Камера для облучения текущих сред

Изобретение относится к конструкциям установок для облучения текущих сред и может быть применено в установках, предназначенных для стерилизации текущих жидкостей, активации химических реакций в текущих растворах, ядерного превращения текущих радиоактивных отходов, используемых, в частности, в медицине, пищевой, химической и атомной промышленностях. Камера для облучения текущих сред содержит камеру с патрубками для подвода и отвода текущей среды, при этом патрубки разнесены по высоте один относительно другого, камера выполнена в виде двух коаксиальных труб переменного диаметра, внутренняя труба образует полость, открытую со стороны выходного патрубка, диаметр которой в любом сечении превышает диаметр излучателя. Техническим результатом изобретения является обеспечение обслуживания и замены излучателя без прекращения потока текущей среды. 3 ил.

 

Изобретение относится к конструкциям установок для облучения текущих сред и может быть применено в установках, предназначенных для стерилизации текущих жидкостей, активации химических реакций в текущих растворах, ядерного превращения текущих радиоактивных отходов, используемых, в частности, в медицине, пищевой, химической и атомной промышленностях.

Для облучения текущую среду пропускают через камеру, в которой потоку придают цилиндрическую форму. Обычно среда протекает по кольцевому зазору, образованному корпусом камеры и излучателем. Скорость потока определяет время нахождения текущей среды в зоне облучения. Количество излучения, поглощенное текущей средой в процессе облучения при заданной плотности потока излучения на ее поверхности, прямо пропорционально времени облучения и, следовательно, обратно пропорционально скорости потока текущей среды.

Для облучения текущей среды применяют различные виды излучений: электромагнитное, например, ультрафиолетовое, рентгеновское или гамма-излучение, а также нейтронное.

Источники излучения обеспечивают требуемую плотность потока на поверхности текущей среды. Для равномерного облучения потока текущей среды цилиндрической формы диаграмма направленности излучения источника имеет ось симметрии, а источник устанавливают внутрь потока текущей среды таким образом, чтобы ось симметрии диаграммы направленности излучения совпадала с осью потока. В качестве излучателя применяют кварцевые лампы, ампульные гамма-источники, рентгеновские и нейтронные портативные генераторы и др.

Поток текущей среды в камере должен быть однородным в пространстве и постоянным во времени. В противном случае, несмотря на обеспечение симметрии потока излучения, облучение среды становится неконтролируемым. Неоднородность и непостоянство потока возникает в случае, когда текущая среда состоит из нескольких фракций, отличающихся своими свойствами, или/и при наличии газовой фракции. Нарушение однородности проявляется в виде распределения плотности среды в облучаемом сечении и вызывается, в основном, действием силы гравитации особенно в случае горизонтального расположения камеры или центробежной силы в случае кругового потока.

Известно «Устройство для переработки редкометальных концентратов» [Заявка на изобретение RU 95111909, МПК С22В 3/02, 27.06.1997. Аналог], содержащее импульсный источник оптического излучения, состоящий из излучателя, конденсаторного накопителя энергии, пульта управления, объединяющего системы источника управляющей связью, насос с приводом, аппарат для автоклавного выщелачивания, цилиндрическую камеру с патрубками для подвода и отвода пульпы с размещенным в ней каоксиально излучателем, датчик уровня, размещенный на входе выходного патрубка, причем площади сечений подводящих труб и патрубков выполнены одинаковыми и более площади сечения диаметрального коаксиального зазора между камерой и излучателем, при этом конденсаторный накопитель энергии выполнен многосекционным с числом секций, определяемым соотношением h=No/N1, где No - число импульсов в минуту, обеспечивающее необходимую производительность и достаточное качество активации, N1 - максимально допустимое число импульсов в минуту для выборного типа конденсаторов, входящих в конденсаторный накопитель, причем устройство снабжено переключателем секций накопителя на излучатель, отличающееся тем, что устройство содержит циркуляционный контур, состоящий из насоса с приводом, системы управления потоком пульпы, трубопроводов объемом, определяемым из соотношения V=Vnn/h, где Vn - объем коаксиальной полости между излучателем и камерой, n - экспериментально или расчетно определенное число импульсов облучения, при котором достигается максимальная степень выщелачивания сырья.

Недостатками аналога являются: ограниченная область применения, определяемая средами, в которых длина пробега излучения равна или больше расстояния между стенкой излучателя и стенкой цилиндрической камеры; невозможность обслуживания и замены излучателя без прекращения потока пульпы, вследствие того, что пульпа протекает между стенкой излучателя и стенкой цилиндрической камеры.

Известно «Устройство для стерилизации жидкости» [Заявка на изобретение RU 94009348, МПК C02F 1/32, 10.05.1997. Прототип], содержащее цилиндрическую камеру с патрубками для подвода и отвода текущей среды, источник оптического излучения, содержащий излучатель, коаксиально расположенный в камере, датчик, пульт управления, функционально связанный с датчиком и насос с приводом, при этом патрубки разнесены по высоте один относительно другого, отличающееся тем, что диаметр камеры Дк выбран из соотношения Дки+2l, где Ди - диаметр излучателя, l - расчетное или экспериментально подобранное значение пробега излучения в обрабатываемой жидкости, при котором достигается эффект обеззараживания этой жидкости, источник излучения содержит импульсный газоразрядный излучатель и импульсный конденсаторный источник питания, цилиндрическая камера расположена горизонтально, входной и выходной патрубки расположены под прямым углом к оси камеры по одной вертикали, при этом входной и выходной патрубки выполнены с сечениями, удлиняющимися от подводящей и отводящей жидкость труб до размера, совпадающего с длиной облучаемой части камеры, а ширина сечения патрубков на выходе входного патрубка и на входе выходного патрубка выполнена не более (Дки), причем площади нормальных к оси сечений входного и выходного патрубков по всей их длине выполнены одинаковыми и равными площади нормального сечения подводящей и отводящей труб, датчик уровня размещен во входном сечении выходного патрубка, при этом источник питания выполнен многосекционным с числом секций, определяемым из соотношения n=N/N1, где N - число импульсов в минуту, обеспечивающее необходимую производительность и нужное качество очистки, N1 - максимально допустимое число импульсов в минуту для выбранного типа конденсаторов, причем устройство снабжено переключателем секций накопителя на импульсный излучатель.

Недостатком прототипа является невозможность обслуживания и замены излучателя без прекращения потока жидкости, вследствие того, что жидкость протекает между стенкой излучателя и стенкой цилиндрической камеры.

Техническим результатом изобретения является: обеспечение обслуживания и замены излучателя без прекращения потока текущей среды.

Технический результат достигается тем, что в камере для облучения текущих сред, содержащей камеру с патрубками для подвода и отвода текущей среды, при этом патрубки разнесены по высоте один относительно другого, камера выполнена в виде двух коаксиальных труб переменного диаметра, внутренняя труба образует полость, открытую со стороны выходного патрубка, диаметр которой в любом сечении превышает диаметр излучателя.

Сущность изобретения поясняется на фиг.1, где 1 - внешняя коаксиальная труба камеры; 2 - внутренняя коаксиальная труба камеры; 3 - текущая среда, протекающая между внешней 1 и внутренней 2 коаксиальными трубами; 4 - полость внутри камеры, связанная с пространством вне камеры; 5 - дифференциальный датчик давления; 6, 7 - входной и выходной патрубки камеры; 8 - направление потока текущей среды через камеру.

Пример реализации устройства на основе заявляемой камеры поясняется на фиг.2, где 9 - кольцевой секционированный датчик излучения; 10 - блок питания; 11 - излучатель; 12 - пульт управления излучателем; 13 - регистратор для регистрации показаний дифференциального датчика давления 5 и показаний кольцевого секционированного датчика излучения 9; 14 - электрические кабели.

Камера включает в себя две коаксиальные трубы 1 и 2, входной 6 и выходной 7 патрубки и дифференциальный датчик давления 5, который герметично соединен с объемом, занимаемым текущей средой, с помощью проходных отверстий в трубе 2 и трубопроводов.

Устройство камеры обеспечивает возможность обслуживания и замены излучателя 11 без прекращения потока текущей среды 3 за счет того, что внутренняя труба 2 открыта со стороны выходного патрубка 7, а ее диаметр в любом ее сечении превышает диаметр излучателя.

Коаксиальные трубы 1 и 2 выполняются переменного диаметра, что расширяет область применения устройства. Переменный диаметр одной или обеих труб, в отличие от случая постоянного диаметра обеих труб, обеспечивает изменение величины кольцевого зазора между трубами по длине камеры и позволяет, вследствие этого, облучать более широкий набор текучих сред, отличающихся по своим свойствам в более широких пределах, чем в случае камеры с постоянной величиной зазора. Переменный зазор между трубами 1 и 2 может быть реализован путем применения конических труб, как показано на Фиг.1, 2, или труб, составленных из отрезков цилиндрических труб различного диаметра. Для изготовления труб применяют материал достаточно прозрачный для излучения излучателя 11. В случае ультрафиолетового излучения это может быть, например, кварц.

Кольцевой секционированный датчик излучения 9 установлен на направляющих (на чертеже не показаны) и может перемещаться вдоль оси камеры. Тип датчика определяется видом излучения и может быть выполнен в виде набора одинаковых датчиков, устанавливаемых по окружности вокруг камеры, или в виде одного позиционно-чувствительного датчика. Выход кольцевого секционированного датчика излучения 9 электрически соединен с входом регистратора 13 с помощью кабелей 14. Регистратор 13 выводит на дисплей показания интенсивности излучения, прошедшего через текущую среду 3, получаемые с секций кольцевого секционированного датчика излучения 9 в различных частях поперечного сечения камеры, обеспечивая контроль поглощенной энергии в этих частях.

Дифференциальный датчик давления 5 обеспечивает контроль скорости потока текущей среды 3 и тем самым степень облучения среды. Принцип работы дифференциального датчика давления 5 основан на том, что падение давления в потоке жидкости на измеряемом участке пропорционально квадрату скорости потока жидкости. Значение скорости получают, измеряя дифференциальное давление в потоке жидкости и вычисляя из него квадратный корень. Дифференциальный датчик давления 5 электрически соединен с регистратором 13 с помощью кабелей 14.

Регистратор 13 соединен с помощью электрических кабелей 14 с датчиком дифференциального давления 5, с секциями кольцевого секционированного датчика излучения 9 и с пультом управления излучателем 12, обрабатывает данные поступающие с датчиков 5 и 9, и управляет работой излучателя 11 посредством пульта управления 12.

Излучатель 11 устанавливается в полости 4 камеры в сечение, в котором величина пробега излучения превышает размер зазора между трубами 1 и 2. Для этого излучатель 11 закреплен на конце штанги (на чертеже не показана), которая может перемещаться внутри втулок (на чертеже не показаны), закрепленных на корпусе камеры, вдоль ее оси. Расположение излучателя 11 на оси камеры обеспечивает осевую симметрию пространственного распределения интенсивности излучения. Плотность потока излучения на поверхности текущей среды 3 изменяется при этом обратно пропорционально квадрату расстояния между излучателем 11 и поверхностью текущей среды 3. Излучателем 11 могут быть, например, кварцевая лампа, рентгеновский или нейтронный портативный генератор.

Перемещение излучателя 11 вдоль оси камеры обеспечивает изменение плотности потока излучения на поверхности текущей среды 3 без изменения режима работы излучателя 11. Возможность изменения плотности потока на поверхности текущей среды 3 за счет перемещения излучателя 11 вдоль оси камеры расширяет область применения устройства.

Блок питания 10, пульт управления излучателем 12, кольцевой секционированный датчик излучения 9, дифференциальный датчик давления 5 и регистратор 13 располагают снаружи камеры и соединяют между собой с помощью электрических кабелей 14.

Для проведения облучения камеру устанавливают на трубопровод, используемый для прокачки текущей среды 3, с помощью входного 6 и выходного 7 патрубков стационарно, либо на время облучения, используя гибкие рукава. В случае текущей среды, имеющей фракционный состав и/или газовую фракцию, камера устанавливается так, чтобы ее ось занимала вертикальное положение.

Камера работает следующим образом.

Блок питания 10 обеспечивает электропитанием излучатель 11, кольцевой секционированный датчик излучения 9, дифференциальный датчик давления 5, регистратор 13 и пульт управления излучателем 12. Текущая среда 3 втекает во входной патрубок 6, протекает по зазору между трубами 1 и 2 и вытекает через патрубок 7. Поток текущей среды 3 на участке зазора между трубами 1 и 2, к которому подключен дифференциальный датчик давления 5, воздействует на дифференциальный датчик давления 5, показания выводятся на его дисплей регистратора 13 с помощью кабелей 14. Находясь в зазоре между трубами 1 и 2, текущая среда 3 подвергается облучению излучением от излучателя 11, находящегося на оси камеры в сечении, для которого величина зазора между трубами 1 и 2 меньше длины пробега излучения в облучаемой текущей среде 3. В процессе облучения излучение излучателя 11 частично поглощается текущей средой 3, а частично выходит наружу камеры, где попадает на кольцевой секционированный датчик излучения 9, показания которого поступают в регистратор 13.

Камера для облучения текущих сред, содержащая камеру с патрубками для подвода и отвода текущей среды, при этом патрубки разнесены по высоте один относительно другого, отличающаяся тем, что камера выполнена в виде двух коаксиальных труб переменного диаметра, внутренняя труба образует полость, открытую со стороны выходного патрубка, диаметр которой в любом сечении превышает диаметр излучателя.



 

Похожие патенты:

Изобретение относится к способам очистки сточных вод от красителей. Способ очистки сточных вод от кислотных и основных красителей заключается в обработке вод сорбентом с каркасной структурой.

Изобретение относится к гидротехнике, а именно к устройствам для очистки воды от наносов, и предназначено для предотвращения попадания донных и взвешенных наносов с фракцией более 0,2 мм в трубопроводы и аванкамеры насосных станций.

Изобретение относится к устройству для привода клапана, который находится в выпускном отверстии емкости для жидкости устройства для обработки жидкости. Изобретение относится также к емкости для жидкости, а также к устройству для обработки жидкости и его применению.

Изобретение может быть использовано для очистки сточных вод, содержащих вещества органической природы, на предприятиях пищевой и рыбной промышленности с утилизацией выделенного продукта.

Изобретение относится к способу и установке для предварительной обработки неочищенной воды и может найти применение для бытовых, сельскохозяйственных и промышленных нужд.

Изобретение относится к средствам обработки водосодержащих сред и может использоваться для очистки загрязненных и в том числе радиоактивных вод. Установка для импульсной обработки воды содержит источник импульсных сигналов, соединенный выходом с элементом воздействия на элемент с водой.

Группа изобретений относится к области биотехнологии. Предложен способ селективного извлечения фосфора в форме биомассы из твердых материалов, содержащих тяжелые металлы и фосфаты.

Изобретение может быть использовано для подготовки водопроводной воды предприятиями пищевых производств, в частности при производстве безалкогольных напитков. Способ включает очищение воды от механических примесей путем фильтрации, обработку воды импульсным ультразвуковым полем с частотой 22±1,65 кГц, мощностью ультразвукового колебания 120-200 Вт, интенсивностью порядка 10-20 Вт/см2 и экспозицией 3-5 мин.

Группа изобретений может быть использована для переработки осадков, образующихся при очистке городских и промышленных сточных вод, с получением негниющего осадка и электрической энергии.

Изобретение относится к очистным сооружениям, используемым на моечных станциях автотранспорта. Флотационно-фильтрационная установка содержит заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, соединенный с байпасным трубопроводом и установленный на входе насосного агрегата, камеру флотации с фильтром и слоем фильтрующей загрузки, а на входе в эжектор установлена защитная сетка, служащая для предотвращения засорения сопла эжектора, при этом эжектор имеет два штуцера, один из которых служит для ввода раствора реагента и соединяется трубкой с насосом-дозатором, а другой служит для подсоса атмосферного воздуха, при этом в обоих штуцерах встроены обратные клапаны, при этом эжектор связан с двухступенчатым сатуратором, вторая ступень которого содержит манометр и выходную магистраль, соединенную с единым трубопроводом, при этом вторая ступень сатуратора через обратный клапан связана с распределительным коллектором через сопла, расположенные в нижней части камеры флотации, содержащей скребковый механизм, лоток и переливную трубку, связанную с верхней частью фильтра, имеющего слой адсорбирующей фильтрующей загрузки, которая удерживается поддерживающей и прижимной рамками, каждое из сопел распределительного коллектора состоит из корпуса сопла со шнеком, соосно расположенным в нижней части корпуса сопла, и расположенный в верхней части корпуса штуцер с цилиндрическим отверстием для подвода жидкости, соединенным с диффузором, осесимметричным корпусу и штуцеру, шнек запрессован в корпус с образованием цилиндрической камеры, расположенной над шнеком, соосно диффузору, и соединенной с ним последовательно, причем шнек выполнен с центральным дроссельным отверстием, а внешняя поверхность шнека представляет собой, по крайней мере, однозаходную винтовую канавку и расположена внутри корпуса, причем выход винтовой канавки соединен с выходной конической камерой, к торцу которой прикреплен пластинчатый распылитель, который состоит из перпендикулярных оси шнека и параллельных между собой, по крайней мере, двух пластин, одна из которых, первая пластина, имеет центральное отверстие, диаметр которого равен диаметру большего из отверстий выходной конической камеры, а вторая пластина выполнена сплошной и крепится к первой посредством, по крайней мере, трех крепежных элементов, включающих в себя винт, гайку и простановочную калиброванную шайбу, устанавливаемую между пластинами и выполняющую функцию регулирующего звена, управляющего зазором.

Изобретение относится к способу получения поликарбоната на границе раздела фаз и последующего электролиза содержащей хлорид натрия технологической отработанной воды, который включает следующие стадии: a) получение фосгена взаимодействием хлора с монооксидом углерода, b) взаимодействие полученного на стадии а) фосгена, по меньшей мере, с одним бисфенолом в присутствии, по меньшей мере, одного основания, по меньшей мере, одного катализатора с основным характером и, по меньшей мере, одного органического растворителя с образованием поликарбоната и раствора, содержащего хлорид щелочного металла, c) выделение и переработку полученного на стадии b) поликарбоната, d) отделение остающегося на стадии с) раствора, содержащего хлорид щелочного металла, от остатков растворителя и остатков катализатора прежде всего путем отгонки с водяным паром и обработки адсорбентами, прежде всего активированным углем, e) электрохимическое окисление, по меньшей мере, части содержащего хлорид щелочного металла раствора стадии d) с образованием хлора, щелочи и при необходимости водорода, отличающемуся тем, что при отделении раствора, реализуемом на стадии d) перед его обработкой адсорбентами, показатель рН раствора устанавливают на уровне 8 или ниже и f) по меньшей мере, часть полученного на стадии е) хлора возвращают на стадию а) и/или, g) по меньшей мере, часть полученной на стадии е) щелочи возвращают на стадию b) синтеза поликарбоната. Технический результат - упрощение технологии, связанное с возможностью подачи раствора на электролиз без очистки, возможностью использовать выделенные из отходов компоненты в процессе. 13 з.п. ф-лы, 4 пр.

Деаэратор // 2532956
Изобретение относится к термической деаэрации жидкости и может быть использовано для удаления неконденсирующихся газов, главным образом кислорода и свободной углекислоты из питательной воды паротурбоустановки. Деаэратор для питательной воды турбоустановки содержит бак-аккумулятор 1 с патрубком отсоса неконденсирующихся газов, колонку 2 в виде водоструйного эжектора, водоподающее устройство, выполненное в виде центробежных форсунок 3, закрепленных на трубопроводах 4, и пароподводящий коллектор 5. В баке-аккумуляторе 1 на выходе из колонки 2 установлен конусообразный каплеотбойник 7. Каждая из центробежных форсунок 3 содержит полый корпус с соплом и центральным сердечником. Корпус форсунки содержит соосную жестко связанную с ним втулку с закрепленным в ее нижней части соплом. Изобретение позволяет уменьшить гидравлическое сопротивление и повысить степень распыла жидкости. 2 ил.

Изобретение относится к установке для обработки текучей среды для очистки загрязненных жидкостей, например воды. Установка содержит, по меньшей мере, одну вертикальную камеру первичной обработки продолговатой формы (11), содержащую впускное отверстие (14) для текучей среды, подлежащей обработке, расположенное в верхней части камеры (11) так, что текучая среда течет вниз через камеру (11), и устройство (20 или 24) для введения стерилизующего средства, например озона или воздуха, обогащенного озоном, в нижнюю часть камеры (11) и его последующего перемещения вверх в виде пузырьков через жидкость, текущую вниз через камеру (11), устройство (16) для удаления отходов, расположенное в верхней части камеры (11), и ультрафиолетовую лампу (29) для УФ обработки жидкости, при этом ультрафиолетовая лампа (29) расположена в отдельной камере (12), соединенной с камерой первичной обработки (11), или внутри камеры первичной обработки (11). Для многоуровневой обработки жидкости может быть представлено несколько камер (11) и (12). Изобретение позволяет эффективно очищать текучую среду с возможностью ее повторного использования. 3 н. и 22 з.п. ф-лы, 90 ил.

Изобретение относится к очистным сооружениям. Устройство содержит цилиндрический корпус (1) с крышкой (5) и днищем (6), в котором расположен активатор процесса (4). В верхней части корпуса выполнены патрубки для ввода сточной воды и вывода загрязненного экстрагента, а в нижней части корпуса - патрубки для вывода очищенной воды и ввода чистого экстрагента. Активатор процесса выполнен в виде инертной насадки, представляющей собой цилиндрическое кольцо, к боковой поверхности которого оппозитно друг другу прикреплены две полусферические поверхности таким образом, что диаметральные плоскости полусфер совпадают соответственно с верхним и нижним основаниями цилиндрического кольца, а вершины полусферических поверхностей находятся на оси кольца и направлены навстречу друг другу. Изобретение позволяет повысить степень очистки воды. 1 з.п. ф-лы, 2 ил.

Изобретение относится к гидротехнике, в частности к устройствам для разделения несмешивающихся жидкостей, и может использоваться при очистке сточных вод, загрязненных маслами, нефтью и другими веществами. Устройство содержит бесконечную ленту, установленную на ведущем и натяжном барабанах с осями. Оси барабанов расположены на общей раме, которая закреплена на судне. Натяжной барабан находится на поверхности воды и выполнен из магнитного материала. Для горизонтального расположения верхней части бесконечной ленты натяжной барабан выполнен большего диаметра, чем ведущий барабан. Электродвигатель, редуктор, муфта сцепления и сепаратор закреплены на судне. Скребок для сброса собранной нефти в магнитный сепаратор находится у бесконечной ленты около ведущего барабана. Обеспечивается повышение эффективности сбора нефти. 1 ил.

Изобретение относится к обезвреживанию взрыво- и пожароопасных промышленных отходов нитратов целлюлозы и может быть использовано в химической промышленности. Способ включает сбор содержащих нитраты целлюлозы сточных вод, извлечение из них нитратов целлюлозы и последующее их обезвреживание. Обезвреживание отходов нитратов целлюлозы производят непосредственно в шламонакопителе или прудке-отстойнике обработкой предварительно захороненного под многослойным дренажным грунтом осадка нитратов целлюлозы гашеной известью, размещенной в виде реагентного слоя выше уровня осадка. Между осадком и реагентным слоем и выше него располагают дополнительные буферные дренажные слои из песка толщиной не менее 0,4 м. Верхний буферный слой из песка после формирования увлажняют водой, а находящийся над ним грунт представляет собой поочередно размещенные слои земли, песка и плодородной почвы толщиной каждого слоя не менее 0,5 м. Изобретение позволяет упростить способ обезвреживания промышленных отходов нитратов целлюлозы, обеспечить экологическую и технологическую безопасность процесса. 5 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к использованию энергии ветра для опреснения соленой воды. Ветровой опреснитель содержит вертикальный цилиндрический корпус 1, сверху крышку 2 и днище 3. В центре корпуса установлена труба 4, имеющая сверху фланец 5, а внизу - закрепленная в подвижном диске 6 пятой 7, цилиндрическая часть 8 которой размещена в отверстии 9 неподвижного диска 10, прикрепленного к днищу 3. Труба 4 по всей высоте внутри заполнена теплоаккумулирующим веществом с фазовым переходом. Над подвижным диском 6 на трубе 4 закреплено контактное устройство роторного массообменного аппарата, состоящее из стаканов 11 с отверстиями, прикрепленных к трубе 4, цилиндров 14 и турбулизаторов 15. Под крышкой 2 на трубе 4 прикреплен круглый стакан 17, сообщенный через трубопровод 18 и вентиль 19 с системой подачи соленой воды. Снаружи корпуса 1 прикреплена емкость 24 с козырьком 25, связанная с системой сбора опресненной воды. К емкости 24 сверху прикреплены вертикальные трубки 26, сообщенные с атмосферой. Изобретение позволяет упростить конструкцию опреснителя, улучшить подачу воздуха и повысить нагрев опресняемой воды. 2 з.п. ф-лы, 1 ил.

Изобретение относится к средствам очистки и обеззараживания различных типов вод. Описано дезинфицирующее средство, содержащее первый компонент полигексаметиленгуанидингидрохлорид, второй компонент алкилдиметилбензиламмонийхлорид и воду, при этом содержание компонентов в растворе выбрано в следующих количествах, мас. %: первый компонент 7 - 34,5, второй компонент 1,75 - 6,9, вода - остальное. Технический результат - дезинфекция и обеззараживание питьевой воды. 3 табл.

Изобретение предназначено для получения доброкачественной питьевой воды. Фильтрующий патрон состоит из последовательно соединенных: узла подачи очищаемой воды, включающего оболочку с радиальными прорезями и снабженного средством крепления; узла фильтрации, выполненного в виде полого цилиндра, на основаниях которого установлены сетки, и снабженного смесью гранулированных адсорбирующих компонентов и слоем нетканого фильтрующего полотна; узла вывода очищенной воды, выполненного в виде воронки с тупым углом и отверстием посредине. Узел фильтрации содержит верхний полимерный контейнер, прилегающий с внутренней стороны к сетке в верхней части узла фильтрации, содержащий гранулированный неорганический фторсодержащий материал, за которым по ходу течения жидкости установлен нижний полимерный контейнер, содержащий неорганический кальцийсодержащий композит. Оба контейнера герметично закреплены на внутренней стенке полого цилиндра и выполнены с отверстиями по ходу течения жидкости. Смесь гранулированных адсорбирующих компонентов содержит гранулированную каталитическую загрузку на основе природного цеолита, покрытого диоксидом марганца, и магнийсодержащий ионообменный материал. Технический результат: эффективная очистка воды и обогащение её необходимыми ионами кальция, магния и фтора. 5 з.п. ф-лы, 1 ил., 3 пр.
Изобретение относится к области биотехнологии. Предложен материал-носитель биомассы для фильтрации нефтезагрязненных сточных вод. Носитель содержит фильтрующий материал с иммобилизованными клетками нефтеокисляющего микроорганизма Rhodotorula sp. ВКМ Y-2993D с титром клеток - 106 КОЕ/см3. В качестве фильтрующего материала использовано предварительно модифицированное катионовым крахмалом - оксиамилом ОПВ-1 базальтовое волокно БСТВст. Предложенный материал-носитель обладает высокой удерживающей способностью взвешенных частиц и нефтепродуктов и предназначен для заполнения фильтров для очистки нефтезагрязненных сточных вод. 1 табл., 1 пр.
Наверх