Способ диагностики и оценки остаточного ресурса электроприводов переменного тока



Способ диагностики и оценки остаточного ресурса электроприводов переменного тока
Способ диагностики и оценки остаточного ресурса электроприводов переменного тока

 


Владельцы патента RU 2532762:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" (RU)

Изобретение относится к диагностике технического состояния силового электрооборудования. Осуществляют запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения. Обрабатывают сигналы фильтром низких частот. Определяют расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы. Рассчитывают коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, используя фильтр низких частот. Отфильтровывают спектр исследуемых частот от общего сигнала. Затем определяют уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и на основе получаемых данных с учетом текущего задания выходной координаты определяют техническое состояние электропривода и оценивают остаточный ресурс. Технический результат заключается в повышении эффективности обнаружении неисправности на ранней стадии возникновения. 1 ил.

 

Изобретение относится к диагностике технического состояния силового электрооборудования и может применяться для диагностики электрических приводов, работающих в тяжелых условиях и размещенных в труднодоступных местах.

Известен способ диагностики электродвигателей переменного тока и связанных с ним механических устройств (патент РФ №2300116, МПК G01R 31/34), основанный на спектральном анализе потребляемого электродвигателем тока. Недостатком данного способа является то, что в нем не учитывается влияние на спектр сигнала величины и характера нагрузки электропривода, а также влияние показателей качества электроэнергии, особенно при питании электродвигателя от статического силового преобразователя.

Известен способ функциональной диагностики асинхронных двигателей (патент РФ №2351048), согласно которому контролируются две величины - сопротивление изоляции обмоток статора относительно корпуса электродвигателя и отношение полных сопротивлений обмоток для каждой пары обмоток электродвигателя.

Недостатком данного способа является применимость только для отдельных типов повреждений электродвигателя, связанных с возникновением несимметрии сопротивлений обмоток статора, и неприменимость к иным типам повреждений, например к повреждениям обмоток ротора.

Известен способ определения технического состояния (диагностики) электродвигателя, (патент РФ №2213270), при котором регистрируют и анализируют сигнал, порождаемый вибрацией электродвигателя, при этом также регистрируют сигнал от переменной составляющей суммы фазных токов питания, анализируют форму и амплитуду полученного сигнала и, сравнивая со значениями предыдущих измерений, делают вывод от возможности дальнейшей эксплуатации.

Недостатком этого способа является то, что он требует непосредственного доступа к диагностируемому двигателю, а также не позволяет с достаточной достоверностью выявить конкретный вид повреждения.

Известен способ диагностики и прогнозирования остаточного ресурса взрывозащищенного электропривода насосно-компрессорного оборудования нефтехимических производств (патент РФ №2431152). Сущность способа заключается в записи в течение заданного интервала времени значений фазных токов и напряжений электродвигателя, их разложение на гармонические составляющие и измерение амплитуды и фазы гармонических составляющих, при этом производится фильтрация гармонических составляющих, поступающих из сети. По совокупности параметров гармонических составляющих с помощью искусственной нейронной сети производится идентификация технического состояния и прогнозирование ресурса безаварийной работы диагностируемого объекта.

Недостатком данного способа является то, что при определении остаточного ресурса анализируются только гармонические составляющие напряжения, генерируемые только двигателем электропривода, а составляющие, генерируемые сетью питающего напряжения, отфильтровываются и не рассматриваются. Однако значительные искажения питающего напряжения, которые имеют нерегулярный характер, обусловленный изменением режима работы двигателя, непостоянством нагрузки, наличием статических преобразователей, а также характеристиками питающей сети, негативно сказываются на изоляции диагностируемого оборудования, вызывая ее преждевременное старение, что, в свою очередь, может привести к пробою изоляции и выходу из строя оборудования.

Известен способ диагностики и оценки остаточного ресурса электроприводов переменного тока (патент РФ №2425390), выбранный в качестве прототипа, основанный на записи зависимостей от времени тока и напряжения, потребляемых электродвигателем, выполняемой с помощью датчиков напряжения и тока с последующим пропусканием через фильтр низких частот.

Недостатком указанного способа является то, что он использует фильтр низких частот для преобразования поступающего сигнала.

Технический результат заключается в повышении эффективности обнаружении неисправности на ранней стадии возникновения при помощи программного обеспечения, позволяющего убрать ненужный спектр частот, что приведет к повышению качества обработки полученных данных и более точному определению остаточного ресурса электропривода переменного тока. Также помимо точности системы повышается ее надежность за счет исключения одного функционального узла и переноса его функций в ранее существовавший блок - персональный компьютер.

Указанный технический результат достигается тем, что в известном способе диагностики и оценки остаточного ресурса электроприводов переменного тока, в котором путем записи зависимостей от времени напряжения и тока потребляемых электродвигателем, выполняемой с помощью датчиков напряжения и тока с последующим пропусканием через фильтр низких частот, определяется техническое состояние электропривода и оценивается его остаточный ресурс, в предлагаемом способе определяется расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы, рассчитываются коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, с помощью программного обеспечения, используемого в качестве фильтра низких и высоких частот, отфильтровывается спектр исследуемых частот от общего сигнала, затем определяется уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и при помощи программного обеспечения на основе получаемых данных, с учетом текущего задания выходной координаты, определяется техническое состояние электропривода и оценивается остаточный ресурс.

Благодаря пропусканию полученных сигналов тока и напряжения через программный фильтр высоких и низких частот повышается качество обработки полученных данных, точность определения остаточного ресурса электропривода переменного тока, а также надежность системы.

Повышение качества обработки полученных данных и точность определения остаточного ресурса достигается за счет фильтрации полученных сигналов тока и напряжения через программный фильтр низких и высоких частот, поскольку амплитуда гармоник зависит не только от степени проявления дефекта, а также от напряжения питания. Если качество сетевого напряжения невысокое, то спектральный состав фазных напряжений сильно отличается от идеального, в нем появляются высокочастотные гармоники. При этом искажения напряжения питания могут носить нерегулярный характер, что, в свою очередь, приводит к ошибочной оценке остаточного ресурса двигателя переменного тока.

Надежность системы достигается за счет исключения одного функционального узла - «фильтр низких частот» и перенося его функции в ранее существовавший блок - «персональный компьютер», где на языке графического программирования осуществляют фильтрацию полученных сигналов тока и напряжения на низких и высоких частотах.

Согласно изобретению в персональном компьютере на языке графического программирования осуществляют фильтрацию полученных сигналов тока и напряжения на низких и высоких частотах, производят вычисление мгновенных мощностей каждой фазы, производят спектральный анализ полученных сигналов напряжения, тока и мощности, рассчитывают коэффициенты несимметрии (тока, напряжений, мощности) и коэффициенты гармоник (тока и мощности), на основе известной величины отдаваемой мощности электропривода с учетом текущего задания выходной координаты вычисляют величину потерь электрической энергии, определяется техническое состояние электропривода и оценивают остаточный ресурс путем сравнения с эталонными сигналами, полученными на заведомо исправном агрегате.

Предлагаемый способ поясняется чертежом, где показана принципиальная схема измерительного комплекса, на основе которой реализуется предлагаемый способ. Измерительный комплекс содержит следующие оборудование. 5 - датчик тока; 6 - датчик напряжения; 7 - сумматор сигнала; 8 - устройство сбора данных; 9 - устройство выборки хранения; 10 - аналого-цифровой преобразователь; 11 - портативный компьютер. Также на фиг.1 изображены: 1 - статический силовой преобразователь; 2 - электрический двигатель; 3 - механический преобразователь; 4 - рабочий орган. Символами на фиг.1 обозначены: P0 - мощность на входе статического преобразователя, P1 - мощность питания электродвигателя, P2 - мощность на входе механического преобразователя, Pn - мощность, поступающая на рабочий орган, [u(t)] - измеряемый сигнал фазных напряжений в фазах A, B, C, [i(t)] - измеряемый сигнал фазных токов в фазах A, B, A, уз - сигнал задания (мощности, координаты, момента).

Способ диагностики и оценки остаточного ресурса электроприводов переменного тока реализуется следующим образом.

На вход статического силового преобразователя 1 из питающей сети поступает мощность P0, который осуществляет в соответствии с введенным в него заданием уз управление координатами скорости, момента и положения электродвигателя 2. С выхода преобразователя 1 сигнал мощности P1 поступает на вход электродвигателя 2, в котором после преобразования мощность на выходе будет равна P2. Сигнал мощности P2 поступает на вход механического преобразователя 3, с выхода которого мощность Pn поступает на рабочий орган 4. Сигналы трехфазного напряжения [u(t)] и трехфазного тока [i(t)] с преобразователя 1 поступают на датчики тока 5 и напряжения 6, аналоговый сигнал с датчиков 5 и 6 поступает в сумматор сигнала 7, также в сумматор 7 от преобразователя 1 поступает сигнал задания уз. Обработанные сигналы с выхода сумматора 7 поступают на вход устройства сбора данных 8, в состав которого входят устройство выборки хранения 9, необходимое для хранения оперативной информации, и аналогово-цифровой преобразователь 10, который преобразует аналоговый сигнал в цифровой и передает его на портативный компьютер 11. Сигналы, поступившие на компьютер 11, обрабатываются программным фильтром частоты, после чего вносятся в базу данных и обрабатываются программой, осуществляющей расчет остаточного ресурса электропривода переменного тока.

Возможность получения технического результата основана на том, что любые неисправности электрических машин и механизмов, сопряженных с ними, в конечном итоге приводят к возникновению электромагнитной несимметрии поля в зазоре машины, а, следовательно, к изменению спектрального состава токов и напряжений. Также в качестве критерия для оценки энергетических процессов в реальной машине, обладающей неравномерным полем в воздушном зазоре и, как следствие, имеющей полигармонический состав спектра токов и напряжений, используют сравнение величины потерь мощности на характерных для определенных повреждений частотах.

Преобразуют полученный сигнал из аналоговой в цифровую форму с помощью аналогово-цифрового преобразователя АЦП, выделяют анализируемые частоты с помощью программного фильтра низких частот на ЭВМ. Также производят анализ качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих с целью выявления причин преждевременного выхода из строя оборудования, обусловленных качеством питающего электропривод напряжения. Измерения и анализ производят с определенной периодичностью и создают базу данных измерений и результатов их анализа. В результате сравнения измеренных значений с эталонными и критическими производят контроль развития повреждений и определяют остаточный ресурс электропривода.

Влияние на работоспособность следует оценивать по четырем уровням состояния - отличное, хорошее, удовлетворительное, неудовлетворительное. Результаты обследования заносятся в базу данных, которая предназначена для ввода, хранения, отображения, сортировки и обработки диагностических параметров технологического оборудования. Также база данных обеспечивает возможность анализа данных, осуществление поиска и выборку по различным параметрам, формирование журнала регистрации контроля, вычисление остаточного ресурса оборудования на основе результатов анализа. Величину остаточного ресурса определяют по формуле:

δ = k 1 K I A 2 + k 2 K I B 2 + k 3 K I C 2 + k 4 K э п 2 + k 5 K г I 2 + k 6 K г Р 2 + k 7 K P A 2 + k 8 K P B 2 + k 9 K P C 2 + k 10 K н е с и м U 2 + k 11 K н е с и м I 2 + + k 12 K н е с и м Р 2 + k 13 K Δ Р 2 + k 14 K U A 2 + k 15 K U B 2 + k 16 K U C 2

где:

K I A , K I B , K I C - расхождение амплитуд сигналов тока на характерных частотах с уровнем сигнала на частоте питающей сети для фаз A, B, C соответственно;

K U A , K U B , K U C - расхождение амплитуд сигналов напряжения на характерных частотах с уровнем сигнала на частоте питающей сети для фаз А, В, С соответственно;

Kэп - динамический коэффициент мощности;

Kг - коэффициент гармоник (тока и мощности);

K P A , K P B , K P C - расхождение амплитуд сигналов мощности на характерных частотах с уровнем сигнала на частоте питающей сети для фаз A, B, C соответственно;

KнесимU - коэффициент несимметрии напряжения;

KнесимI - коэффициент несимметрии тока;

KнесимP - коэффициент несимметрии мощности;

KΔP - коэффициент потери мощности;

ki - весовой коэффициент, определяемый на основе статистических данных.

Получившееся значение остаточного ресурса сравнивают с предельным значением δпр, определяемым для каждого агрегата на основе статистических баз данных, причем должно выполняться условие δ≤δпр. В случае невыполнения данного условия агрегат выводится из работы.

Регулярный мониторинг электропривода позволяет выявлять неисправности на ранней стадии возникновения, отслеживать динамику их развития, определять остаточный ресурс и планировать рациональные сроки проведения ремонтов.

Аппаратная реализация предлагаемого способа может быть осуществлена с помощью существующих силовых электротехнических, электронных и микропроцессорных устройств при надлежащем выборе и настройке соответствующих параметров.

Способ диагностики технического состояния силового электрооборудования, включающий запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения, обработку сигналов фильтром низких частот с последующей программной обработкой полученных сигналов для диагностики и оценки остаточного ресурса, отличающийся тем, что определяют расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы, рассчитывают коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, используя программный фильтр низких частот, отфильтровывают спектр исследуемых частот от общего сигнала, затем определяют уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и при помощи программного обеспечения на основе получаемых данных с учетом текущего задания выходной координаты определяют техническое состояние электропривода и оценивают остаточный ресурс.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для испытания синхронных машин на электромашиностроительных заводах, ремонтных предприятиях и при эксплуатации.

Изобретение относится к области электротехники и может быть использовано в электрических машинах переменного тока. Техническим результатом является расширение функциональных возможностей и области применения, повышение чувствительности.

Изобретение относится к контрольно-измерительной технике. Устройство включает помещенные в корпус фильтры частот и соответствующие им интеграторы, блок обработки сигналов, порт с выводами на средства индикации и визуализации.

Изобретение относится к области испытаний обмоток якорей коллекторных электрических машин постоянного тока. Сущность: создают режим ударного импульсного возбуждения одновременно всех параллельных ветвей обмотки вращающегося якоря путем посылки импульсов напряжения возбуждения от генератора импульсных напряжений ГИН с частотой следования, например, 50 импульсов в секунду на коллектор относительно корпуса.

Изобретение относится к области электротехники, а именно к испытательной технике и электрооборудованию, в частности может быть использовано для испытания электроприводов с асинхронными двигателями.

Заявленная группа изобретений относится к измерительной технике и, в частности, предназначена для мониторинга вала вращающейся машины. Способ мониторинга сигналов, имеющих отношение к валу вращающейся машины, содержит этапы, на которых принимают сигналы напряжения, имеющие отношение к валу, принимают сигналы тока, имеющие отношение к валу, вычисляют и анализируют тенденцию максимальных значений напряжения и тока по валу, вычисляют и анализируют тенденцию средних значений напряжения и тока по валу, вычисляют и анализируют тенденцию коэффициента гармоник напряжения по валу, принимают сигнал синхронизации, позволяющий синхронизировать принятый сигнал тока с колебательным сигналом возбуждения, разрешают по времени сигнал тока, связывают группу разрешенных по времени сигналов тока с неисправным состоянием, определяют неисправное состояние, используя максимальные значения напряжения и тока по валу, средние значения напряжения и тока по валу, коэффициент гармоник напряжения по валу и группу разрешенных по времени сигналов тока, и если имеется неисправное состояние, уведомляют пользователя о его наличии.

Изобретение относится к области электротехники и касается электрических машин и преобразователей угла. Предлагаемое устройство контроля содержит регулируемый стабилизированной источник постоянного тока (1), ключ (2), регулируемый резистор (3), первый усилитель (4), второй усилитель (5), компаратор (6), инвертор (7), первую схему И (8), мультивибратор (9), вторую схему И (10), первый счетчик (11), второй счетчик (12), первый регистр (13), второй регистр (14), компьютер (15), измеритель сопротивления (16), проверяемую электрическую машину (17), датчик углового положения (ДУП) (18), редуктор (19), электродвигатель (20), блок управления (БУ) (21), состоящий из следующих элементов: Т-триггера (22), третьей схемы И (23), реле (24) с его обмоткой (25) и с нормально замкнутым контактом (26), второго источника питания (27) и тумблера (28) СТАРТ.

Изобретение относится к области электротехники и может использоваться, в частности, для контроля качества пропитки изоляционным составом обмоток электродвигателей, катушек трансформаторов и дросселей.

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из естественной координатной системы в прямоугольную стационарную систему координат.

Изобретение относится к области электротехники и может быть использовано в судовых системах электродвижения с частотно-управляемым гребным электродвигателем при проведении приемосдаточных испытаний гребного электродвигателя (ГЭД) и системы электродвижения (СЭД) в условиях стенда.

Изобретение относится к области диагностики межвитковых замыканий и снижения сопротивления обмотки статора асинхронного электродвигателя относительно корпуса в сетях с глухозаземленной нейтралью. Способ заключается в измерении полных сопротивлений обмоток статора электродвигателя при номинальной частоте вращения ротора электродвигателя, а также в измерении тока утечки на корпус асинхронного электродвигателя совместно с измерением напряжения на корпусе электродвигателя относительно искусственной нулевой точки, образованной подключением фильтра напряжения нулевой последовательности к фазам питающей сети. Измерения сопротивлений производятся косвенным путем при помощи действующих значений токов и напряжений на обмотках статора электродвигателя. Измерение частоты вращения ротора электродвигателя производится с помощью датчика частоты вращения. Технический результат заключается в диагностировании межвитковых повреждений и снижения сопротивления изоляции относительно корпуса электродвигателя на ранней стадии развития, а также осуществления контроля целостности защитного проводника РЕ в системах TN-S, TN-C-S, или совмещенного нулевого защитного и нулевого рабочего проводников PEN в системе TN-C, или РЕ проводника в системе заземления ТТ. 1 ил.

Изобретение относится к диагностике обмоток электрических машин. Сущность: способ обнаружения короткого замыкания на землю во вращающейся электрической машине содержит подачу тестового сигнала на заданной частоте на обмотку, измерение электрического параметра сигнала отклика в обмотке, являющегося результатом поданного тестового сигнала, и обнаружение короткого замыкания на землю на основании измеренного значения электрического параметра. При этом непрерывно определяют частоту сигнала отклика и сбрасывают измеренное значение, соответствующее определенной частоте, когда эта частота отклоняется от заданной частоты при первом пороговом значении. Технический результат: повышение надежности обнаружения. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано при разработке электроприводов для систем автоматического управления летательными аппаратами. Техническим результатом является повышение точности формирования требуемой механической характеристики электропривода. В способе формирования механической характеристики электропривода передаточным числом редуктора формируют отношение пускового момента к скорости холостого хода требуемой механической характеристики, а их абсолютные значения обеспечивают напряжением питания электродвигателя. Фактором, оптимизирующим электропривод, является то, что требуемая механическая характеристика электропривода обеспечивается минимальными значениями передаточного числа редуктора и напряжения питания электродвигателя. 1 ил.

Предложенное изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов, как в процессе эксплуатации, так и в процессе испытаний, например авиационных генераторов. Согласно предложенному способу диагностирования электрической машины измеряют электродвижущую силу в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов. По разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний. Кроме того, по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени. Технический результат: повышение точности диагностики электрической машины, введение возможности определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета - статический или динамический), упрощение технической реализации диагностики, а также возможность диагностики в режиме реального времени. 4 ил.

Изобретение относится к области электротехники и может быть использовано в электроприводах для анализа и контроля метрологических характеристик измерительных трактов систем, построенных на базе асинхронного двигателя с преобразователем частоты. Сущность: в двух фазах электродвигателя с помощью бесконтактных датчиков тока производят измерение и запись мгновенных значений токов статора асинхронного двигателя. Осуществляют преобразование записанных сигналов в цифровую форму. Данные обрабатывают и строят расчетно-экспериментальный годограф пространственного вектора тока статора. По геометрическим характеристикам, к которым относят площадь, форму, значения углов между базовыми векторами, коэффициент эллиптичности, проводят определение и анализ метрологических характеристик каналов контроля и управления системы «преобразователь частоты - асинхронный двигатель», а также проверяют питающую сеть по показателям качества электроэнергии. Технический результат: упрощение контроля метрологических характеристик систем управления асинхронных электроприводов, упрощение процедуры оценки погрешностей без отключения от производственного цикла, повышение достоверности прогнозирования времени появления отказов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано для автоматизированной идентификации параметров электропривода с асинхронными электродвигателями. Технический результат - расширение области применения. Устройство содержит трехфазный асинхронный электродвигатель, параметры которого подлежат оцениванию, датчики фазных напряжений статора, датчики фазных токов статора, преобразователь фазных напряжений и преобразователь фазных токов статора, позволяющие преобразовывать фазные напряжения и токи статора в напряжения и токи обобщенной машины, настраиваемую модель асинхронного электродвигателя, пять блоков вычисления оценок параметров, сумматоры. Устройство позволяет оценивать параметры, переменные величины и частоту вращения асинхронного электродвигателя без использования датчиков частоты вращения, углового ускорения и устройств дифференцирования. 8 ил.

Изобретение относится к способу адаптации обнаружения короткого замыкания на землю к изменению состояния электрической машины. Сущность: электрическая машина находится в первом состоянии машины, первое опорное значение определяется для измеряемых значений электрической величины. Обнаружение короткого замыкания на землю содержит непрерывное измерение электрической величины в обмотке и обнаружение короткого замыкания на землю на основе измеряемых значений электрической величины и первого опорного значения. Способ содержит прием сигнала (101, 102), обнаружение изменения состояния машины на основе принятого сигнала (120) и изменение на второе опорное значение для измеряемых значений электрической величины, когда обнаруживается изменение состояния машины, причем второе опорное значение отличается от первого опорного значения (100). Технический результат: повышение точности обнаружения короткого замыкания на землю при изменении рабочего состояния машины. 8 з.п. ф-лы, 3 ил.

Изобретение относится к области диагностики технического состояния электрических приводов, например электроприводов прокатных станов в металлургическом производстве, на основе анализа параметров тока, напряжения, скорости и управляющего задания с применением рекуррентной искусственной нейронной сети. Технический результат: повышение точности и достоверности диагностирования аварийных состояний электропривода на работающем оборудовании в ранней и ненаблюдаемой стадии их возникновения, что предупреждает внезапную аварийную остановку электропривода и позволяет существенно снизить расходы на ремонт. Сущность изобретения: с определенным интервалом времени производится замер тока, напряжения, скорости и управляющего задания электропривода, преобразование параметров в цифровую форму и передача в персональный компьютер для обработки. Программно реализованная и обученная на конкретном электроприводе перед его эксплуатацией рекуррентная нейронная сеть воспроизводит динамику параметров электропривода, после чего производится сравнение результата динамики нейросетевой модели с реальной динамикой электропривода. В неисправном электроприводе возникает отклонение динамики его параметров от модели и рассчитывается функция рассогласования динамики. По характеру функции рассогласования динамики производится оценка технического состояния и прогноз ресурса электропривода. 2 ил.

Изобретение относится к способу контроля функционирования вращающейся электрической машины, в частности асинхронной машины двойного питания с диапазоном мощности 20-500 МВА. Техническим результатом является обеспечение надежного контроля изоляции стяжных болтов непрерывно во время работы вращающейся электрической машины. Предложен способ контроля функционирования вращающейся электрической машины, которая содержит: ротор, вращающийся вокруг оси и концентрично окруженный статором; ротор и статор содержат многослойный элемент ротора и многослойный элемент статора соответственно, собранные из уложенных слоями листов и спрессованные в осевом направлении с образованием слоистого материала и сжатые с помощью электрически изолированных стяжных болтов, проходящих через многослойный элемент ротора и многослойный элемент статора в осевом направлении и изолированных относительно многослойных элементов, причем на каждый из стяжных болтов подают заданный потенциал относительно соответствующего многослойного элемента с помощью источника напряжения и измеряют и оценивают протекание тока через источник напряжения и/или через соответствующий стяжной болт. 2 н. и 19 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника. В системе и способе заблаговременного распознавания повреждения в подшипнике обеспечивается анализ причины, вызывающей повреждение тока подшипника. Для заблаговременного распознавания возникновения повреждений в подшипнике, вызванных протеканием тока подшипника, осуществляются следующие этапы: формирование оценки на основе по меньшей мере одного долговременного измерения по меньшей мере одного измеряемого параметра, характерного для возникновения токов подшипника во время работы подшипника в зависимости от амплитуды тока подшипника, и формирование отображения результатов измерений на основе оценки и оценивание отображения на основе распознавания образов. Предложено также устройство для осуществления способа. 2 н. и 20 з.п. ф-лы, 3 ил.
Наверх