Распределенный датчик акустических и вибрационных воздействий

Изобретение относится к области распределенных измерений, а именно к распределенным датчикам акустических и вибрационных воздействий. В распределенном датчике акустических и вибрационных воздействий, содержащем чувствительный элемент в виде волоконно-оптического кабеля и оптически соединенный с ним через оптический интерфейс когерентный фазочувствительный оптический рефлектометр, содержащий оптически соединенные с интерфейсом источник периодической последовательности оптических импульсов и приемник рассеянного излучения с фотодетектором, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, подаваемый в блок обработки, причем источник периодической последовательности оптических импульсов и блок обработки электрически соединены с блоком управления и синхронизации, а источник периодической последовательности оптических импульсов и/или приемник рассеянного излучения выполнен многоканальным с числом каналов не менее двух и с возможностью регистрации рефлектограмм, формирующихся в каждом из каналов, приемник рассеянного излучения содержит неравноплечный интерферометр Маха-Цендера или Майкельсона с фарадеевскими зеркалами, при этом интерферометр имеет не менее двух выходных каналов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки сигналов с каждого из выходных каналов интерферометра. Техническим результатом изобретения является повышение гарантированной чувствительности и дальности действия распределенного датчика акустических и вибрационных воздействий. 4 з.п. ф-лы, 7 ил.

 

Изобретение относится к области распределенных измерений, а именно к распределенным датчикам акустических и вибрационных воздействий.

Заявленное устройство может быть использовано для мониторинга и охраны протяженных объектов, например периметров и коммуникаций, в частности для мониторинга состояния транспортных трубопроводов, магистральных волоконных кабелей от повреждений при проведении работ вблизи кабеля, защиты периметров специальных объектов и т.п.

Известен анализатор виброакустических сигналов, предназначенный для анализа спектра сигналов и содержащий оптически связанные источник когерентного излучения, светоделительное средство, фотоприемник, усилитель (SU 1589069, 1990). Известное устройство не предназначено для мониторинга протяженных объектов.

Известна диагностическая система, предназначенная для отслеживания изменения статических деформаций и измерения динамических деформаций. Система включает перестраиваемый узкополосный источник светового излучения, светопроводящее волокно, отражательные датчики, например, типа решеток Брегга, расположенные по длине волокна, и контур обработки сигнала. Система может применяться также по схеме Фабри-Перо (патент РФ №2141102). Система обеспечивает высокую чувствительность к деформациям, но является очень сложной и обладает малой пространственной разрешающей способностью.

Известно устройство для мониторинга виброакустической характеристики протяженного объекта, содержащее узкополосный импульсный источник оптического излучения в виде волоконного лазера с модуляцией добротности, чувствительный элемент в виде оптического волокна, расположенного продольно внутри или снаружи протяженного объекта, узел ввода оптического излучения в чувствительный элемент, фотоприемник и узел обработки сигнала с процессором (патент РФ №2271446). Недостатком известного устройства является наличие случайных вариаций несущей частоты тестирующих оптических импульсов, вводимых в волокно, связанных с импульсным режимом работы лазера и чувствительностью волоконного лазера к техническим шумам. Это ограничивает дальность действия, чувствительность и разрешающую способность устройства, а также затрудняет его использование в полевых условиях.

В качестве ближайшего аналога (прототипа) выбрано устройство - распределенный датчик акустических и вибрационных воздействий, содержащий чувствительный элемент в виде волоконно-оптического кабеля и оптически соединенный с ним через оптический интерфейс когерентный фазочувствительный оптический рефлектометр, содержащий оптически соединенные с интерфейсом источник периодической последовательности оптических импульсов и приемник рассеянного излучения с фотодетектором, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, подаваемый в блок обработки, причем источник периодической последовательности оптических импульсов и блок обработки электрически соединены с блоком управления и синхронизации, при этом источник периодической последовательности оптических импульсов выполнен многоканальным, или приемник рассеянного излучения выполнен многоканальным, или источник периодической последовательности оптических импульсов и приемник рассеянного излучения выполнены многоканальными (WO 2011162868, А2, 29.12.2011).

Недостатком известного устройства (прототипа) является его недостаточная надежность, обусловленная наличием зон пониженной чувствительности распределенного датчика акустических и вибрационных воздействий, обусловленных случайным распределением вдоль волокна фазы и коэффициента рассеяния оптического импульса когерентного фазочувствительного оптического рефлектометра. Это ограничивает дальность действия, чувствительность и разрешающую способность устройства.

Предлагаемое изобретение направлено на решение задачи повышения надежности датчика акустических и вибрационных воздействий.

Техническим результатом изобретения является повышение гарантированной чувствительности и дальности действия распределенного датчика акустических и вибрационных воздействий.

Технический результат при осуществлении изобретения достигается тем, что в распределенном датчике акустических и вибрационных воздействий, содержащем чувствительный элемент в виде волоконно-оптического кабеля и оптически соединенный с ним через оптический интерфейс когерентный фазочувствительный оптический рефлектометр, содержащий оптически соединенные с интерфейсом источник периодической последовательности оптических импульсов и приемник рассеянного излучения с фотодетектором, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, подаваемый в блок обработки, причем источник периодической последовательности оптических импульсов и блок обработки электрически соединены с блоком управления и синхронизации, а источник периодической последовательности оптических импульсов и/или приемник рассеянного излучения выполнен многоканальным с числом каналов не менее двух и с возможностью регистрации рефлектограмм, формирующихся в каждом из каналов, приемник рассеянного излучения содержит неравноплечный интерферометр Маха-Цендера или Майкельсона с фарадеевскими зеркалами, при этом интерферометр имеет два выходных канала: синфазный и противофазный, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки синфазного и противофазного каналов, или интерферометр имеет три выходных канала: синфазный и со сдвигами фазы +120 градусов и -120 градусов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки трех выходных каналов, или интерферометр имеет четыре выходных канала со сдвигами фазы 0 градусов,+90 градусов, -90 градусов и 180 градусов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки четырех выходных каналов, или в длинном плече интерферометра содержится фазовый модулятор.

Изобретение иллюстрируется чертежами, где:

на фиг.1 показана блок-схема распределенного датчика акустических и вибрационных воздействий;

на фиг.2 показана схема реализации интерферометра Майкельсона с фарадеевскими зеркалами;

на фиг.3 показан пример одиночной рефлектограммы;

на фиг.4 показан пример наложения множества рефлектограмм (в области вне виброакустического воздействия рефлектограммы совпадают и накладываются друг на друга, а в области виброакустического воздействия рефлектограммы не совпадают и не накладываются друг на друга);

на фиг.5 показан пример наложения множества разностных рефлектограмм (разностная рефлектограмма есть разность двух последовательных рефлектограмм. В области вне вибро-акустического воздействия разностные рефлектограммы близки к нулю, а в области вибро-акустического воздействия разностные рефлектограммы существенно отличаются от нуля); на фиг.6 показана зависимость амплитуды разностного сигнала (АРС) от координаты точки воздействия (численный расчет). Пунктир - условный уровень пониженной чувствительности к локальному воздействию;

на фиг.7 показаны зависимости АРС от координаты точки воздействия для двух каналов, отличающихся частотой оптической несущей (длительность тестовых импульсов 50 нc).

Устройство включает в себя:

- источник периодической последовательности оптических импульсов

- импульсный лазер 1;

- усилитель мощности 2;

- узел 3 ввода оптического излучения в чувствительный элемент и вывода рассеянного излучения;

- чувствительный элемент - оптический кабель 4;

- предусилитель 5;

- фотоприемник 6;

- блок 7 анализа и обработки электрического сигнала;

- фотодетектор 8;

- неравноплечный интерферометр Маха-Цендера или Майкельсона 9;

- фарадеевские зеркала 10;

- фазовый модулятор 11.

Устройство работает следующим образом.

Импульсный лазер 1 формирует периодическую последовательность коротких импульсов (излучение), которая после усиления в усилителе 2 через узел 3 ввода оптического излучения в чувствительный элемент и вывода рассеянного излучения вводится в чувствительный элемент - оптический кабель 4, расположенный внутри или рядом с контролируемым объектом.

В оптическом волокне излучение рассеивается на неподвижных неоднородностях волокна без изменения частоты (релевское рассеяние).

Рассеянное излучение через узел 3 ввода оптического излучения в чувствительный элемент и вывода рассеянного излучения поступает на предусилитель 5 и после усиления в нем поступает на фотоприемник 6, преобразуется в электрический сигнал и поступает на блок 7 анализа и обработки.

При импульсном возбуждении временная зависимость средней мощности сигнала обратного рассеяния и соответственно фототока фотоприемника 6 (рефлектограмма) имеет вид, близкий к экспоненте. Однако благодаря высокой когерентности исходного излучения эта рефлектограмма оказывается изрезанной случайным образом благодаря случайной фазе интерферирующего рассеянного излучения. Пример рефлектограммы показан на фиг.3.

В отсутствие виброакустических воздействий и изменений несущей частоты прямоугольного тестирующего импульса рефлектограммы от разных импульсов полученные в разные моменты времени совпадают. При наличии виброакустического воздействия на чувствительный элемент рефлектограммы от разных импульсов в области воздействия оказываются разными. Величина изменений определяет интенсивность воздействия, а временная задержка относительно тестирующего прямоугольного импульса однозначно определяет координату воздействия.

Характер и координату воздействия определяет блок 7 анализа и обработки из сравнения множества рефлектограмм путем определения мест существенных изменений рефлектограмм.

На фиг.3 показана типичная рефлектограмма от одного импульса. На фиг.4 показан результат наложения многих рефлектограмм, на котором хорошо видна область воздействия. На фиг.5 показан результат наложения множества разностных рефлектограмм с областью воздействия.

Недостатком известных устройств является то, что величина изменения амплитуды рефлектограммы сложным образом зависит не только от амплитуды воздействия, но также от характера рефлектограммы в точке воздействия. Зависимость амплитуды разностного сигнала (АРС), т.е. величины разности двух соседних рефлектограмм от точки приложения внешнего точечного фазового воздействия, полученная в результате численного моделирования, приведена на фиг.6.

Предложенное устройство существенно отличается от прототипа тем, что приемник рассеянного излучения содержит неравноплечный интерферометр Маха-Цендера или неравноплечный интерферометр Майкельсона с фарадеевскими зеркалами, позволяющий регистрировать рефлектограммы и разностные сигналы нескольких независимых каналов в одном датчике 4.

Применение нескольких независимых каналов регистрации рефлектограмм и разностных сигналов в одном датчике позволяет устранить слепые зоны, на что в отличие от прототипа и направлено предлагаемое изобретение, то есть обеспечить необходимый уровень чувствительности вдоль всего волокна.

В развитие независимого пункта формулы изобретения интерферометр имеет два выхода: синфазный и противофазный, каждый из которых соединен с фотодетектором 8, а блок управления и синхронизации обеспечивает разделение и независимую обработку синфазного и противофазного каналов.

Данный признак обеспечивает достижение устранения зон нечувствительности при оптимальных форме и длительности импульсов, а следовательно, при обеспечении максимальной разрешающей способности и точности локализации внешнего воздействия и, кроме того, при максимальной частоте регистрации рефлектограмм. Еще одно достоинство - увеличение чувствительности к фазовому воздействию при увеличении разности хода интерферометра.

Интерферометр также может иметь три выхода: синфазный и со сдвигами фазы +120 градусов и -120 градусов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации обеспечивает разделение и независимую обработку трех каналов.

Данный признак обеспечивает дополнительно возможность измерения разности набегов фаз между точками волоконного кабеля, находящимися на расстоянии, равном половине разности хода неравноплечного интерферометра.

Интерферометр также может иметь четыре выхода со сдвигами фазы 0 градусов, +90 градусов, -90 градусов и 180 градусов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации обеспечивает разделение и независимую обработку четырех каналов.

Данный признак обеспечивает дополнительно возможность измерения разности набегов фаз между точками волоконного кабеля, находящимися на расстоянии, равном половине разности хода неравноплечного интерферометра, и, кроме того, увеличивает чувствительность при использовании дифференциального приема.

В длинном плече интерферометра также может содержаться фазовый модулятор 11 (см. Фиг.2).

Данный признак обеспечивает дополнительно возможность измерения разности набегов фаз между точками волоконного кабеля, находящимися на расстоянии, равном половине разности хода неравноплечного интерферометра, и, кроме того, увеличивает чувствительность при использовании синхронного детектирования.

Использование изобретения позволяет оперативно выявлять нарушения целостности периметра протяженного объекта либо фиксировать какие-либо воздействия изнутри или извне на протяженный объект. При этом устройство позволяет определить координаты места дефекта или точки воздействия на объект надежно и с высокой степенью точности.

С учетом изложенного можно сделать вывод о том, что заявленный технический результат - повышение дальности действия, чувствительности и разрешающей способности устройства - достигнут.

1. Распределенный датчик акустических и вибрационных воздействий, содержащий чувствительный элемент в виде волоконно-оптического кабеля и оптически соединенный с ним через оптический интерфейс когерентный фазочувствительный оптический рефлектометр, содержащий оптически соединенные с интерфейсом источник периодической последовательности оптических импульсов и приемник рассеянного излучения с фотодетектором, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, подаваемый в блок обработки, причем источник периодической последовательности оптических импульсов и блок обработки электрически соединены с блоком управления и синхронизации, а источник периодической последовательности оптических импульсов и/или приемник рассеянного излучения выполнен многоканальным с числом каналов не менее двух и с возможностью регистрации рефлектограмм, формирующихся в каждом из каналов, отличающийся тем, что приемник рассеянного излучения содержит неравноплечный интерферометр Маха-Цендера или Майкельсона с фарадеевскими зеркалами.

2. Распределенный датчик акустических и вибрационных воздействий по п.1, отличающийся тем, что интерферометр имеет два выходных канала: синфазный и противофазный, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки синфазного и противофазного каналов.

3. Распределенный датчик акустических и вибрационных воздействий по п.1, отличающийся тем, что интерферометр имеет три выходных канала: синфазный и со сдвигами фазы +120 градусов и -120 градусов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки трех выходных каналов.

4. Распределенный датчик акустических и вибрационных воздействий по п.1, отличающийся тем, что интерферометр имеет четыре выходных канала со сдвигами фазы 0 градусов, +90 градусов, -90 градусов и 180 градусов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки четырех выходных каналов.

5. Распределенный датчик акустических и вибрационных воздействий по п.1, отличающийся тем, что в длинном плече интерферометра содержится фазовый модулятор.



 

Похожие патенты:

Устройство для мониторинга виброакустической характеристики протяженного объекта содержит непрерывный полупроводниковый лазер, оптический модулятор, предназначенный для формирования периодической последовательности прямоугольных импульсов длительностью в диапазоне от 50 нс до 500 нс и частотой следования от 200 Гц до 50 кГц, чувствительный элемент в виде волоконно-оптического кабеля, узел ввода оптического излучения в чувствительный элемент и вывода рассеянного излучения, фотоприемник, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, и узел обработки сигнала с процессором, при этом непрерывный полупроводниковый лазер снабжен брэгговским селективным отражателем с возможностью сужения полосы непрерывного излучения лазера до уровня менее 100 кГц, а оптический модулятор выполнен в виде акустооптического модулятора на бегущей акустической волне с возможностью формирования периодической последовательности прямоугольных импульсов с коэффициентом гашения К≥10×lg(T×f), где Т - длительность импульса, f - частота следования.

Система содержит источник света для передачи света на поверхность вала через множество пучков оптических волокон, расположенных во множестве местоположений вблизи поверхности в по существу аксиальном направлении между концами по меньшей мере одного вала; высокотемпературный зонд отражения на основе пучка волокон для обнаружения света, отраженного от поверхности вала, механизм измерения для определения крутящего момента или вибрации на валу.

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в спектральный ряд и измеряют значение амплитуды гармоники Sx на частоте колебания объекта Ω.

Изобретение может использоваться для неразрушающего контроля материалов. Устройство содержит лазер, делитель, первую и вторую линзы и последовательно соединенные генератор ультразвуковой частоты и пьезокерамический излучатель, находящийся в емкости, в которой также размещены на одной линии с излучателем исследуемый образец и собирающая акустическая линза.

Изобретение относится к технике преобразования вибрационных сигналов и может быть использовано в технических системах обнаружения и контроля вибраций объектов. Дистанционный вибродатчик содержит источник излучения, двухэлементный фотоприемник и вычитающее устройство, входы которого соединены с выходами элементов фотоприемника.

Изобретение относится к области измерительной техники, а именно к виброметрии, и может быть использовано для измерения амплитуды механических колебаний поверхностей твердых тел в диапазоне звуковых и ультразвуковых частот, в частности для измерения амплитуды колебаний многополуволновых излучателей переменного сечения ультразвуковых колебательных систем, используемых в составе аппаратов, предназначенных для интенсификации технологических процессов.

Изобретение относится к измерительной технике и может применяться для регистрации вибраций, шумов и акустических сигналов. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для получения информации о структуре акустических полей при разработке акустоэлектронных приборов, для регистрации акустических полей при физических исследованиях волновых процессов в акустике, для контроля структур в непрозрачных для видимого света объектах.

Изобретение относится к области контрольно-измерительной техники. .

Изобретение относится к измерительной технике, в частности к акустическим измерениям, и может быть использован при контроле наличия акустических колебаний при работе акустических приборов ультразвуковой частоты.

Изобретение относится к волоконно-оптическому распределенному акустическому измерению для регистрации P- и S-волн в твердой среде. Распределенного акустического измерения можно добиться с использованием немодифицированной волоконной оптики, запуская оптические импульсы в волокно и регистрируя излучение, которое испытывает рэлеевское обратное рассеяние, оттуда.

Устройство для мониторинга виброакустической характеристики протяженного объекта содержит непрерывный полупроводниковый лазер, оптический модулятор, предназначенный для формирования периодической последовательности прямоугольных импульсов длительностью в диапазоне от 50 нс до 500 нс и частотой следования от 200 Гц до 50 кГц, чувствительный элемент в виде волоконно-оптического кабеля, узел ввода оптического излучения в чувствительный элемент и вывода рассеянного излучения, фотоприемник, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, и узел обработки сигнала с процессором, при этом непрерывный полупроводниковый лазер снабжен брэгговским селективным отражателем с возможностью сужения полосы непрерывного излучения лазера до уровня менее 100 кГц, а оптический модулятор выполнен в виде акустооптического модулятора на бегущей акустической волне с возможностью формирования периодической последовательности прямоугольных импульсов с коэффициентом гашения К≥10×lg(T×f), где Т - длительность импульса, f - частота следования.

Изобретение относится к датчикам с воздействием на передающую способность оптического волокна. Датчик содержит корпус, внутри которого размещен оптоволоконный чувствительный элемент, способный изменять характеристики излучения, распространяющегося в световоде, в зависимости от деформации.

Изобретение относится к измерительной технике и может применяться для регистрации вибраций, шумов и акустических сигналов. .

Изобретение относится к устройствам измерения распределения деформации, использующим в качестве чувствительного элемента оптическое волокно. .

Изобретение относится к оптоволоконному датчику для измерения температуры и деформации в продольном направлении измерительного волокна. .

Изобретение относится к измерительной технике и может быть использовано для измерения температуры и/или напряжения в процессе непрерывной разливки. .

Изобретение относится к информационно-измерительной технике и может быть использовано для вибродиагностики сооружений, обнаружения несанкционированных воздействий на объекты, охраны периметров и обнаружения утечек газа или жидкости из трубопроводов.

Изобретение относится к области мониторинга деформации и термических процессов с использованием контрольно-измерительных систем на основе волоконных брэгговских решеток.

Раскрыт способ обнаружения опасной ситуации при помощи оптоволоконной сенсорной системы. Опросное устройство содержит источник света, спектрометр и устройство обработки данных. Опросное устройство используют для проведения быстрого сканирования множества волоконно-оптических сенсорных элементов. Первые значения параметра окружающей среды вычисляют для каждого волоконно-оптического сенсорного элемента из спектрографических данных и сравнивают с первым пороговым значением. Если первое значение параметра окружающей среды превышает первое пороговое значение для любого волоконно-оптического сенсорного элемента, быстрое сканирование прерывают для осуществления медленного сканирования с высоким разрешением указанного волоконно-оптического сенсорного элемента. Оптоволоконная сенсорная система передает сигнал тревоги в случае, если указанное медленное сканирование с высоким разрешением выявляет опасную ситуацию. Технический результат - повышение пространственного и/или температурного разрешения. 2 н. и 18 з.п. ф-лы, 2 ил.
Наверх