Центральная установка для циклических испытаний


 


Владельцы патента RU 2532761:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" (RU)

Изобретение относится к испытательной технике, к исследованию образцов и изделий на прочность при циклическом нагружении. Установка содержит корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из дополнительных платформ. Дополнительные платформы установлены последовательно одна на другой и снабжены приводами вращения, при этом количество платформ задано количеством циклов нагружения. Технический результат: расширение технологических возможностей путем обеспечения многоцикловых нагружений при независимом регулировании количества и параметров циклов в ходе испытаний. 1 ил.

 

Изобретение относится к испытательной технике, к исследованию образцов и изделий на прочность при циклическом нагружении.

Известна центробежная установка для циклических испытаний (патент РФ №1249389, кл. G01N 3/32, 1986), содержащая корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из дополнительных платформ.

Недостаток установки состоит в узких технологических возможностях, не позволяющих проводить испытания на многоцикловые нагружения при независимом регулировании количества и параметров циклов в ходе испытаний.

Известна центробежная установка для циклических испытаний (патент РФ №1422105, кл. G01N 3/32, 1988), принимаемая за прототип. Установка содержит корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из дополнительных платформ.

Недостаток установки также состоит в узких технологических возможностях, не позволяющих проводить испытания на многоцикловые нагружения при независимом регулировании количества и параметров циклов в ходе испытаний.

Техническим результатом изобретения является расширение технологических возможностей путем обеспечения многоцикловых нагружении при независимом регулировании количества и параметров циклов в ходе испытаний.

Технический результат достигается тем, что центробежная установка для циклических испытаний, содержащая корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из дополнительных платформ, согласно изобретения, дополнительные платформы установлены последовательно одна на другой и снабжены приводами вращения, при этом количество платформ задано количеством циклов нагружения.

На рис.1 представлена схема установки.

Центробежная установка для циклических испытаний содержит корпус 1, установленную на нем платформу 2 с приводом вращения 3, расположенные на ней дополнительные платформы 4, 5, захват 6 для образца 7, размещенный на одной из дополнительных платформ.

Дополнительные платформы 4, 5 установлены последовательно одна на другой и снабжены приводами вращения 8, 9. Количество платформ 2, 4, 5 задано количеством циклов нагружения.

Установка работает следующим образом.

Включают приводы 3, 8, 9 и вращают платформы 2, 4, 5 с заданными скоростями вращения. Захват 6 вращает образец 7, отчего образец нагружается многоцикловой центробежной нагрузкой. Количество циклов задается количеством вращающихся платформ 2, 4, 5, частота циклов определяется скоростями вращения соответствующих приводов 3, 8, 9. Вид нагрузки определяется конструкцией захвата 5. При необходимости применяют центробежные грузы, связанные с образцом.

Предлагаемое изобретение существенно расширяет технологические возможности центробежных установок путем обеспечения многоцикловых нагружений при независимом регулировании количества и параметров циклов в ходе испытаний.

Центробежная установка для циклических испытаний, содержащая корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из дополнительных платформ, отличающаяся тем, что дополнительные платформы установлены последовательно одна на другой и снабжены приводами вращения, при этом количество платформ задано количеством циклов нагружения.



 

Похожие патенты:

Изобретение относится к области строительства, а именно к механическим испытаниям материалов, в частности к способам испытания строительных конструкций, и может быть использовано для испытания балочных конструкций на изгиб.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, захват образца, закрепленный на платформе, два центробежных груза, предназначенные для закрепления на концах образца, привод вращения платформы, включающий вал с приводом вращения, пару катков, установленных с эксцентриситетом по разные стороны от оси вращения платформы и предназначенных для фрикционного взаимодействия с ней, один из которых установлен на валу.

Изобретение относится к испытательной технике, к центробежным установкам для испытания образцов на прочность при исследовании энергообмена. Центробежная установка содержит основание, установленную на нем платформу вращения, радиально размещенные на платформе захваты для образца, один из которых соединен с платформой, центробежный груз, соединенный со вторым захватом, и два соосно установленных привода вращения, кинематически связанных с платформой.

Изобретение относится к области дорожного строительства, а именно к оборудованию для испытаний материалов, в частности асфальтобетона, на усталость при циклических динамических воздействиях, и может быть использовано в автодорожном хозяйстве, строительстве аэродромов, строительной индустрии.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит станину, установленные на ней захваты образца и механизм циклического нагружения, выполненный в виде зубчатого колеса, взаимодействующей с ним зубчатой рейки, установленной с возможностью перемещения и связанной с одним из захватов, штанги, торцом соединенной с зубчатым колесом, и груза, установленного на другом торце штанги.

Изобретение относится к области измерения, в частности определения механических свойств материалов. Способ заключается в возбуждении колебаний образца композиционного материала в виде прямоугольной пластины со свободными краями и определении частот и картин форм собственных колебаний пластины.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит два двигателя разной мощности с параллельными валами и встречно направленными крутящими моментами, два рычага, одни концы которых соединены с валом соответствующего двигателя, захваты для образца, один из которых установлен на конце первого рычага, и формирователь нагрузки, шарнирно связанный с концом второго рычага и соединенный со вторым захватом.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит корпус, закрепленную на нем матрицу с криволинейным пазом и толкатель для перемещения образца вдоль паза матрицы.

Изобретение относится к испытательной технике, а именно к усталостным испытаниям групп образцов из сравниваемых материалов в условиях их нагружения, аналогичных изгибному нагружению зуба шестерни в коробках передач автомобилей.

Изобретение относится к испытательной технике, а именно к устройствам для оценки энергии разрушения материалов на изгиб, интенсивности износа материала, смазывающей способности масел и смазок.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленные на нем соосно торцевые и центральный захваты с общей осью вращения и отверстиями для образца, привод вращения торцевых захватов, толкатель, одним концом связанный с центральным захватом, и нагружатель, соединенный с другим концом толкателя. Отверстия в захватах имеют некруглое сечение и выполнены в соответствии с сечением образца. Технический результат: увеличение объема информации путем проведение испытаний при одноцикловом и двухцикловом нагружении изгибом с постоянным соотношением усилий в продольных сечениях образца. 1 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, в частности к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, установленный на ней захват образца, центробежный груз для закрепления на конце образца, привод вращения платформы, включающий вал с приводом вращения и пару катков, установленных с эксцентриситетом относительно оси вала по разные стороны от оси вращения платформы и предназначенных для фрикционного взаимодействия с ней. Установка дополнительно снабжена приводом вращения захвата относительно оси вращения платформы. Технический результат: расширение функциональных возможностей установки путем обеспечения испытаний при знакопеременном изгибе образца в двух плоскостях с одновременным центробежным растяжением. 1 ил.

Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой. Согласно заявленному способу изготавливают для определенного типа балок из физически нелинейного материала эталонную конструкцию с соблюдением всех технологических требований по качеству. Определяют в указанной конструкции основную или первую резонансную частоту колебаний ω0. Нагружают конструкцию ступенчато возрастающей равномерно распределенной нагрузкой, измеряют максимальный прогиб w0 на каждом этапе нагружения и по результатам испытаний эталонной балки строят аппроксимирующую функцию По этой зависимости при контроле жесткости серийно выпускаемых балок определенного типа определяют значение параметра К, соответствующего заданной контрольной нагрузке q0. Технический результат − расширение технологических возможностей неразрушающего способа контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами. 1 табл., 3 ил.

Изобретение относится к области вибрационной техники и предназначено для исследования образцов горных пород и моделей из эквивалентных материалов на воздействие механических колебаний, а именно, волн Рэлея. Стенд содержит основание, установленные на нем полку с захватом для образца, механизм нагружения, связанный с захватом и включающий привод вращения. Механизм нагружения выполнен в виде диска вращения, на торцевой поверхности которого выполнена кольцевая канавка, двух роликов качения, оппозитно размещенных в канавке, двух жестких параллельных упоров, расположенных в плоскости, параллельной плоскости вращения диска, каждый из которых одним концом соединен с соответствующим роликом, а другим концом жестко соединен с захватом. Диск вращения эксцентрично закреплен на валу привода вращения и установлен на валу с возможностью регулирования эксцентриситета, а привод вращения выполнен с возможностью регулирования скорости вращения. Технический результат: увеличение объема получаемой информации при проведении испытаний образцов горных пород и моделей из эквивалентных материалов за счет возможности воздействия на них колебаний круговой или эллиптической формы, характерных для волн Рэлея. 1 ил.

Изобретение относится к строительству, в частности к определению параметров деформирования бетона в условиях циклических нагружений до уровня, не превышающего предела прочности бетона на сжатие Rb и на растяжение Rbt. Сущность: осуществляют закрепление опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение нагрузки в процессе нагружения. Регистрируют усилие и деформации призмы во времени с использованием динамометра и тензостанции. Многократное статическое или динамическое нагружение осуществляют посредством вращения и кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента. Технический результат: упрощение способа испытания, расширение функциональных возможностей экспериментального определения статико-динамических характеристик бетона в условиях циклических нагружений, заключающееся в чередовании приложения статических и динамических нагрузок на образец. 4 ил.

Изобретение относится к способам испытания материалов. Сущность: образец сначала растягивают до максимальной заданной деформации, выдерживают при этой деформации заданное время, сжимают до исходного ненагруженного состояния, выдерживают заданное время, затем циклически деформируют с выдержкой по времени на каждой ступени деформации при растяжении и сжатии, при этом деформация на каждом цикле растяжения задается меньшей, чем на предыдущем цикле, а деформация на каждом цикле разгрузки задается большей, чем на предыдущем цикле. Технический результат: получение большей информации о свойствах материала при испытании одного образца, а также получение новой информации - построение равновесной кривой растяжения, диссипативных потерь, размягчения материала после каждого цикла растяжения-сжатия и кривых релаксации и кривых восстановления структуры материала при разных деформациях. 1 з.п. ф-лы, 1 ил.

Изобретение относится к испытаниям материалов, а именно к способам определения динамических характеристик эластичных материалов. Сущность: испытываемые образцы материала устанавливают на столик вибратора между верхней и нижней металлическими пластинами приспособления, обеспечивающего возможность изменения и фиксации угла наклона испытываемых образцов материала к поверхности столика вибратора в интервале от 0° до 90°. Испытываемые образцы материала вулканизацией или склеиванием жестко прикрепляют к верхней и нижней пластинам приспособления и над испытываемыми образцами материала устанавливают груз. Приводят столик вибратора с нагруженными образцами материала в вертикальное колебательное движение, плавно изменяют частоту колебаний и определяют частоту резонанса, при которой амплитуда ускорения груза на испытываемых образцах становится максимальной. По частоте резонанса по формуле вычисляют динамический модуль упругости. Изменяя массу груза, определяют в перечисленной последовательности значения динамического модуля упругости. Испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов. Для каждой партии материала и конкретной массы груза вычисляют среднее арифметическое значение величин динамического модуля упругости. Технический результат: возможность получения зависимости динамического модуля упругости EД эластомера от угла наклона испытываемых образцов к поверхности столика вибратора и массы груза. 2 ил.

Изобретение относится к испытаниям материалов, а именно к способам определения динамических характеристик эластичных материалов. Сущность: испытываемые образцы эластомеров в виде цилиндрических втулок, надетых на валы рычагов, устанавливают в симметрично расположенные относительно оси столика вибратора отверстия приспособления. Приспособление обеспечивает возможность синхронного изменения и фиксации равных углов наклона рычагов к поверхности столика вибратора в интервале от 0° до 90°. Испытываемые образцы эластомеров вулканизацией или склеиванием жестко прикрепляют к валам рычагов и внутренней поверхности отверстий приспособления. Над испытываемыми образцами эластичного материала устанавливают груз. Приводят столик вибратора с нагруженными образцами эластомеров в вертикальное колебательное движение, плавно изменяют частоту колебаний и определяют частоту резонанса f, при которой амплитуда ускорения груза становится максимальной. По частоте резонанса f вычисляют динамический модуль упругости. Изменяя массу груза, определяют в перечисленной последовательности значения динамического модуля упругости. Испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, последовательно изменяют и фиксируют с помощью приспособления угол наклона рычагов к поверхности столика вибратора, при каждом установленном значении угла наклона рычагов определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости. Технический результат: возможность получения зависимости динамического модуля упругости ЕД эластомера от угла наклона рычагов к поверхности столика вибратора и массы груза. 2 ил.

Изобретение относится к системе и способу измерения усталости для механических деталей летательного аппарата, например самолета, а также к способу технического обслуживания летательного аппарата. Система измерения общего усталостного повреждения детали (7, 8, P, P', 9a, 6') летательного аппарата, подвергающейся механическим напряжениям, содержащая множество датчиков (Ci) напряжений, установленных на детали (7, 8, P, P', 9a, 6'), при этом каждый датчик выполнен с возможностью обнаружения заранее определенного порога (S(Ci)) механического напряжения и с возможностью выдачи сигнала (Si) данных, отражающего превышение этого порога (S(Ci)); система содержит средства (11) регистрации этих данных, и датчики (Ci) выполнены с возможностью обнаружения отличных друг от друга и дискретных порогов (S(Ci)), что позволяет на основании данных, зарегистрированных системой, вычислять оценку усталости детали (7, 8, P, P', 9a, 6'), связанной с рассматриваемым механическим напряжением. Технический результат: оптимизация технических осмотров деталей. 3 н. и 7 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к испытательной технике, а именно к устройствам для экспериментальных исследований прочностных свойств и процессов накопления усталостных повреждений в поверхностных слоях образцов из конструкционных материалов в зависимости от закона изменения на поверхности образца напряжения и его градиента. Устройство содержит два опорных элемента для закрепления испытываемого образца, имеющих возможность поворота, и механизм, создающий изгибающий момент. Опорные элементы для закрепления испытываемого образца и механизм, создающий изгибающий момент, выполнены в виде двух шаговых сервоприводов, оси которых жестко соединены через удлинители с образцом, ось которого перпендикулярна осям шаговых сервоприводов. Шаговые сервоприводы выполнены с возможностью перемещения в продольном направлении образца с помощью шарнирного механизма, состоящего из двух жестких рамок, соединенных с корпусами шаговых сервоприводов параллельными стержнями одинаковой длины с цилиндрическими шарнирами на концах. Устройство дополнительно содержит тензостанцию, соединенную с компьютером и тензорезисторами, установленными на удлинителях. Технический результат: возможность реализовать кинематический или мягкий режимы нагружения образца, при этом имеется возможность использования как режима поперечного изгиба образца (работает только один серводвигатель), так и режима чистого сдвига в среднем сечении образца (серводвигатели работают синфазно). 1 з.п. ф-лы, 2 ил.
Наверх