Гидростатический плотномер

Изобретение относится к области измерительной техники, в частности к гидростатическим устройствам для измерения плотности жидкостей, и может найти применение в различных отраслях промышленности. Гидростатический плотномер для жидкостей, выполненный в виде двух U -образных трубок, первая из которых заполнена жидкостью с известной плотностью и снабжена измерителем уровня со шкалой. Ко второму колену первой трубки присоединено первое колено второй U-образной трубки, а второе колено выполнено в виде колокола, погружаемого в контролируемую жидкость. Техническим результатом является повышение точности (при Н=1 м погрешность не превышает 0,5%), обеспечение оперативности контроля жидкостей, находящихся в емкостях без отбора пробы в условиях действующих производств. 1 ил.

 

Изобретение относится к области измерительной техники, в частности к гидростатическим устройствам для измерения плотности жидкостей, и может найти применение в различных отраслях промышленности.

Известен гидростатический плотномер [Мордасов М.М. Физические основы измерения плотности и поверхностного натяжения пневматическими методами / М.М. Мордасов, С.В. Мищенко, Д.М. Мордасов. - Тамбов: Изд-во Тамб. гос.техн. ун-та, 1999. - С.27-28], содержащий колокол, выполненный в виде трубки, погруженный в контролируемую жидкость на заданную глубину, сосуд с постоянным уровнем и манометр, измеряющий давление как функцию плотности жидкости.

Недостатком такого плотномера является невысокая точность и сложность измерения относительной плотности жидкости.

Наиболее близким, принятым за прототип, является устройство для измерения относительной плотности жидкостей [Кивилис С.С. Плотномеры. / С.С. Кивилис. - М.: Энергия, 1980. - 279 с.], выполненное в виде двух U-образных трубок одинакового диаметра, в одну из которых налита контролируемая жидкость плотностью ρ1, а в другую - жидкость с известной плотностью ρ2. В трубках одновременно создают некоторую разность давлений и измеряют изменения уровней Н и h в коленах U-образных трубок с контролируемой и известной жидкостью, соответственно. Относительную плотность d по измеренным величинам H и h определяют по формуле

Такое гидростатическое устройство не может быть применено для контроля плотности жидкостей, находящихся в аппаратах.

Технической задачей является обеспечение оперативности контроля жидкостей, находящихся в емкостях без отбора пробы в условиях действующих производств.

Данная техническая задача решается тем, что в известном гидростатическом плотномере, выполненном в виде двух U - образных трубок, первая из которых заполнена жидкостью с известной плотностью, со шкалой, ко второму колену первой трубки присоединено первое колено второй U - образной трубки, а второе колено выполнено в виде колокола, погружаемого в контролируемую жидкость.

На фиг.1 схематически изображен гидростатический плотномер до начала измерения (фиг.1, а) и при измерении (фиг.1, б).

Гидростатический плотномер состоит из измерительной трубки 1 (колокола), к верхней части которой подключена с помощью соединительной трубки 2 U - образная трубка 3, заполненная жидкостью 4 с известной плотностью ρ2. Уровень жидкости 4 совпадает с рисками 5, которые нанесены на трубки 1 и 3. На правом колене U - образной трубки 3, являющемся уровнемерным стеклом, закреплена шкала 6.

Процесс измерения начинается с погружения плотномера в контролируемую жидкость с плотностью ρ1 до уровня Н, соответствующего рискам на трубках 1 и 3. На момент погружения состояние газа в общем объеме V0=V1+V2, где V1 - объем газа в трубке 1, V2 - объем газа в соединительной трубке 2 до поверхности жидкости трубки 3, будет описываться уравнением Менделеева-Клапейрона

где Ра - абсолютное давление в окружающем пространстве над поверхностью жидкости, Па; θ - масса газа, кг; R - универсальная газовая постоянная, Дж/кгК; Т - абсолютная температура, К.

После погружения устройства в контролируемую жидкость состояние газа изменится. Уровень жидкости в измерительной трубке 1 примет значение h1, а в трубке 3 - h2. В соответствии с этим давление изменится на величину

где g - ускорение свободного падения, м/с2.

Из уравнения (2) может быть определено соотношение между уровнями в трубках 1 и 3 в виде

где d - относительная плотность контролируемой жидкости.

Новому состоянию газа будет соответствовать уравнение

где S1 и S2 - площади сечения трубок 1 и 3, соответственно, м2.

Приравнивая левые части уравнений (1) и (4), после преобразования получим квадратное уравнение

Решение уравнения (5), при условии, что h2 всегда больше нуля, будет иметь вид

После разложения в степенной ряд Тейлора второго слагаемого и элементарных преобразований получим

Учитывая, что V 1 S 1 = H = c o n s t , при условии S1=S2 и 2 ρ 2 g V 2 S 1 P a 1 уравнение (7) запишем в виде

Если ρ12, то этому состоянию будет соответствовать, как видно из уравнения (8), значение уровня

которое для данной конструкции измерительного устройства является постоянной величиной и может являться нулевой отметкой шкалы. Поэтому относительная плотность жидкости может определяться отклонением Δh2 уровня h2 от значения, принятого за ноль шкалы h20

Предложенный гидростатический метод контроля относительной плотности жидкости отличается простотой, обладает хорошей точностью (при Н=1 м погрешность не превышает 0,5%) и оперативностью контроля жидкостей, находящихся в емкостях без отбора пробы в условиях действующих производств. Невысокая стоимость реализующего предложенный метод устройства также является достоинством.

Гидростатический плотномер, выполненный в виде двух U-образных трубок, первая из которых заполнена жидкостью с известной плотностью и снабжена измерителем уровня со шкалой, отличающийся тем, что ко второму колену первой трубки присоединено первое колено второй U- образной трубки, а второе колено выполнено в виде колокола, погружаемого в контролируемую жидкость.



 

Похожие патенты:

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит миниатюрное турбулентное сужающее устройство, вход которого связан через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки, и выходом измерительной камеры индикатора давления, одна из стенок которой выполнена в виде упругой мембраны, а ее вход соединен через вентиль с линией анализируемого газа.

Устройство предназначено для измерения параметров оседания частиц в текучей среде, в частности в буровых растворах. Устройство представляет собой емкость в виде полого цилиндра, состоящего из двух соосно расположенных цилиндрических частей (1, 2), первая из которых имеет дно, а вторая герметично соединена с первой частью (1) посредством разъемного соединения.

Изобретение относится к области измерения плотности изделий с использованием рентгеновского излучения. Способ радиационного измерения плотности твердых тел путем облучения контролируемого объекта проводят потоком широкополосного рентгеновского излучения, регистрируется практически все обратнорассеянное излучение, и определение плотности осуществляется по полученным данным из спектров обратнорассеянного излучения, которое регистрируют одновременно в каждом из двух детекторов, определяют функцию распределения обратнорассеянного излучения в зависимости от энергии для каждого из детекторов, корректируют в соответствии с изменением геометрии при движении, выделяют энергетические диапазоны в спектре обратнорассеянного излучения, получают интегральные характеристики обратнорассеянного рентгеновского излучения в каждом энергетическом диапазоне, на основе которых по математическим моделям зависимости интегральных характеристик от плотности при различных энергиях излучения устанавливают плотность объекта контроля, которая описывается для каждого из каналов (детекторов).

Изобретение относится к методам исследования пористой структуры разнообразных природных и искусственных пористых объектов и может быть использовано в тех областях науки и техники, где они исследуются или применяются.

Настоящее изобретение относится к денситометрам (плотномерам), а более конкретно к вибрационному денситометру с улучшенным вибрирующим элементом. Устройство содержит вибрирующий элемент (402).

Изобретение относится к области изготовления изделий из проволочных, волокновых материалов. Предложены способы определения распределения плотности проволочного материала по объему изделия и установка.

Изобретение относится к автоматизации технологического процесса флотации и может быть использовано для автоматического контроля технологических параметров процесса флотации - плотности, аэрированности пульпы и массовой концентрации твердого в пульпе.

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов, содержащихся в буровом растворе.

Изобретение относится к точному приборостроению и может применяться для определения плотности и вязкости газообразных и жидких сред и может быть использовано в нефтехимической, химической и других отраслях промышленности.

Группа изобретений относится к измерительной технике и может быть использовано для измерения плотности (в том числе локальной плотности) жидких сред и газовых сред.

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности выполнено в виде измерительной емкости с крышкой, к которой подключен измеритель давления. Дно выполнено в виде мембраны, отделяющей измерительную емкость от пневматической камеры с размещенным в ней соплом, соединенным с атмосферой, и подключенной через дроссель к линии питания. К измерительной емкости подключена камера переменного объема с размещенными внутри нее поршнем и пружиной, соединенной с пневматической камерой и с первым соплом пневматического клапана, во второе сопло которого подключена измерительная емкость, сопловая камера с размещенным первым соплом соединена с атмосферой непосредственно. К сопловой камере с размещенным вторым соплом подключен дроссель, выход которого соединен с атмосферой, камера управления пневматического реле присоединена к пневматическому тумблеру. Техническим результатом является автоматизация контроля плотности простыми и дешевыми средствами в едином измерительном процессе, а также упрощение процесса многократных измерений, позволяющий в значительной степени снизить влияние случайных факторов на точность получаемых результатов. 1 ил.

Настоящее изобретение относится к системам и способам для неинвазивного измерения механических свойств негазообразных, свободнотекучих материалов в емкости и, в частности, для определения плотности и параметров, связанных с сопротивлением сдвигу негазообразного, свободнотекучего вещества. Способ для неинвазивного одновременного определения плотности и переменной, связанной с сопротивлением сдвигу негазообразного, свободнотекучего вещества, заключается в том, что оно расположено в емкости на известном или постоянном уровне. В соответствии с примером способ и устройство используют регулируемую математическую модель для определения плотности и переменной, связанной с сопротивлением сдвигу на основе измерений системы, содержащей заполняющий материал, стенку емкости и динамический измерительный инструмент, взаимодействующий со стенкой. Техническим результатом является обеспечение возможности расширения диапазона измерений, повышение точности измерений и обеспечение большей применяемости ультразвуковых способов для измерения физических свойств негазообразных материалов. 2 н. и 26 з.п. ф-лы, 15 ил., 5 табл.

Изобретение относится к области измерительной техники, в частности к пневматическим способам измерения плотности твердой фазы гетерогенных систем, например сыпучие, волокнистые, тканые и нетканые материалы, пористая фильтрующая керамика, газонаполненные пластмассы (поропласты) и др., а также твердых тел неправильной формы, и может найти применение в различных отраслях промышленности. Способ измерения плотности путем определения массы контролируемого вещества и помещения его в измерительную емкость, уменьшения ее объема и измерения изменения давления заключается в измерении изменения давлений в измерительной емкости до и после помещения в нее контролируемого вещества при изменении объема измерительной емкости на заданную величину пропорционально массе вещества. Дополнительно изменяют на фиксированную величину объем герметично закрытой измерительной емкости без контролируемого материала, измеряют изменение давления. Затем определяют отношение полученного изменения давления к изменению давлений до и после помещения контролируемого материала в измерительную емкость и по разности этих отношений судят о плотности веществ. Техническим результатом изобретения является повышение точности измерения плотности, а также обеспечение оперативности контроля за счет использования единого измерительного процесса. 1 ил.

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов, например водорода, дейтерия, гелия и т.д., в мегабарной области давлений. Устройство содержит заряд взрывчатого вещества, охватывающий металлическую оболочку с полостью для напуска газа посредством трубопровода, проходящего через указанные заряд и оболочку. Со стороны полости трубопровод выполнен расходящимся под заданным углом к оси трубопровода с образованием в оболочке отверстий. Вдоль оси трубопровода установлен металлический стержень. Для определения начальной температуры исследуемого газа внутри металлического стержня установлена термопара. Устройство обеспечивает высокую чистоту сжимаемого газа за счет ликвидации газометаллической струи из трубопровода. 1 з.п. ф-лы, 4 ил.

Изобретение относится к технике контроля, измерения плотности, уровня и определения массы жидкостей преимущественно в резервуарах. Техническим результатом являются уменьшение погрешностей измерения интегральной плотности и уровня жидкости в резервуаре. В способе измерения параметров жидкости измеряют разность силы тяжести и выталкивающей силы частично погруженного буйка, формируют угловое перемещение посредством воздействия сил на плечи углового шарнира, имеющего ортогональный груз, производят преобразование углового перемещения в электрический сигнал, по величине которого определяют интегральную плотность, измеряют отдельно сигнал, пропорциональный уровню жидкости от дна резервуара, определяют объем жидкости в резервуаре, умножая который на интегральную плотность вычисляют массу жидкости в резервуаре. В устройство измерения параметров жидкости в резервуаре, содержащее буек и микроконтроллер, введены угловой шарнир, снабженный сенсором угла поворота шарнира и ортогональным грузом, а также уровнемер, причем буек закреплен на угловом шарнире, а выходы сенсора угла поворота и уровнемера подключены к микроконтроллеру. 2 н.п. ф-лы, 2 ил.

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров высокотемпературных металлических расплавов методом геометрии так называемой «большой капли», т.е. путем измерения параметров силуэта лежащей на подложке эллипсовидной капли образца расплава посредством фотометрии. Изобретение может быть использовано в лабораторных исследованиях, на металлургических предприятиях, в вузах. Способ определения поверхностного натяжения и/или плотности металлических расплавов, использующий метод фотометрии покоящейся большой капли, при котором твердые образцы при исследованиях загружают в зону нагрева электропечи горизонтального типа, после чего исследуют каждый из загруженных твердых образцов. При этом каждый твердый образец размещают на отдельной подложке, загрузку этих подложек с твердыми образцами в зону нагрева электропечи горизонтального типа производят одновременно, после чего осуществляют одновременное исследование всех вышеуказанных образцов. Устройство определения поверхностного натяжения и/или плотности металлических расплавов содержит электропечь горизонтального типа с зоной нагрева исследуемых твердых образцов, приспособление, предназначенное для одновременного размещения в нем нескольких исследуемых твердых образцов, и шток для перемещения исследуемых твердых образцов в зону нагрева. Причем приспособление выполнено с возможностью его перемещения в зону нагрева вышеуказанной электропечи, а шток выполнен с возможностью перемещения в зону нагрева вышеуказанного приспособления, предназначенного для одновременного размещения в нем нескольких вышеуказанных образцов. Техническим результатом является увеличение производительности исследований, расширение функциональных возможностей определения параметров поверхностного натяжения и/или плотности путем одновременного получения и синхронного сравнения параметров по меньшей мере двух изучаемых образцов, а также уменьшение времени экспериментов и энергопотребления. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности содержит измерительную емкость с крышкой, к которой подключен измеритель давления, дно, выполненное в виде мембраны, отделяющей измерительную емкость от пневматической камеры с размещенным в ней соплом, соединенным с атмосферой и подключенным через дроссель к линии питания. К измерительной емкости подключена камера переменного объема, внутри которой размещены поршень и пружина, вход управления камеры переменного объема соединен с соплом первого пневматического клапана и с выходом пневматического сумматора. Сопло второго пневматического клапана соединено с измерительной емкостью и с камерой переменного объема. Сопловые камеры пневматических клапанов соединены с атмосферой, а входы управления первого и второго клапанов подключены к выходу первого пневматического тумблера. Измерительная емкость подключена в сопло третьего пневматического клапана и к первому входу пневматического сумматора, второй вход которого соединен с сопловой камерой третьего пневматического клапана, в камеру управления которого присоединен выход второго пневматического тумблера. Техническим результатом является повышение точности измерений. 1 ил.

Изобретения относятся к измерительной технике, а именно к способам и устройствам для определения различных параметров жидкостей, в частности нефтепродуктов, хранимых или перевозимых в резервуарах, и могут быть использованы в системах определения объема и массы жидкостей. Датчик характеристик среды с вибрационным чувствительным элементом и встроенным термопреобразователем перемещают в исследуемой жидкости на различных уровнях погружения и измеряют плотность и вязкость жидкости, контролируя изменение частоты колебаний чувствительного элемента датчика, одновременно измеряя температуру жидкости. Измерение уровня производят путем подсчета количества сигналов за определенную длину перемещения датчика. Обрабатывая данные плотности, вязкости и температуры определяют такие параметры жидкости, как уровни ее расслоения и уровни границ раздела сред жидкость/воздух, нефтепродукт/подтоварная вода. Устройство для реализации способа содержит датчик 1, состоящий из вибродатчика 1.1 и термопреобразователя 1.2. Датчик 1 прикреплен к ленточному кабелю 2, наматываемому на барабан 3, который вращается шаговым двигателем 4. Кабель 2 при своем протягивании вращает измерительное колесо 5 с энкодером 6. Кабель 2 снабжен индуктивным датчиком 7 натяжения и датчиком 8 верхнего положения. Другой конец кабеля 2 соединен с электронным блоком 9. Техническим результатом является расширение функциональных возможностей и области применения. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к способам измерения плотности образцов твердых материалов и применяющимся для этого устройствам. Способ определения плотности твердых материалов включает последовательное определение веса сосуда с жидкостью, определение веса образца исследуемого материала, определение веса сосуда с жидкостью и помещенным в жидкость образцом исследуемого материала и последующее математическое вычисление плотности материала. При этом для проведения измерений используют сосуд с широкой горловиной, который полностью заполняют жидкостью, после чего сосуд закрывают крышкой, содержащей выступ-утапливатель, который выдавливает избыток жидкости из сосуда. Затем полностью удаляют жидкость с внешней стороны сосуда. После чего измеряют вес сосуда с жидкостью, после измерения уровень жидкости в сосуде восполняют и помещают в сосуд образец исследуемого материала. Затем закрывают сосуд крышкой, содержащей выступ-утапливатель, за счет этого выдавливая избыток жидкости из сосуда, после чего полностью удаляют жидкость с внешней стороны сосуда и измеряют вес сосуда с жидкостью и образцом исследуемого материала. Устройство представляет из себя сосуд из прозрачного материала. При этом сосуд выполнен с широкой горловиной, торец края горловины сосуда выполнен в виде плоского участка, внешний размер которого больше размера наружной поверхности сосуда, а от наружной поверхности сосуда к краю горловины выполнен плавный переход. Устройство дополнительно содержит крышку, на нижней части которой выполнен выступ-утапливатель. При этом внешний размер крышки больше размера горловины сосуда не менее чем на величину зазора между внутренней поверхностью горловины сосуда и выступом-утапливателем крышки, а контактирующие поверхности крышки и горловины сосуда выполнены шлифованными. Техническим результатом является получение простого способа определения плотности твердых материалов с расширенными возможностями измерения, повышение точности измерений, а также устройства простой конструкции для осуществления предлагаемого способа. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области инженерной геологии, в частности к определению физических характеристик грунтов, и может быть использовано при испытании образцов грунта в условиях невозможности бокового расширения (компрессионных испытаниях). Способ определения плотности сухого грунта при компрессионных испытаниях включает определение объема основного образца грунта, измерения производят на более чем двух ступенях давления (в одометре), причем при увеличении давления от ступени к ступени измеряют приращение деформации грунта (при измерении образцы выдерживают до стабилизации деформации). При этом дополнительно изготавливают идентичный основному дополнительный образец. Затем производят высушивание дополнительного идентичного образца грунта до установления постоянной массы. Далее измеряют массу и объем высушенного образца грунта, рассчитывают начальную плотность высушенного грунта. Затем определяют путем вычислений плотность грунта на всех ступенях давления. Причем высушивание образцов грунта можно производить при 105ºC до установления постоянной массы. Плотность грунта для всех значений давлений можно определять по формуле , где ρ d , o - плотность сухого грунта, h o - начальная высота образца, Δ h - абсолютная деформация образца. Техническим результатом является расширение области применения, что достигается применением сравнительного анализа образцов грунта, в том числе и талого для получения всего набора деформационных характеристик грунта. 1 з.п. ф-лы.
Наверх