Способ получения объемно-пористых структур сплавов-накопителей водорода, способных выдерживать многократные циклы гидрирования-дегидрирования без разрушения

Изобретение относится к порошковой металлургии, в частности к получению объемно-пористых структур сплавов-накопителей водорода (СНВ), способных выдерживать многократные циклы гидрирования/дегидрирования без разрушения. Методом механической активации получают нанокристаллический порошок интерметаллического соединения обработкой порошков индивидуальных компонентов в шаровом планетарном активаторе или механоактивационной обработкой порошка сплава на основе интерметаллического соединения при фоновой температуре реактора 100-500°С. Порошок интерметаллического соединения прессуют в объемные образцы при давлении не менее 500 МПа. Объемные образцы СНВ отжигают в глубоком вакууме ниже 10-3-10-4 Па при температуре 0,3-0,5 температуры плавления интерметаллического соединения. Обеспечивается сохранение фазового состава и наноструктурного состояния, уровня водородсорбционных свойств, упрощается процедура активации взаимодействия с водородом и повышается температуропроводность материала. 7 ил., 2 табл., 2 пр.

 

Изобретение относится к области порошковой металлургии и может быть использовано для получения объемно-пористых структур сплавов-накопителей водорода, способных выдерживать многократные циклы гидрирования/дегидрирования без разрушения, не требующих трудоемкой процедуры активации при взаимодействии с водородом и способных свободно абсорбировать и десорбировать водород.

Известен способ получения пористого металлического тела, при получении которого выдерживают исходный металлический материал в герметизированном сосуде при пониженном давлении в интервале 13,33-0,000133 Па в диапазоне температур на 50-200°С ниже температуры плавления данного металла. Плавят исходный металлический материал при повышенном давлении 0,1-10 МПа, достигнутом путем ввода по меньшей мере одного типа газа, выбранного из группы, включающей водород, азот, аргон и гелий. Заливают расплавленный металл в кристаллизатор, регулируя при этом давление газа над расплавленным металлом и температуру расплавленного металла. Охлаждают и отверждают расплавленный металл в кристаллизаторе внутри герметизированного сосуда для образования пористого металлического тела. Это позволяет получить новый композитный пористый материал, который можно использовать в разных отраслях промышленности, а именно как материал для хранения водорода, электромагнитного экранирования, медицинских инструментов (Патент Российской Федерации №02217506. Опубликовано 27.11.2003 г.).

Однако такой способ получения пористого материала достаточно трудоемкий и связан с затратами времени и энергии. Кроме того, предполагается плавление материала, что не приемлемо для сплавов, подвергнутых механоактивационной обработке, т.к. происходит полная потеря приобретенного структурного состояния и фазового состава.

Известен способ получения образцов, включающий приготовление шихты в высокоэнергетической шаровой планетарной мельнице. Прессование полученной шихты с усилием не более 150 МПа и поэтапное спекание в среде водорода до температуры восстановительной выдержки 800°С, выдержка не менее 1 часа и продолжение нагрева до окончательной температуры спекания со скоростью не более 10°С в минуту и выдержка не менее 0.5 часа. Результатом является получение материала плотностью не менее 98% (Патент Российской Федерации №2292988 С1. Опубликовано 10.02.2007 г.).

Однако при таком способе вследствие влияния высоких температур происходит потеря приобретенного структурного состояния и фазового состава, которые были получены после механоактивационной обработки. Также достижение высокой плотности материала (до 98%) негативно скажется на его устойчивости при гидрировании, т.к. наличие сильных внутренних напряжений (при образовании гидридных фаз) приводит к полному разрушению объемного сплава-накопителя водорода до порошка.

Задачей настоящего изобретения является объединение операций механохимического синтеза (МХС) или механической активации (МА), обеспечивающих получение частиц порошка интерметаллического соединения (ИМС) в наноструктурном состоянии с повышенной плотностью дефектов кристаллической структуры, а также процесса консолидации порошка сплава-накопителя водорода (СНВ) в объемные наноструктурированные образцы с повышенной теплопроводностью.

Данная задача решается за счет сохранения достаточно высокого уровня дефектов кристаллической структуры (уровня активации) частиц порошка, а также возможностей технологии механоактивационной обработки. Технология включает в себя:

- получение, методом механической активации, нанокристаллического порошка ИМС обработкой порошков индивидуальных компонентов (например, Fe и Ti) в шаровом планетарном активаторе. Или механоактивационная обработка готового порошка сплава на основе ИМС (до получения наноструктурного состояния с высокой плотностью дефектов кристаллической структуры). При такой обработке механическая активация происходит при фоновой температуре реактора около 100-500°С;

- последующее прессование порошка ИМС в объемные образцы при давлении не менее 500 МПа;

- отжиг объемных образцов СНВ в вакууме ниже 10-3-10-4 Па при температуре, составляющей 0.3-0.5 Тпл (где Тпл - температуры плавления ИМС).

Предлагаемый способ изготовления объемных образцов сплавов-накопителей водорода сохраняет уровень упрочнения объемного образца (способный выдерживать многочисленные циклы абсорбции/десорбции) и особенности соответствующих фазовых структурных состояний (в частности наноструктурное), что достигается при минимальных деформационных статических нагружениях и минимальных термических воздействиях.

Получение СНВ в объемном наноструктурном состоянии позволяет увеличить теплопроводность СНВ, что, с одной стороны, позволяет улучшить тепломассоперенос (отвод и подвод тепла при гидрировании/дегидрировании), а с другой стороны, предотвращает вынос дисперсных порошков из рабочей зоны, которые могут повредить запорную арматуру контейнера или детали фильтров. Таким образом, использование СНВ в объемном состоянии гораздо проще и удобнее для практического использования, а также использование объемных компактов приводит к улучшению динамики и скорости процессов при поглощении и выделении водорода.

Технология получения сплавов в виде порошков методом МХС представляет собой процесс, при котором происходит одновременная совместная деформация исходных компонентов смеси в виде порошка. Эта технология широко используется в настоящее время для приготовления порошков ИМС, твердых растворов, а также аморфных порошков, т.е. для приготовления материалов сложного химического состава, характеризующихся особыми физико-механическими свойствами из-за высокой степени дисперсности структуры, возникающей вследствие деформации. То же самое, можно отнести к МА за исключением процесса синтеза фаз в процессе обработки. Именно деформация приводит к усложнению состава и образованию наноструктуры объемного характера. Таким образом, продукт МХС имеет заданный состав и специфическое структурное состояние (возбужденное, наноструктурное состояние), это состояние термодинамически определяется как метастабильное.

Водородсорбционные свойства являются основными для сплавов-накопителей водорода (СНВ), которые обычно используются в виде порошков, при этом порошки СНВ имеют некоторые существенные недостатки по сравнению с объемными СНВ:

- сравнительно малая теплопроводность, порядка 1 Вт-1 К-1 (теплопроводность компактных металлов и сплавов ≈ 10-100 Вт-1 К-1);

- тонкий металлический порошок СНВ в контейнерах может самопроизвольно возгораться при выдержке на воздухе (не безопасен);

- сильное увеличение объема СНВ при гидрировании (ΔV/V≈10-20%) может вызывать чрезвычайно большие напряжения в стенках контейнера, в котором находится СНВ. Именно из-за сильного гидрирования и происходит разрушение объемных компактов в процессе первого же цикла абсорбции/десорбции.

В этой связи использование СНВ в виде объемных компактов позволило бы увеличить безопасность СНВ и улучшить динамику и скорость процессов поглощения и выделения водорода. Получение такого объемного образца СНВ в наноструктурном состоянии позволило бы, также упростить трудоемкую процедуру его активации, что характерно для сплавов, склонных к нежелательной пассивации воздухом или компонентами, содержащимися в технических водородсодержащих газах.

Метод получения объемных образцов нанокристаллических СНВ не должен существенно менять требуемый фазовый состав и структурное состояние сплава. Поэтому прежде всего надо ограничить возможные области температур, до которых может происходить нагрев порошка материала при его получении и последующей консолидации. Недопустимо выходить за пределы температур, при которых материал теряет свои свойства.

В основе предлагаемого метода получения СНВ использовалась интенсивная пластическая деформация, либо дополнительная интенсивная пластическая деформация уже полученных СНВ порошков, для того чтобы возникло наноструктурное возбужденное состояние и способность материала к схватыванию.

Пример 1.

Смесь порошков Fe-53.8% (по массе), Ti-46.2% (по массе) подвергалась обработке в шаровой планетарной мельнице (типа АГО-2С) продолжительностью от 120 минут со скоростью 840 об/мин, в атмосфере аргона и под давлением аргона в механореакторах (барабанах) 0.2-0.3 МПа. Согласно оценке энергонапряженность измельчения в механическом активаторе (мельнице) составляла около 15 Вт/гр. Фоновая температура механореактора, в ходе механохимического синтеза, составляла около 500°С. Реакцию механохимического синтеза проводили до получения наноструктурного ИМС TiFe, что подтверждается анализом уширения линий на дифрактограмме порошка ИМС TiFe, полученного МХС (Фигура 1), а также прямым наблюдением наноструктуры с помощью просвечивающей электронной микроскопии (Фигура 2).

Прессование порошка ИМС TiFe, с получением объемных образцов (Фигура 3), проводилось при давлении не менее 500 МПа при комнатной температуре. Последующий отжиг объемных образцов СНВ проводился в глубоком вакууме (до 10-3-10-4 Па) при температуре 0.3-0.5 Тпл (где Тпл - температуры плавления ИМС). Получение СНВ ИМС TiFe в виде объемных компактов позволило увеличить плотность материала, а также его температуропроводность (Фигура 4) и, таким образом, увеличить его теплопроводность.

Операцию консолидации СНВ на основе ИМС TiFe следует проводить непосредственно после операции МХС, так как главную роль в процессе консолидации играют накопленные в ходе процесса МХС дефекты кристаллической структуры (материал переходит в активное возбужденное состояние), что позволяет при нагреве до сравнительно низких температур получать взаимодействие частиц порошка между собой с образованием контактных площадок (шеек) между этими частицами порошка (Фигура 5). Вследствие сравнительно низкой плотности (66,5% от теоретической) такой объемно-пористый образец способен выдерживать многократные циклы абсорбции/десорбции без разрушения при изменении объема образца до 13%, что не характерно для традиционных СНВ, которые из-за сильного изменения объема, обычно диспергируются до мелкого порошка уже после первого цикла гидрирования. Проведение консолидации без проведения операции предварительной механической активации приводит к отсутствию образования контактных площадок (шеек) между частицами порошка и разрушению объемного образца уже после первого цикла гидрирования (Фигура 6).

Полученный объемный наноструктурный образец СНВ помещался в автоклав для активации его взаимодействия с водородом. Процедура активации абсорбции водорода, заключалась в нагреве сплава до 300°С, атмосфере водорода (давлением 1 МПа) и выдержке около 30 минут.

Полученный таким образом объемный наноструктурный образец СНВ способен выдерживать многократные циклы абсорбции/десорбции без разрушения. При этом нагретый до температуры отжига (600°С) СНВ сохраняет свой фазовый состав и наноструктурное состояние, что является принципиальным для СНВ. Изотермы «давление-состав» (при температуре 22°С) нанокристаллического порошка ИМС TiFe и объемного образца представлены на Фигуре 7.

Консолидация СНВ в объемные образцы предложенным способом повышает теплопроводность образцов и за счет этого улучшает динамику и скорость поглощения и выделения водорода, делает их безопасными и более удобными при эксплуатации.

Пример 2.

Готовый СНВ, полученный традиционными металлургическими технологиями (высокотемпературными переплавами, либо коммерческие порошки СНВ), подвергался МА обработке по режимам, указанным в примере 1, но продолжительность обработки следует сократить 30-60 минут, данного времени достаточно для получения наноструктурного состояния и достижения высокой плотности дефектов кристаллической структуры. Все остальные этапы выполняются по примеру 1, конечной целью является получение простого в эксплуатации наноструктурного объемного образца СНВ, который обладает упрощенной процедурой активации при взаимодействии с водородом и способен выдерживать многократный циклы абсорбции/десорбции.

Основные характеристики объемных образцов СНВ на основе ИМС TiFe представлены в таблице 1. Исследованные физико-механические свойства объемного компакта представлены в таблице 2.

Таблица 1
Состав Период решетки, нм Размер кристаллита, нм Содержание водорода при комнатной температуре и давлении 4 МПа Расчетная плотность, г/см3
МХС TiFe (компактированный) 0.2969 12-15 1.1-1.2 масс.% 6.582
Таблица 2
Микротвердость объемных образцов 560 HV
Предел прочности на сжатие объемных образцов 250 МПа
Кристаллографическая плотность до гидрирования 6.55 г/см3
Кристаллографическая плотность после гидрирования 5.82 г/см3 (≈99% от теоретической плотности β-фазы гидрида TiFeH)
Плотность объемных образцов до отжига 3.9 г/см3 (≈60% от теоретической плотности ИМС TiFe)
Плотность объемных образцов после отжига 4.3 г/см3 (≈66.5% от теоретической плотности ИМС TiFe)
Температуропроводность до отжига 0.2-0.3 мм2
Температуропроводность после отжига 1.0-1.2 мм2
Изменение объема образца при гидрировании ΔV/V0=13%

Способ получения объемно-пористых структур сплавов-накопителей водорода (СНВ), способных выдерживать многократные циклы гидрирования/дегидрирования без разрушения, включающий получение нанокристаллического порошка интерметаллического соединения путем механической активации порошков индивидуальных компонентов в шаровом планетарном активаторе при фоновой температуре реактора 100-500°С, или путем механоактивационной обработки готового порошка интерметаллического соединения до получения наноструктурного состояния с высокой плотностью дефектов кристаллической структуры, последующую консолидацию полученного порошка интерметаллического соединения в объемные образцы СНВ при давлении не менее 500 МПа, отжиг объемных образцов СНВ в вакууме ниже 10-3-10-4 Па при температуре 0,3-0,5 температуры плавления интерметаллического соединения.



 

Похожие патенты:
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.

Изобретение относится к цветной металлургии, в частности к производству сплавов на основе алюминия с несмешивающимися компонентами. Способ получения контактным плавлением сплавов на основе алюминия с несмешивающимися компонентами включает приведение в контакт с алюминием двух или более несмешивающихся компонентов и пропускание через зону контакта импульсного тока с плотностью (1-4)×103 А/см2 и длительностью 0,01-1,00 с.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области изготовления композиционных материалов для получения заготовок и полуфабрикатов и может быть использовано в авиационной и космической технике для изготовления деталей с повышенными эксплуатационными свойствами.

Группа изобретений относится к металлургии. Соли щелочных металлов, выбранные из группы, состоящей из сульфатов, хлоридов, нитратов, карбонатов, формиатов, оксалатов, сульфидов, сульфитов, бромидов, йодидов, фторидов, нитридов, нитритов, фосфатов, фосфидов, фосфитов и ацетатов щелочных металлов, смешивают в воде в качестве растворителя с оксидами полуметаллов, неметаллов или металлов, выбранными из группы, состоящей из CO2, CO, N2O3, N2O5, NO2, NOx, оксида кремния, оксида алюминия, оксида теллура, оксида германия, оксида сурьмы, оксида галлия, оксида ванадия, оксида марганца, оксида хрома, оксида титана, оксида циркония, оксида церия, оксида лантана, оксида кобальта, оксида меди, оксида железа, оксида серебра, оксида вольфрама и оксида цинка.

Изобретение относится к литейному и металлургическому производству, в частности к получению модификатора для алюминиевых сплавов. Способ включает смешивание порошка носителя с ультрадисперсным модифицирующим порошком в планетарной мельнице и прессование полученной композиции.

Изобретение относится к порошковой металлургии, в частности к получения спеченных твердосплавных деталей из градиентных твердых сплавов. Может использоваться для изготовления режущих вставок инструмента для машинообработки металла, горного инструмента или инструмента для холодной штамповки.
Изобретение относится к порошковой металлургии, в частности к получению пористых многослойных проницаемых материалов. Может использоваться в медицине для изготовления функционально-градиентных имплантатов.

Изобретение относится к газопоглощающим материалам, в частности к спеченным неиспаряющимся геттерам, и может быть использовано в вакуумной технике и микроэлектронике, в частности в разрядных приборах.

Изобретение относится к порошковой металлургии, в частности к способам получения высокопористых ячеистых материалов (ВПЯМ). Может использоваться для изготовления фильтров, шумопоглотителей, носителей катализаторов, теплообменных систем, конструкционных материалов, работающих в условиях высоких температур, может найти применение в энергетике, машиностроительной, химической и других отраслях промышленности.
Изобретение относится к порошковой металлургии, в частности к получению высокопористых ячеистых материалов на основе жаростойкого сплава. Может применяться для получения фильтров, носителей катализаторов, шумопоглотителей, теплообменников в энергетике, машиностроении и химической промышленности.
Изобретение относится к порошковой металлургии, в частности к получению жаростойких высокопористых проницаемых ячеистых сплавов. Может использоваться для получения блочных высокотемпературных носителей катализаторов, высокотемпературных фильтров газов и расплавов.

Изобретение относится к порошковой металлургии, в частности к получению упругопористых нетканых проволочных материалов. .

Изобретение относится к области металлургии, в частности к жаропрочным дисперсно-упрочненным сплавам на основе ниобия и способам их получения, и может быть использовано для изготовления деталей авиационно-космической техники, работающих при температурах до 1600°С.

Изобретение относится к порошковой металлургии, в частности к получению высокопористых ячеистых материалов (ВПЯМ) на основе хромаля. .
Изобретение относится к порошковой металлургии, а именно к способу изготовления пористых полуфабрикатов и изделий из порошков алюминиевых сплавов. .
Изобретение относится к порошковой металлургии, в частности к получению пористых изделий на основе пеноалюминия. .
Изобретение относится к области порошковой металлургии, в частности к способам получения высокопористых ячеистых материалов (ВПЯМ), предназначенных для использования в качестве фильтров, шумопоглотителей, носителей катализаторов, теплообменных систем, конструкционных материалов, работающих в условиях высоких температур, и может найти применение в энергетике, машиностроительной, химической и других отраслях промышленности. Способ включает приготовление суспензии смеси порошков на основе хромаля, нанесение суспензии на пористый полимерный материал, удаление нагреванием органических веществ с получением заготовки, спекание заготовки, при этом на заготовку после ее спекания наносят оксид хрома Cr2O3 и производят его закрепление в объеме и на поверхности ячеек заготовки путем спекания. Технический результат заключается в повышении каталитической активности и долговечности материала. 3 з.п. ф-лы, 1 пр.
Наверх