так, чтобы адаптировать его под различные требования к сканированию.

Как показано на фиг. 3, кожух 11 генератора излучения используется для обеспечения экранирования путем соединения экранирующей гильзы 12 и фиксированной экранирующей плиты 4. Из указанной конфигурации видно, что источник 13 излучения расположен внутри кожуха 11 генератора излучения, а не внутри вращающегося тела 1, и механизм сканирования может быть создан путем сопряжения серийно производимого рентгеновского аппарата с экранирующей гильзой 12. Как таковая, структура сканирующего устройства становится компактной, не требующей переделок экранирующего корпуса рентгеновского аппарата, и тем самым устройство имеет более низкую себестоимость.

Ниже следует краткое описание способа визуализации с обратнорассеянным излучением со ссылками на прилагаемые чертежи.

Как показано на фиг. 1-3, способ сканирования для визуализации с обратнорассеянным пучком излучения по одному конкретному варианту настоящего изобретения содержит следующие этапы, на которых: обеспечивают источник 13 излучения для испускания пучка 14 излучения; размещают фиксированную экранирующую плиту 4 и вращающееся экранирующее тело 1 соответственно между источником 13 и сканируемым объектом, при котором фиксированная экранирующая плита 4 неподвижна относительно источника излучения, а вращающееся экранирующее тело 1 выполнено с возможностью вращения относительно фиксированной экранирующей плиты 4, при этом в фиксированной экранирующей плите выполнена пропускающая луч область, позволяющая пучку излучения 14 от источника 13 излучения проходить сквозь фиксированную экранирующую плиту 4, на вращающемся экранирующем теле 1 расположены область 3 падения луча и область 2 выхода луча; и осуществляют вращение вращающегося экранирующего тела 1 так, чтобы пропускающая лучи область 5 фиксированной экранирующей пластины 4 непрерывно пересекала области 3 и 2 падения и выхода луча вращающегося экранирующего тела 1 для генерирования коллимированных отверстий для сканирования, т.е. бегущего луча. Пропускающая луч область фиксированной экранирующей плиты 4 является прямолинейной щелью 5, вращающееся экранирующее тело 1 является цилиндром, области 3 и 2 падения и выхода луча сконфигурированы как последовательность небольших дискретных отверстий 32 и 22, расположенных по спиральной линии соответственно.

Во время этапа сканирования, как описано выше, когда вращающееся экранирующее тело 1 равномерно вращается, коллимированные отверстия для сканирования непрерывно движутся по прямолинейной щели 5 с регулируемой скоростью.

Как показано на фиг. 1, во время процесса сканирования устройство 10 управления может считывать состояние вращающегося экранирующего тела 1 с помощью устройства 7 считывания вращающегося кодирующего диска и сигнальной линии 8 передачи сигнала кодирующего диска для дальнейшего определения текущего положения коллимированного отверстия. На основании измерения положения коллимированных отверстий для сканирования можно далее определить направление выхода пучка 14 излучения. Кроме того, коллимированные отверстия для сканирования дополнительно заданы так, чтобы сохранять заранее определенную форму относительно источника 13 излучения и профиль в сечении пучка 14 излучения, проходящего сквозь коллимированные отверстия и попадающего на сканируемый объект, сохраняет заранее определенную форму, тем самым удовлетворяя различным требованиям к операции сканирования.

Хотя выше были описаны и показаны некоторые варианты общей концепции изобретения, специалистам понятно, что в эти элементы могут быть внесены различные изменения и замены, не выходящие за пределы принципов изобретения и изобретательской идеи, объем которой определен приложенной формулой и ее эквивалентами.

1. Сканирующее устройство для визуализации с обратнорассеянным пучком излучения, содержащее:
источник излучения;
фиксированную экранирующую плиту и вращающееся экранирующее тело, расположенные между источником излучения и сканируемым объектом соответственно, при этом фиксированная экранирующая плита является стационарной относительно источника излучения, а вращающееся экранирующее тело выполнено с возможностью вращения относительно фиксированной экранирующей плиты, в котором:
фиксированная экранирующая плита содержит область пропускания луча, которая позволяет пучку излучения от источника излучения проходить сквозь фиксированную экранирующую плиту;
на вращающемся экранирующем теле расположены область падения луча и область выхода луча, при этом во время сканирования вращением вращающегося экранирующего тела область пропускания луча фиксированной экранирующей пластины непрерывно пересекается с областью падения луча и областью выхода луча вращающегося экранирующего тела для генерирования коллимированных отверстий для сканирования, отличающееся тем, что:
область пропускания луча в фиксированной экранирующей плите является прямолинейной щелью, вращающееся экранирующее тело является цилиндром, а области падения и выхода луча во вращающемся экранирующем теле сконфигурированы как последовательность небольших дискретных отверстий, расположенных по спиральной линии соответственно.

2. Устройство по п. 1, отличающееся тем, что
фиксированная экранирующая плита расположена между источником излучения и вращающимся экранирующим телом.

3. Устройство по п. 1, отличающееся тем, что
далее содержит устройство управления для управления скоростью сканирования пучка излучения путем управления частотой вращения вращающегося экранирующего тела и для определения направления выхода пучка излучения путем определения углового положения вращающегося экранирующего тела.

4. Устройство по п. 3, отличающееся тем, что
вращающееся экранирующее тело содержит множество гильз, вставленных одна в другую, при этом наружная гильза и внутренняя гильза выполнены из материала, имеющего соответствующую жесткость и твердость соответственно, и по меньшей мере одна средняя гильза расположена между внешней гильзой и внутренней гильзой и выполнена из материала, экранирующего излучение.

5. Устройство по п. 4, отличающееся тем, что
множество гильз содержит три гильзы, при этом наружная и внутренняя гильзы выполнены из алюминия или стали, а средняя гильза расположена между внешней и внутренней гильзой и выполнена из свинца, сплава свинец-сурьма или вольфрама.

6. Устройство по п. 5, отличающееся тем, что
небольшие дискретные отверстия имеют круглую, квадратную форму или форму эллипса.

7. Устройство по п. 6, отличающееся тем, что
формой и размером коллимированных отверстий для сканирования в разных положениях можно управлять, управляя формой и размером последовательности небольших дискретных отверстий во вращающемся экранирующем теле в разных положениях так, чтобы управлять формой и размером пучка излучения, проходящего сквозь коллимированные отверстия для сканирования и попадания на сканируемый объект.

8. Устройство по п. 2, отличающееся тем, что
ось вращения вращающегося экранирующего тела расположена в плоскости, определенной источником излучения и прямолинейной щелью в фиксированной экранирующей плите.

9. Способ сканирования для визуализации с обратнорассеянным пучком излучения, содержащий этапы, на которых:
обеспечивают источник излучения для испускания пучка излучения;
располагают фиксированную экранирующую плиту и вращающееся экранирующее тело между источником излучения и сканируемым объектом соответственно, при этом фиксированная экранирующая плита является стационарной относительно источника излучения, а вращающееся экранирующее тело выполнено с возможностью вращения относительно фиксированной экранирующей плиты, при этом фиксирующая плита имеет область пропускания луча, позволяющая пучку излучения от источника излучения проходить сквозь фиксированную экранирующую плиту, а на вращающемся экранирующем теле расположены область падения луча и область выхода луча; и
вращают вращающееся экранирующее тело так, чтобы пропускающая луч область фиксированной экранирующей плиты непрерывно пересекала области падения луча и выхода луча вращающегося экранирующего тела для генерирования коллимированных отверстий для сканирования,
отличающийся тем, что
пропускающая луч область фиксированной экранирующей пластины является прямолинейной щелью, вращающееся экранирующее тело является цилиндром, а области падения и выхода луча сконфигурированы как последовательность небольших отверстий, расположенных по спиральной линии соответственно.

10. Способ по п. 9, отличающийся тем, что
фиксированная экранирующая пластина расположена между источником излучения и вращающимся экранирующим телом.

11. Способ по п. 10, отличающийся тем, что
управляют скоростью сканирования пучка излучения путем управления частотой вращения вращающегося экранирующего тела и
определяют направление выхода пучка излучения, определяя угловое положение вращающегося экранирующего тела.

12. Способ по п. 11, отличающийся тем, что
формой и размером коллимированных отверстий для сканирования в разных положениях можно управлять путем управления формой и размером последовательности небольших дискретных отверстий во вращающемся экранирующем теле в разных положениях так, чтобы управлять формой и размером пучка излучения, проходящего сквозь коллимированные отверстия для сканирования и попадания на исследуемый объект.



 

Похожие патенты:

Использование: для досмотра людей. Сущность изобретения заключается в том, что система для осуществления сканирования имеет два сканирующих модуля, которые размещены параллельно друг другу, кроме того, в противостоящем положении друг относительно друга.

Использование: для формирования изображения в режиме обратного рассеяния. Сущность заключается в том, что сканирующее устройство включает в себя источник излучения, стационарную экранную пластину и вращающееся экранное тело, расположенные соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина зафиксирована относительно источника излучения, а вращающееся экранное тело поворачивается относительно стационарной экранной пластины.

Изобретение относится к медицине, а именно к лучевой диагностике состояния костной ткани, и может быть использовано при определении таких заболеваний, как остеопороз и остеопатия.

Изобретение относится к устройствам для обнаружения объектов, скрытых в замкнутых объемах на железнодорожном транспорте, в частности для обнаружения вредных веществ в вагонах, и может быть использовано на контрольно-пропускных пунктах пограничных железнодорожных станций.
Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля состояния и класса обработки поверхности изделий.

Использование: для испускания лучей и формирования изображений посредством проникающего излучения. Сущность изобретения заключается в том, что устройство для испускания лучей содержит: цилиндр; источник излучения, расположенный в цилиндре, для испускания луча; и коллиматор, расположенный в цилиндре. Коллиматор позволяет испущенному источником излучения лучу формировать секториальные пучки лучей во множестве положений в осевом направлении цилиндра. Цилиндр имеет формирующую узкие пучки часть, расположенную вдоль осевой длины цилиндра, соответствующей упомянутому множеству положений. Секториальные пучки лучей принимают форму узких пучков посредством формирующей узкие пучки части, когда цилиндр поворачивается вокруг оси вращения. Технический результат: обеспечение возможности повышения качества изображения. 2 н. и 10 з.п. ф-лы, 6 ил.

Использование: для классификации материалов относительно их эффективных атомных чисел на основании регистрации проникающего излучения, рассеянного от них в обратном направлении. Сущность изобретения заключается в том, что исследуемый объект сканируют проникающим излучением, характеризуемым некоторым распределением энергий, и проникающее излучение, рассеянное исследуемым объектом, регистрируют путем создания сигнала первого датчика, различающего материалы с высоким и низким эффективным атомным числом при первом наборе условий относительно распределения энергий проникающего излучения, и создания сигнала второго датчика, различающего материалы с высоким и низким эффективным атомным числом при втором наборе условий относительно распределения энергий проникающего излучения. Происходит создание изображения, основанного на функции сигнала первого датчика и сигнала второго датчика, причем также происходит объединение сигнала первого датчика и сигнала второго датчика с созданием разностного изображения, обеспечивающего возможность различения материала с высоким значением Z и материала с низким значением Z. Технический результат: повышение степени разрешения по энергии при обратном рассеянии рентгеновского излучения объектом. 2 н. и 8 з.п. ф-лы, 9 ил.

Изобретение относится к медицинской технике, а именно к устройству компьютерной томографии. Устройство содержит канал сканирования, стационарный источник рентгеновского излучения, размещенный вокруг канала сканирования и содержащий множество фокальных пятен излучения и множество стационарных детекторных модулей, размещенных вокруг канала сканирования и расположенных напротив источника рентгеновского излучения. При этом линии удлинения внешних сторон секториальных пучков излучения, излучаемых из двух фокальных пятен излучения, соответственно размещенных на одном конце и другом конце множества фокальных пятен излучения, пересекаются в точке пересечения, и линия, образованная соединением точки пересечения с центральной точкой поверхности приема излучения каждого из детекторных модулей, перпендикулярна поверхности приема излучения каждого из детекторных модулей, при наблюдении в плоскости, пересекающей канал сканирования. Использование изобретения позволяет увеличить скорость анализа данных. 17 з.п. ф-лы, 6 ил.

Изобретение относится к области медицинской техники и предназначено для внутриполостной гамма-лучевой терапии злокачественных новообразований. Комплекс содержит средство для размещения больного, источник излучения, размещенный в средстве для его хранения, средство для перемещения источника излучения из средства для его хранения в выбранный канал облучения и его возврата по выполнении сеанса облучения и средства контроля и управления. Комплекс снабжен хранилищем, имеющим возможность перемещения, содержащим источник излучения, размещенный в средстве для его хранения, три ампулопровода для внутриполостной гамма-лучевой терапии шейки и тела матки, влагалища, прямой кишки, мочевого пузыря и полости рта, ампулопровод для внутриполостной гамма-лучевой терапии пищевода, бронхов и трахеи и шестнадцать ампулопроводов для внутритканевой гамма-лучевой терапии, средство для перемещения источника излучения из средства для его хранения в выбранный канал облучения и средство для выбора канала облучения, расположенное в верхней части хранилища и соединенное с каждым из ампулопроводов. Каждому из ампулопроводов соответствует канал облучения. Использование изобретения обеспечивает универсальность комплекса, а также надежность и безопасность его использования. 1 ил.

Использование: для определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения. Сущность изобретения заключается в том, что определяют плотность путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения, регистрации обратно рассеянного излучения, использования интенсивности счета детектора излучения и калибровочного графика, при этом измеряют интенсивность счета детектора излучения и интенсивность счета мониторного детектора при различной глубине погружения защитного экрана, определяют нормированную интенсивность счета детектора излучения, находят пространственное распределение плотности контролируемого вещества путем сравнения зависимости нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана с калибровочными графиками нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана, полученными для контролируемого вещества при различных распределениях его плотности по глубине. Технический результат: повышение точности измерения в случае веществ с переменной по глубине плотностью. 3 ил.

Использование: для регистрации обратнорассеянного проникающего излучения. Сущность изобретения заключается в том, что система обследования с обратным рассеянием с изменяемыми геометрическими характеристиками содержит матрицу датчиков излучения, включающую один или большее количество датчиков обратнорассеянного излучения. Положение второго датчика обратнорассеянного излучения является изменяемым относительно положения первого датчика обратнорассеянного излучения, так что размер матрицы датчиков может быть изменен путем перемещения второго датчика излучения в положение заданного выравнивания с первым датчиком излучения или из этого положения. Система может содержать подвижное основание и по меньшей мере один из датчиков выполнен с возможностью перемещения относительно основания. Способы обследования объекта включают формирование матрицы датчиков путем перемещения второго датчика излучения в положение заданного выравнивания с первым датчиком излучения, освещение объекта остронаправленным лучом проникающего излучения и регистрацию обратнорассеянного излучения с использованием матрицы датчиков. Технический результат: обеспечение возможности контроля объекта на существенном расстоянии от системы обследования. 4 н. и 15 з.п. ф-лы, 17 ил.
Наверх