Способ определения аэрационного потенциала пенообразователей, используемых в технологии пенобетонов

Изобретение относится к способам определения аэрационной способности пенообразователей, используемых в технологии пенобетонов, и может быть использовано для оценки эффективности использования пенообразующих добавок, корректировки рецептуры пенобетонных смесей.

Способ определения аэрационного потенциала пенообразователей, используемых в технологии пенобетонов, включает приготовление рабочего раствора пенообразователя, измерение температуры рабочего раствора пенообразователя и приготовление пены. Также способ включает отбор проб пены, выкладывание проб пены в предварительно взвешенные емкости известного объема и определение физико-механических характеристик пены. Причем перед приготовлением рабочего раствора пенообразователя все исходные компоненты выдерживаются в испытательном помещении при стандартных условиях до выравнивания температуры, а приготовление пены осуществляют в турбулентном бетоносмесителе в течение до 5 минут начиная с малой концентрации раствора. При этом объем раствора подбирают в зависимости от конструкционных особенностей смесителя и кратности пенообразователя, а отбор проб производят из верхнего загрузочного и нижнего выгрузочного отверстий бетоносмесителя в период до 30 секунд после приготовления пены. В качестве физико-механической характеристики определяется плотность пены для каждой из проб путем взвешивания фиксированного объема пены в предварительно взвешенных емкостях и деления массы пены на ее объем. Затем определяется среднее значение плотности пены, полученной из рабочего раствора пенообразователя с заданной концентрацией пенообразователя в воде, определяется температура пены, на основании предварительно установленного значения средней плотности пены, а также известных плотностей и дозировок исходных компонентов определяется показатель аэрационного потенциала, который вычисляется по формуле: A = m р р а m п о ( 1 ρ п 1 ρ р р а ) ,

где А - показатель аэрационного потенциала, л/кг; ρп - плотность пены, кг/л; ρр-ра - плотность рабочего раствора пенообразователя в воде, кг/л; mр-ра - масса рабочего раствора пенообразователя в воде, г; mпо - масса пенообразователя, г. Техническим результатом является расширение числа критериев оценки качества пенообразователей. 5 ил.

 

Изобретение относится к способам определения аэрационной способности пенообразователей, используемых в технологии пенобетонов, и может быть использовано для оценки эффективности использования пенообразующих добавок, корректировки рецептуры пенобетонных смесей.

Существующими критериями оценки качества пенообразователей, применяемых в различных отраслях, являются:

- кратность;

- устойчивость, стойкость;

- динамическая и кинематическая вязкость;

- водородный показатель pH;

- критическая концентрация мицеллообразования;

- поверхностное натяжение.

До настоящего времени нет единого удобного для практического применения и универсального критерия оценки свойств пенообразователей, который бы объективно оценивал их способность к созданию и сохранению поровой структуры в пенобетонных смесях. Такой критерий чрезвычайно важен для технологии пенобетонов потому, что любое изменение поровой структуры в период до наступления фазового перехода «из вязкого в твердое» не позволяет получать бетоны с заданными показателями прочности и плотности.

Известен аналог «Способ и устройство для определения структурных параметров газожидкостных пен» (патент RU 2325629, G01N 13/00, опубликован 27.05.2008 г.), в котором в качестве параметров используется кратность и дисперсионный состав газожидкостных пен.

Наиболее близким техническим решением является способ определения кратности и показателя устойчивости пены высокой кратности (ГОСТ Р 50588-2012 «Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний». Москва, Стандартинформ, 2012, стр.9 п.5.3.2), включающий приготовление рабочего раствора пенообразователя, измерение температуры рабочего раствора пенообразователя, приготовление пены, отбор проб пены, выкладывание проб пены в предварительно взвешенные емкости известного объема, определение физико-механических характеристик пены, причем в качестве физико-механической характеристики определяется кратность и устойчивость пены.

Однако ни один из показателей, приведенных в перечне, не является удобным для использования в технологии пенобетонов, так как они не содержат информации об оптимальной концентрации водных растворов пенообразователей, используемых для приготовления пенобетонных смесей, а также трудоемкость их определения существенно расширяет перечень оборудования, необходимого для комплектации лабораторий.

Задача изобретения заключается в разработке дополнительных критериев, по которым производится оценка качества пенообразователей, применяемых в технологии пенобетонов, пополнении способов контроля качества пенообразователей эффективным, но простым в определении критерием.

Сущность изобретения заключается в том, что в способе определения аэрационного потенциала пенообразователей, используемых в технологии пенобетонов, включающем приготовление рабочего раствора пенообразователя, измерение температуры рабочего раствора пенообразователя, приготовление пены, отбор проб пены, выкладывание проб пены в предварительно взвешенные емкости известного объема, определение физико-механических характеристик пены, перед приготовлением рабочего раствора пенообразователя все исходные компоненты выдерживаются в испытательном помещении при стандартных условиях до выравнивания температуры, а приготовление пены осуществляют в турбулентном бетоносмесителе в течение до 5 минут начиная с малой концентрации раствора, при этом объем раствора подбирают в зависимости от конструкционных особенностей смесителя и кратности пенообразователя, а отбор проб производят из верхнего загрузочного и нижнего выгрузочного отверстий бетоносмесителя в период до 30 секунд после приготовления пены, в качестве физико-механической характеристики определяется плотность пены для каждой из проб путем взвешивания фиксированного объема пены в предварительно взвешенных емкостях и деления массы пены на ее объем

ρ П = m 1 m  V ,

где m - масса мерного цилиндра, кг;

m1 - масса мерного цилиндра с пеной, кг;

V - объем мерного цилиндра, л,

определяется среднее значение плотности пены, полученной из рабочего раствора пенообразователя с заданной концентрацией пенообразователя в воде, определяется температура пены, на основании предварительно установленного значения средней плотности пены, а также известных плотностей и дозировок исходных компонентов определяется показатель аэрационного потенциала, который вычисляется по формуле

A = m р р а m п о ( 1 ρ п 1 ρ р р а ) ,

где A - показатель аэрационного потенциала, л/кг;

ρп - плотность пены, кг/л;

ρр-ра - плотность рабочего раствора пенообразователя в воде, кг/л;

mр-ра - масса рабочего раствора пенообразователя в воде, г;

mпо - масса пенообразователя, г.

Техническим результатом изобретения является расширение числа критериев оценки качества пенообразователей, что дает возможность:

1) установления количества газовой фазы, вовлекаемой единицей объема пенообразователя;

2) определения концентрации рабочего раствора пенообразователя в воде, гарантированно обеспечивающей получение пен с наибольшей устойчивостью;

3) получения водных растворов пенообразователей с наибольшей устойчивостью пены;

4) повышения точности измерений в турбулентном бетоносмесителе при отборе двух проб из разных мест и вычислении среднего значения;

5) определения однородности приготовленных пен;

6) уменьшить материалоемкость при определении устойчивости пен.

Способ поясняется графиками, где

- на фиг.1 изображены результаты определения устойчивости и показателя аэрационного потенциала трех видов пенообразователей для пенобетонов с торговыми названиями Сармат (а), Пионер-152 (б), Макспен (в), которые подтверждают достижение максимальной устойчивости при минимальном значении аэрационного потенциала оптимальных составов рабочих растворов.

- на фиг.2 изображены результаты эксперимента по определению плотности пены в зависимости от продолжительности перемешивания. Из результатов эксперимента видно, что увеличение времени перемешивания способствует более полному использованию потенциала пенообразователя, что подтверждается снижением плотности пены. По истечении 5 минут плотность пены перестает изменяться и остается на своем минимальном значении. Исходя из полученных результатов можно сделать вывод о том, что для приготовления пен в турбулентном бетоносмесителе необходимо и достаточно 5 минут перемешивания.

- на фиг.3 изображен объем вытекающей жидкости за определенный промежуток времени из пен, приготовленных с использованием различных пенообразователей (υ - объем вытекшей жидкости из пены, τ - время).

Способ осуществляется следующим образом:

Проводятся повторяющиеся определения показателя аэрационного потенциала пенообразователя при изменяемом значении концентрации пенообразователя в рабочем растворе до момента устойчивого роста этого показателя (когда три последовательных значения будут больше своих предыдущих значений), а за показатель аэрационного потенциала пенообразователя принимается наименьшее значение, полученное в результате не менее 4-кратного проведения испытаний. При концентрации, характеризующей минимальный аэрационный потенциал пенообразователя, достигается оптимальная структура пены, что подтверждается результатами определения устойчивости (см. фиг.1).

Способ состоит из двух этапов: определение плотности пены и вычисление показателя аэрационного потенциала пенообразователя.

Первый этап включает:

- выдерживание всех исходных компонентов в испытательном помещении при стандартных условиях (t=20±2°C) до выравнивания их температур с температурой окружающей среды;

- определение объема рабочего раствора пенообразователя в воде по кратности пенообразователя и конструктивным особенностям смесителя (высота уровня пены в смесителе должна быть не менее диаметра смесителя);

- приготовление рабочего раствора пенообразователя в воде очень малой концентрации, соответствующей пределу адсорбции;

- измерение температуры рабочего раствора пенообразователя, которая должна быть 20±2°C;

- запуск турбулентного бетоносмесителя и выгрузку рабочего раствора пенообразователя в работающий турбулентный бетоносмеситель;

- перемешивание рабочего раствора пенообразователя в турбулентном бетоносмесителе до прекращения роста уровня пены в смесителе в зависимости от вязкости пены и свойств пенообразователя в течение до 5 минут (см. фиг.2);

- по завершении приготовления пены остановку турбулентного бетоносмесителя и отбор двух проб пены: из выгрузочного отверстия, расположенного в нижней части турбулентного бетоносмесителя, а также из загрузочного отверстия, расположенного в верхней части турбулентного бетоносмесителя;

В зависимости от стабильности пены истечение жидкости может происходить в результате выделения межпленочной жидкости и выделения жидкости стенками лопнувших пузырьков. В стабильных пенах пленки разрываются, как правило, лишь при достижении ими определенной толщины в результате предварительного истечения жидкости. Объем жидкости, заключенный в таких утонченных пленках, весьма невелик, вследствие чего доля объема жидкости, выделяющейся за счет разрушения пленок, очень мала. Поэтому время отбора проб для таких пен может варьироваться в более широком диапазоне.

В нестабильных пенах разрушение пленок имеет место еще до достижения ими критической толщины. В начальный момент происходит истечение излишнего количества жидкости, заключенной между пузырьками. Из всего объема пены раствор, содержащийся в прослойках, стекает вниз, подпитывая нижележащие слои пены. Этот процесс протекает быстротечно, поэтому, чтобы избежать стекания жидкости из верхних слоев в нижние и зафиксировать свойства свежеприготовленной пены, период отбора проб должен быть не более периода отделения из пены первой капли жидкости.

Время отделения из пены первой капли жидкости связано с устойчивостью пен и для большинства устойчивых пен превышает 30 секундный период (см. фиг.3). Поэтому необходимо производить отбор проб в зависимости от устойчивости пен в период до 30-секунд.

- выгрузку проб пены в предварительно взвешенные емкости известного объема, не менее 1 л, при этом заполнение всего объема емкости должно быть равномерным, без образования пустот;

- определение масс проб пены путем вычисления разности масс емкости заполненной пробой пены и пустой емкости;

- определение плотности пены путем деления массы пробы пены на ее объем

ρ П = m 1 m V ,

где m - масса мерного цилиндра, кг;

m1 - масса мерного цилиндра с пеной, кг;

V - объем мерного цилиндра, л;

- вычисление среднего значения плотности пены по результатам определения плотности двух проб пены;

- определение температуры проб пены при помощи термометра;

- отбраковку результата средней плотности пены при отклонении температур пен, приготовленных из рабочих растворов при различной концентрации пенообразователя в воде, от общего среднего значения на ±1°C;

Второй этап состоит из вычисления показателя аэрационного потенциала пенообразователя на основании предварительно установленных значений средней плотности пены и известных плотностей и дозировок исходных компонентов по формуле

A = m р р а m п о ( 1 ρ п 1 ρ р р а ) ,

где А - показатель аэрационного потенциала, л/кг;

ρп - плотность пены, кг/л;

ρр-ра - плотность рабочего раствора пенообразователя в воде, кг/л;

mр-ра - масса рабочего раствора пенообразователя в воде, г;

mпо - масса пенообразователя, г.

По завершении определения показателя аэрационного потенциала пенообразователя для одного рабочего раствора, при установленной концентрации пенообразователя в воде, готовят новые рабочие растворы, пошагово увеличивая концентрацию пенообразователя в воде

Сп+1п+0,05%,

где Сп-1 - концентрация следующего рабочего раствора пенообразователя в воде, %;

Сп - концентрация предыдущего рабочего раствора пенообразователя в воде, %;

п=1, 2, …, ∞.

При всех измерениях и вычислениях необходимо фиксировать значения и округлять с точностью не менее трех значащих цифр.

Пример определения показателя аэрационного потенциала пенообразователя:

- в качестве сырьевых материалов использовался пенообразователь с торговым названием «Макспен», вода водопроводная;

- исходя из технических характеристик турбулентного бетоносмесителя требуемый объем пены в смесителе должен быть 35 л;

- исходя из показателей качества производителя (кратность не менее 8) объем рабочего раствора пенообразователя: 35/8=4,375 л;

- при концентрации рабочего раствора пенообразователя 0,100% расход компонентов: пенообразователь, при плотности 1,03 г/см3, 0,00437 л или 0,00450 кг, вода, при плотности 0,988 г/см3, 4,371 л или 4,362 кг;

- объем емкости 1 л, масса пустой емкости 0,643 кг;

- масса приготовленных проб пены в емкостях 1,109 и 1,095 кг;

- средние плотности проб пен

ρ 1 = ( 1,109 0,643 ) 1 = 0,466 ( к г / л ) ,

ρ 2 = ( 1,095 0,643 ) 1 = 0,452 ( к г / л ) ;

- среднее значение плотности пены

ρ с р = ( 0,466 + 0,452 ) 2 = 0,459 ( к г / л ) ;

- показатель аэрационного потенциала пенообразователя равен

A = 0,00450 + 4,362 0,00450 ( 1 0,459 1 ( 0,00450 1,03 + 4,362 0,998 0,00450 + 4,362 ) ) = 1141 ( л / к г )

- фиксируется значение и рассчитывается состав следующего рабочего раствора при концентрации

С2=0,10+0,05=0,15 (%).

Способ определения аэрационного потенциала пенообразователей, используемых в технологии пенобетонов, включающий приготовление рабочего раствора пенообразователя, измерение температуры рабочего раствора пенообразователя, приготовление пены, отбор проб пены, выкладывание проб пены в предварительно взвешенные емкости известного объема, определение физико-механических характеристик пены, отличающийся тем, что перед приготовлением рабочего раствора пенообразователя все исходные компоненты выдерживаются в испытательном помещении при стандартных условиях до выравнивания температуры, а приготовление пены осуществляют в турбулентном смесителе начиная с малой концентрации раствора, при этом объем раствора подбирают в зависимости от конструкционных особенностей смесителя и кратности пенообразователя, а отбор проб производят из верхнего загрузочного и нижнего выгрузочного отверстий бетоносмесителя в период до 30 секунд после приготовления пены, в качестве физико-механической характеристики определяется плотность пены путем взвешивания фиксированного объема пены в краткосрочный период, для каждой из проб пены определяют среднюю плотность путем деления массы пены на ее объем
ρ П = m 1 m  V ,
где m -масса мерного цилиндра, кг;
m1- масса мерного цилиндра с пеной, кг;
V - объем мерного цилиндра, л,
определяется среднее значение плотности для данного рабочего раствора пенообразователя, определяется температура пены, на основании предварительно установленного значения средней плотности пены и известных плотностей и дозировок исходных компонентов определяется показатель аэрационного потенциала, который вычисляется по формуле
A = m р р а m п о ( 1 ρ п 1 ρ р р а ) ,
где А - показатель аэрационного потенциала, л/кг;
ρп - плотность пены, кг/л;
ρр-ра - плотность рабочего раствора пенообразователя в воде, кг/л;
mр-ра - масса рабочего раствора пенообразователя в воде, г;
mпо- масса пенообразователя, г.



 

Похожие патенты:

Изобретение относится к области оценки свойств дисперсных материалов и может быть использовано для разработки энергетических нанотехнологий в разных отраслях промышленности и областях знаний, а также для разработки и управления самоорганизующихся систем, открывает возможности для изучения новых принципов построения технических устройств.

Изобретение относится к области определения физико-химических свойств поверхностей и может быть использовано для оценки степени гидрофильности хвои, предварительно обработанной водяным паром.

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности.

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков.

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося высокотемпературного синтеза, в материаловедении и физике твердого тела.

Изобретение относится к методам металлографического анализа образцов стали и определения трехмерной топографии поверхности и ее структуры при помощи сканирующей зондовой микроскопии (СЗМ).

Изобретение относится к нанотехнологиям и методам проведения металлографического анализа образцов и определения трехмерной топографии их поверхности и структуры с помощью атомно-силовой микроскопии при разрешающей способности в нанометровом диапазоне.

Изобретение относится к области малых энергий в химии и может быть использовано при разработке нанотехнологий в разных отраслях промышленности: химической, легкой, кожевенной и меховой, пищевой, медицинской, строительной индустрии, а также в разных областях знаний.

Изобретение относится к области оценки поверхностных свойств материалов и может быть использовано для разработки энергетических нанотехнологий в различных отраслях промышленности: химической, кожевенной и меховой, легкой, пищевой, медицинской, строительной индустрии и т.д.

Изобретение относится к области исследования смачиваемости поверхностей применительно к различным отраслям промышленности. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец исследуемого материала помещают в по меньшей мере одну герметичную ячейку калориметра.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии влаги заключается в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием. Также способ включает измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. При этом производят импульсное увлажнение плоской поверхности исследуемого образца по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: D = r 0 2 / ( 4 τ max ) , где τmax - время достижения максимума на кривой изменения ЭДС гальванического преобразователя, r0 - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя. Техническим результатом является повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов. 1 ил., 1 табл.

Изобретение относится к области поверхностных явлений и может быть использовано для оценки свойств жидкостей, различных поверхностей и свойств веществ в разных отраслях промышленности и в том числе в нанотехнологиях и порошковой металлургии. Устройство содержит светонепроницаемый кожух, состоящий из вертикально установленных боковых 6, 7, передней 8 и задней 9 стенок ограждения, а также верхней 10 стенки ограждения. Внутри на боковой стенке 6 ограждения установлен осветитель рассеянного света 12 с установленной на нем индикаторной сеткой 13, а на другой боковой стенке ограждения установлена кинокамера или видеокамера 14 с возможностью вертикального перемещения. На задней стенке 9 ограждения шарнирно закреплена вертикально расположенная ось 18, на которой установлен узел 15 для нанесения на объект-препарат 4 или кювету с бортиком поверхностно-активного вещества, выполненный в виде капельницы 16 с капилляром 17 и оснащенный механизмом 19 двухкоординатного перемещения с возможностью горизонтального смещения для установки капилляра 17 капельницы 16 в центр объекта-препарата 4 или кюветы с бортиком и с возможностью вертикального измерительного смещения края капилляра 17 капельницы 16 для внесения поверхностно-активного вещества на изучаемую поверхность. На задней 9 стенке ограждения установлена автоматическая бюретка 20 для заполнения ограничительной фигуры объекта-препарата 4 или кюветы с бортиком слоем жидкости известной толщины. На верхней 10 стенке ограждения выполнено отверстие 23, края которого соединены со светонепроницаемым рукавом 24, а отверстие 23 расположено над ручкой 25 для вертикального перемещения капилляра 17 капельницы 16. На передней стенке 8 ограждения выполнена крышка 22. Вертикально расположенные две боковые 6, 7, задняя 9 и передняя 8 стенки ограждения светонепроницаемого кожуха в нижней части имеют уплотнения 21, выполненные из мягкого упругого светонепроницаемого материала, например резины или пластических масс. Техническим результатом является повышение точности изображения изучаемой поверхности, упрощение конструкции. 1 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к гироскопическим устройствам. Может быть преимущественно использовано для исследования поверхностных явлений смачивания и растекания при нагреве в вакууме и инертной или активной газовых средах. Самогоризонтируемое устройство включает корпус 1, выполненный из керамики, молибдена или стали, в верхней части которого установлен промежуточный элемент 2, выполненный из такого же материала, что и корпус 1 или отличающийся от него, закрепленный двумя стержнями 3 к стенке корпуса 1, самогоризонтируемый столик 4, выполненный из такого же материала, что и корпус 1 или отличающийся от него, в нижней части которого расположен массивный груз 5, который может быть выполнен съемным и соединяться через соединительный стержень 6; самогоризонтируемый столик 4 закреплен двумя стержнями 7 в промежуточном элементе 2, причем стержни 3 и 7 расположены взаимно - перпендикулярно друг другу. В нижней части корпуса 1 расположены упоры 8 для фиксирования массивного груза 5. Техническим результатом является то, что устройство позволяет проводить исследования при размещении его в печи с контролируемой атмосферой и в печи с воздушным нагревом. 8 з.п. ф-лы, 2 ил.

Изобретение относится к микробиологии и может быть использовано для количественной оценки способности микроорганизмов к биопленкообразованию на различных биотических и абиотических поверхностях. Способ заключается в том, что в подготовленные для посева стерильные чашки Петри с питательным бульоном и двумя агаровыми пластинками вносят микробную взвесь. Чашки Петри с посевами инкубируют при 37°C. После инкубации пластинки с выросшей биопленкой вынимают из культуральной жидкости, отмывают стерильной дистиллированной водой от планктонных клеток и высушивают в термостате. Проводят замеры углов смачивания через 3 и 9 ч. По изменению краевого угла смачивания судят об удельной скорости образования биопленки. При этом рассчитывают удельную скорость биопленкообразования по формуле: μ b = 1 t 2 − t 1 l n ( θ 1 θ 2 ) , где µb - удельная скорость биопленкообразования, ч-1; t1 и t2 - продолжительность инкубации, ч (3 и 9 ч); θ1,2 - краевые углы смачивания (°), измеренные после инкубации в течение 3 и 9 ч. Изобретение позволяет ускорить и упростить процесс количественной оценки биопленкообразования микроорганизмов и повысить чувствительность метода. 3 табл.

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку, величину которого изменяют до получения предельного тока, протекающего через границу раздела фаз, а также вычислении коэффициента диффузии. При этом в поток газа с известным содержанием горючего газа, находящегося в смеси с азотом, помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях одного из дисков расположена пара электродов, и капилляром, соединяющим полость с потоком газа. Затем к электродам подают напряжение постоянного тока в пределах 300÷500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, и по величине возникающего при этом предельного тока рассчитывают коэффициент диффузии горючего газа в азоте. Техническим результатом является возможность измерения коэффициентов диффузии горючих газов в азоте в широком температурном диапазоне посредством хорошо изученного кислородпроводящего твердого электролита, а также повышение точности. 1 ил.

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов заключается в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по заданной формуле. Технический результат: обеспечение возможности повышения точности контроля и определения коэффициента диффузии в различных направлениях ортотропного капиллярно-пористого материала. 2 табл.

Изобретение относится к области исследования смачиваемости поверхностей и может найти применение в различных отраслях промышленности, например в нефтегазовой, химической, лакокрасочной и пищевой. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец исследуемого материала помещают в по меньшей мере одну герметичную ячейку калориметра. Обеспечивают контакт по меньшей мере одного образца с первой смачивающей жидкостью и со второй смачивающей жидкостью при одинаковых давлении и температуре. Измеряют энергии смачивания по меньшей мере одного образца первой и второй смачивающими жидкостями, после чего рассчитывают параметр смачиваемости, характеризующий систему поверхность-жидкость-жидкость. Техническим результатом является повышение качества и эффективности измерения смачиваемости поверхностей двумя флюидами при различных давлениях и температурах, увеличение скорости проведения этих работ с одновременным снижением риска их неправильного проведения. 2 н. и 17 з.п. ф-лы.
Изобретение относится к способам изучения поверхностных явлений. Из меди и серебра изготавливают электроды, приводят их в контакт с раствором электролита, осуществляют предварительный электролиз с чередованием анодного окисления и катодного восстановления поверхности металла, регистрируют зависимость производной поверхностного натяжения по поверхностной плотности заряда от потенциала электрода, сопоставляют указанные зависимости, полученные на меди и серебре, отмечают в качестве их общих признаков участок ступенчатого спада в анодном направлении, убывание протяженности ступеней вдоль оси потенциала. Происхождение ступеней объясняют локализацией электронов поверхностной проводимости в двухмерной квантовой яме, что приводит к ступенчатой зависимости плотности состояний этих электронов от потенциала. Указывают на соответствие между протяженностью ступеней и расстоянием между дискретными уровнями энергии электронов в двойном электрическом слое. На диаграмме в одном и том же диапазоне изменения потенциала сопоставлены график производной поверхностного натяжения по поверхностной плотности заряда и график плотности состояний электронов, имеющий вид ступенчатой функции потенциала, которая убывает при изменении потенциала в сторону более положительных значений и достигает нуля при потенциале минимума производной поверхностного натяжения. Технический результат заключается в повышении наглядности и достоверности демонстрации квантовых осцилляций поверхностного натяжения. 14 з.п. ф-лы, 15 ил.

Изобретения могут быть использованы в коксохимической промышленности. Способ производства кокса включает формирование смеси углей путем смешения двух или более типов угля и карбонизацию указанной смеси углей. При этом предварительно выводится соотношение между межфазным натяжением смеси углей, состоящей из двух или более типов угля, и прочностью кокса, который произведен путем карбонизации указанной смеси углей. Межфазное натяжение указанной смеси углей получают с использованием поверхностного натяжения каждого из типов углей и определения относительных содержаний каждого из указанных типов угля с использованием указанного соотношения между межфазным натяжением и прочностью кокса, которое было предварительно выведено, таким образом, чтобы межфазное натяжение смеси углей находилось в таком интервале, в котором кокс имел бы желаемую прочность. Изобретения позволяют смешивать различное угольное сырье и производить доменный кокс с высокой прочностью. 2 н. и 13 з.п. ф-лы, 7 ил., 13 табл., 6 пр.

Изобретение относится к области молекулярной физики и может быть использовано для измерения коэффициента взаимной диффузии молекул газов. Способ заключается в том, что диффузионную ячейку в виде прозрачной капиллярной трубки частично заполняют жидкостью, один конец которой плотно закрыт, а другой - остается открытым во внешнюю однородную газовую среду (атмосферный воздух или специальный эталонный газ - стандартный образец с установленными значениями состава). В процессе испарения вблизи поверхности жидкости пар является насыщенным и имеет максимально возможные парциальное давление и концентрацию молекул. Испарившиеся из жидкости молекулы преодолевают расстояние от ее поверхности к открытому во внешнюю газовую среду концу капиллярной трубки путем диффузии. Свободная поверхность жидкости, наблюдаемая в микроскоп, снабженный мерной и калибровочной шкалами, вследствие испарения молекул перемещается вдоль капиллярной трубки с течением времени, удаляясь от свободного конца. Квадрат расстояния поверхности жидкости от свободного конца капилляра x2 имеет линейную зависимость от времени наблюдения t. Определяя из графика x2(t) угловой коэффициент k этой зависимости, вычисляют искомый коэффициент взаимной диффузии D по формуле: . Техническим результатом является создание простого и точного способа для определения коэффициента взаимной диффузии молекул газообразных паров исследуемой жидкости и внешнего газа. 2 ил.
Наверх