Способ изготовления режущего инструмента с композитным износостойким покрытием



Способ изготовления режущего инструмента с композитным износостойким покрытием
Способ изготовления режущего инструмента с композитным износостойким покрытием

 


Владельцы патента RU 2532582:

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) (RU)

Изобретение относится к металлообработке и может быть использовано для изготовления режущих инструментов, преимущественно типа лезвий, предназначенных для ручного использования. Режущий инструмент содержит инструментальную основу из титана либо его сплава с износостойким покрытием, представляющим собой композитный слой из карбида титана в титановой матрице. Упомянутый слой нанесен с помощью дугового разряда при катодной поляризации инструментальной основы с использованием графитового анода в разбавленном водном растворе NaCl. В результате обеспечивается повышение коррозионной стойкости режущего инструмента и снижение веса. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к технологии металлообработки и может быть использовано для изготовления режущих инструментов, преимущественно типа лезвий (ножи, скальпели), предназначенных для работы в коррозионноактивной среде.

Несмотря на многообразие способов изготовления режущих инструментов с износостойким покрытием, нанесенным на инструментальную основу, далеко не все они обеспечивают соответствующее назначению качество покрытия (долговечность, коррозионную стойкость, адгезию покрытия к подложке, шероховатость, размер зерновой структуры и т.п.), при этом часто являются многоступенчатыми, энергоемкими, требуют сложного аппаратурного оформления.

Известен описанный в а.с. СССР №1527949, опубл. 2005.08.20, способ получения режущего инструмента с износостойким покрытием, включающий нанесение на инструментальную основу с помощью газофазного метода слоя карбида титана с последующим формированием методом конденсации в вакууме с ионной бомбардировкой чередующихся слоев тугоплавких металлов (хрома или молибдена) и нитрида хрома или нитрида титана с отношением толщин слоев металлов и нитридов металлов 1:1-1:5. Известный способ получения режущего инструмента является сложным, в том числе в аппаратурном оформлении, многоступенчатым и энергоемким, поскольку газофазный метод осуществляется при температуре свыше 1000°C, ионная бомбардировка производится ионами титана, ускоренными до энергии 1-3 кэВ, конденсация покрытия также осуществляется с помощью потока частиц с очень высокими энергиями и скоростями.

Известен способ нанесения многослойного покрытия на рабочие поверхности режущего инструмента вакуумно-дуговым методом (пат. РФ №2430989, опубл. 2011.10.10), при этом нижний слой карбонитрида титана и ниобия наносят при давлении ацетилена в камере установки 7,5·10-4 Па и температуре 600°C, промежуточный слой такого же карбонитрида, легированного алюминием, наносят при давлении ацетилена в камере установки 7,5-10-4 Па и температуре 550°C, а верхний слой, содержащий карбонитрид титана и алюминия, наносят при давлении ацетилена в камере установки 4,3·10-3 Па и температуре 500°C. Известный способ является многоступенчатым, сложным и энергоемким, причем его осуществление требует специальных камер с контролируемой атмосферой (состав, давление).

Известен описанный в патенте РФ №2227815, опубл. 2004.04.27, способ получения режущего инструмента с многослойным покрытием на инструментальной основе из быстрорежущей высоколегированной стали с использованием метода конденсации из плазменной фазы в вакууме с ионной бомбардировкой и дугового разряда. Способ нанесения покрытия, состоящего из внешнего основного покрытия из нитрида (титана, молибдена), внутреннего адгезионного подслоя из нитрида (титана, молибдена, железа, никеля, хрома) толщиной 2-3 мкм и промежуточного подслоя из титана, молибдена, железа, никеля и хрома толщиной 1,5 мкм, является сложным, многоступенчатым, связан со значительными энергозатратами и осуществляется в специальных камерах с контролируемой атмосферой.

Наиболее близким к заявляемому является способ производства с использованием дугового разряда (пат. РФ №2454311, опубл. 2012. 0627) режущего инструмента в виде титанового диска с нанесенным на его цилиндрическую поверхность износостойким покрытием, содержащим карбид титана. Способ включает помещение в емкость с дистиллированной водой титанового диска и графитового электрода, подведение электрического тока и формирование покрытия при силе тока от 150 до 500-600 А в течение 3 оборотов обрабатываемого диска, вращающегося со скоростью 12,5-25,0 об/мин с сохранением зазора между ним и графитовым электродом, достаточного для создания электрической дуги и формирования покрытия, содержащего поверхностный слой карбида титана с включениями графита толщиной 25-50 мкм и переходный слой смешанного состава толщиной 50-200 мкм. Локальный перегрев и эрозия обрабатываемого металла в результате обработки при высоких значениях силы тока, недостаточная стабильность дугового разряда при значениях силы тока выше 250 А в сочетании хаотическими пробоями межэлектродного промежутка, порождаемыми высокой скоростью движения обрабатываемого титанового диска, приводят к формированию бугристого покрытия со значительными перепадами толщины. Поверхностный слой покрытия, содержащий карбид титана с включениями свободного углерода, имеет вид неравномерно распределенных по поверхности отдельных «островков». Режущий инструмент с нанесенным абразивным покрытием предназначен для резки и обработки канавок деталей высокопрочных, в том числе металлических, материалов. Незначительная общая толщина покрытия (с промежуточным подслоем до 200 мкм) и грубая неровная поверхность с абразивными свойствами затрудняют дальнейшую механическую обработку и изготовление режущего инструмента с тонкой режущей кромкой.

Задачей изобретения является создание способа изготовления износо- и коррозионностойкого режущего инструмента, преимущественно ручного, с тонкой режущей кромкой.

Технический результат изобретения заключается в улучшении качества режущего инструмента за счет повышения равномерности распределения карбида титана в титановой матрице формируемого покрытия, увеличения толщины покрытия и уменьшение неровностей и дефектов его поверхности, а также в обеспечении возможности механической обработки покрытия.

Указанный технический результат достигается способом изготовления режущего инструмента с композитным износостойким покрытием, включающий нанесение на инструментальную основу режущего инструмента из титана либо его сплава композитного слоя из карбида титана в титановой матрице, в котором, в отличие от известного, нанесение композитного слоя осуществляют с помощью дугового разряда при силе тока 50-100 А в 0,1-0,2% водном растворе NaCl при катодной поляризации инструментальной основы с использованием графитового анода, который равномерно перемещают над ней со скоростью не более 1 мм/сек.

Способ осуществляют следующим образом.

Инструментальную основу, представляющую собой заготовку преимущественно в виде клинка, вырезанную из титанового листа и предварительно заточенную для создания режущей кромки, подвергают плазменно-химической обработке с помощью дугового разряда в разбавленном водном растворе NaCl с помощью установки, представленной на фиг. 1

Установка содержит емкость 1 из непроводящего материала, заполненную электролитом 2. Обработка инструментальной основы режущего инструмента 3 осуществляется посредством дугового разряда 4, возбуждаемого между графитовым анодом 5 и поверхностью обеих сторон катодно-поляризованного клинка 3. Преимущественно осуществляют обработку только рабочей поверхности (режущей кромки) 6 инструмента 3.

Обработку осуществляют при силе тока дугового разряда, не превышающей 100 А, преимущественно от 50 до 100 А, и обеспечивающей его стабильное протекание. Состав используемого электролита: разбавленный водный раствор NaCl (концентрация 0,1-0,2%). Диаметр графитового анода составляет от 4 до 8 мм при зазоре между электродами, не превышающем 1 мм.

Для улучшения однородности формируемого защитного слоя по толщине и по составу осуществляют равномерное перемещение графитового анода над обрабатываемой поверхностью, при этом скорость относительного перемещения составляет не более 1,0 мм/с.

В результате обработки на рабочей поверхности инструментальной основы из титана либо его сплава формируется композитный слой толщиной 1-2 мм с гетерогенной микроструктурой твердого сплава, содержащий включения карбида титана размером от сотен нанометров до десятков микрометров в титановой матрице, который обнаруживает гладкую поверхность без неровностей и дефектов. Примеси, содержащиеся в сплавах титана, не оказывают заметного влияния на структуру и свойства композитного слоя.

Микроструктура сформированного слоя, а также элементный состав и распределение элементов по его глубине и по площади были исследованы при помощи сканирующего электронного микроскопа EVO-50XVP с рентгеновским спектрометром INCA Energy («Карл Цейс») и сканирующего электронного микроскопа высокого разрешения Hitachi S5500 с приставкой для энергодисперсионного анализа Thermo Scientific.

На фиг. 2 представлены снимки (при различном увеличении) поверхности сформированного композитного слоя, содержащего карбид титана TiC в титановой матрице, включения которого четко видны после травления титана. Различимы зерна TiC размером от 100 нм до нескольких мкм.

Сформированный композитный слой, содержащий TiC в титановой матрице, обладает высокой адгезией к основе, является прочным, износо- и коррозионностойким, обеспечивает долговечность режущего инструмента, придает ему твердость и высокую режущую способность, при этом он не исключает возможность дальнейшей механической обработки рабочей поверхности, в частности, возможность окончательной заточки с помощью инструментов соответствующей твердости под необходимым углом режущей кромки при изготовлении специализированных режущих инструментов, например, скальпелей.

Предлагаемый способ изготовления износо- и коррозионностойкого режущего инструмента, обладающего высокой твердостью и режущей способностью, может найти применение, в частности, при изготовлении ручных инструментов для хирургии, для специалистов, чья деятельность связана с погружениями в морскую воду (дайвинг, подводная охота, подводные работы). Одним из важнейших требований, предъявляемых к специализированным инструментам для работы в коррозионноактивной среде (скальпели, «дайверский нож»), является высокая коррозионная стойкость, и в этом отношении лучшим материалом для изготовления клинка является титан. Однако, из-за вязкости, склонности к схватыванию и задирам режущая способность такого лезвия невысокая. Предлагаемый способ обеспечивает возможность изготовления режущего инструмента, сочетающего достоинства титана (высокую коррозионную стойкость и невысокий удельный вес) с высокой режущей способностью и износостойкостью.

Примеры конкретного осуществления способа

Пример 1

Клинок из сплава титана ВТ 1-0 (технический титан) подвергали плазменно-химической обработке в дуговом разряде при силе тока 50 А в 0,1% водном растворе NaCl в течение 60 секунд с использованием графитового анода при катодной поляризации обрабатываемого клинка при перемещении анода над его поверхностью на расстоянии 0.8 мм со скоростью 0,6 мм/сек.

Толщина сформированного покрытия 1,56 мм. Покрытие обнаруживает структуру гетерогенного сплава - карбид титана, равномерно распределенный в титановой матрице

Пример 2

Лезвие заготовки режущего инструмента из сплава титана ОТ4-1 (основа Ti, примеси, вес.%: Al 1,5-2,5, Zr 0,3, Mn 0,7-2,0, Fe 0,3, Si 0,12, остальные - 0,6) обрабатывали в условиях примера 1 при силе тока 100 А в 0,2% водном растворе NaCl в течение 50 секунд при скорости перемещения анода 0,9 мм/с.

Результаты аналогичны, полученным в примере 1. Толщина сформированного покрытия 1,86 мм.

Способ изготовления режущего инструмента с композитным износостойким покрытием, включающий нанесение на инструментальную основу режущего инструмента из титана или его сплава композитного слоя из карбида титана в титановой матрице, отличающийся тем, что нанесение композитного слоя осуществляют с помощью дугового разряда при силе тока 50-100 А в 0,1-0,2% водном растворе NaCl при катодной поляризации инструментальной основы с использованием графитового анода, который равномерно перемещают над ней со скоростью не более 1,0 мм/с.



 

Похожие патенты:

Изобретение относится к области деталей с покрытием и их получению. Многослойное покрытие содержит по меньшей мере один слой типа А, причем слой типа А, по существу, состоит из (AlyCr1-y)X, где Х - один элемент группы, состоящей из N, CN, BN, NO, CNO, CBN, BNO и CNBO, y описывает стехиометрический состав фракции металлической фазы, по меньшей мере один слой типа В, причем слой типа В, по существу, состоит из (AluCr1-u-v-wSivMew)X, где Х означает один элемент группы, состоящей из N, CN, BN, NO, CNO, CBN, BNO или CNBO, причем Me обозначает один элемент группы, состоящей из W, Nb, Mo и Та, или смесь двух или более составляющих этой группы, u, v и w описывают стехиометрический состав фракции металлической фазы, причем отношение толщины указанного слоя типа А к толщине указанного слоя типа В больше 1.

Изобретение относится к технологии нанесения покрытий, а именно износостойких защитных покрытий на инструменты, такие как фрезы, режущие пластинки, литьевые формы и аналогичные инструменты.

Изобретение относится к области машиностроения, в частности к металлообработке. Режущая пластина содержит основу из твердого сплава и нанесенный на нее износостойкий слой из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм, при их следующем соотношении, мас.%: наноструктурный карбид вольфрама 90, наноструктурный карбид ниобия остальное.
Изобретение относится к области металлообработки, в частности к созданию покрытий для режущих инструментов. В двухслойном износостойком покрытии на рабочей части режущего инструмента верхний слой выполнен из твердого аморфного алмазоподобного углерода толщиной 0,3-0,5 мкм и твердостью 70-100 ГПа, а нижний слой, расположенный на поверхности рабочей части инструмента, выполнен из карбида титана с содержанием углерода 30-45 ат.% толщиной 1-1,5 мкм и твердостью 25-40 ГПа.

Изобретение относится к способу обеспечения защитного, пассивирующего или герметизирующего слоя на органическом электронном устройстве или его компоненте путем осаждения слабо ускоренных частиц методом распыления пучка ионов или плазмы либо методом прямого осаждения пучка ионов или плазмы.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д.

Изобретение относится к скользящему элементу двигателя внутреннего сгорания, в частности поршневому кольцу. Указанный скользящий элемент выполнен с покрытием, которое представляет собой алмазоподобное покрытие типа ta-C с изменяющимися по его толщине внутренними напряжениями и тем самым с, по меньшей мере, одним градиентом внутреннего напряжения.

Изобретение относится к керамическому термобарьерному покрытию, которое имеет наноструктурный и микроструктурный слой. Керамическое термобарьерное покрытие на подложке из жаропрочного сплава на основе никеля или кобальта, или железа содержит необязательно металлическое связующее покрытие (7) и два наслоенных керамических слоя (16) с внутренним керамическим (10) и внешним керамическим (13) слоем.

Изобретение относится к элементу скольжения двигателя внутреннего сгорания, в частности поршневому кольцу. Элемент скольжения содержит DLC-покрытие типа ta-C, имеющее, по меньшей мере, один градиент внутреннего напряжения, причем в средней области (II) покрытие в направлении снаружи вовнутрь имеет отрицательный градиент внутреннего напряжения, который, предпочтительно, меньше, чем в области (III), расположенной внутри.

Изобретение относится к покрывающему элементу для защиты от эрозии при контакте с расплавленным алюминием субстрата из материала на основе железа, титанового материала или сверхтвердого материала.

Изобретение относится к режущему инструменту с покрытием на режущей кромочной части. Покрытие на режущем инструменте выполнено в виде режущего кромочного элемента, при этом оно нанесено на заднюю поверхность (6b) основного элемента (6) кромочной части (5), представляющей собой область вблизи режущей кромки лезвия (2), причем упомянутое покрытие имеет более высокую твердость, чем основной элемент (6).

Изобретение относится к режущему инструменту, в частности к ножам для резания пищевых продуктов. .

Изобретение относится к созданию самозатачивающихся ножей и других режущих инструментов, имеющих лезвия, снабженные твердым покрытием. .

Изобретение относится к бытовым режущим инструментам и может быть использовано, в частности, в ножах, используемых при резке пищевых продуктов. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, алюминия, кремния, молибдена и железа при их содержании в мас.%: титан 66,35, алюминий 10,26, кремний 0,97, молибден 21,18, железо 1,24. Нанесение покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана и кремния, второй - из сплава титана и алюминия и располагают противоположно первому, а третий изготавливают составным из молибдена и железа и располагают между ними. Повышается работоспособность режущего инструмента. 1 табл.

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании в мас.%: титан 84,5-90,0, ниобий 6,0-10,0, молибден 4,0-5,5. Затем наносят верхний слой из нитрида хрома. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют составным из титана и ниобия, второй - из хрома и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними. Нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода. Повышается работоспособность режущего инструмента. 1 табл.
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, кремния, алюминия, молибдена и железа при их содержании, в мас.%: титан 63,94, кремний 0,93, алюминий 9,72, молибден 24,18, железо 1,23. Нанесение покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана, кремния и алюминия, второй - составной из молибдена и железа и располагают противоположно первому, а третий изготавливают из титана и располагают между ними. Повышается работоспособность режущего инструмента. 1 табл.

Изобретение относится к области нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения титана, ниобия и молибдена при их содержании, в мас.%: титан 84,5-90,0, ниобий 6,0-10,0, молибден 4,0-5,5. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют составным из титана и ниобия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними. Нижний слой покрытия наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов. Повышается работоспособность режущего инструмента. 1 табл.
Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950°С, высокий отпуск при температуре 670°С, закалку от температуры 1010°С, высокий отпуск при температуре не менее 570°С и пластическую деформацию методом осадки при температуре не менее 700°С со степенью деформации 50…80%. Циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°С и трехкратный отпуск при 510°С. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500°С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см2, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм3/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа. Обеспечивается повышение износостойкости приповерхностных слоев теплостойкой стали, формирующихся в результате цементации и азотирования, и увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя. 1 пр.
Наверх