Способ измерения толщины неферромагнитного электропроводящего покрытия стали

Изобретение относится к области неразрушающего контроля методом вихревых токов. Способ заключается в том, что измерителем возбуждают в изделии электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), по которому судят о толщине покрытия. При изготовлении измерителя градуируют его, для чего измеряют фазовые сдвиги Δφ на мерных образцах с известной толщиной покрытия Тп и определенным типом стального основания, сохраняют градуировочную характеристику Δφ1п). Перед измерениями калибруют прибор, для чего измеряют кажущуюся толщину покрытия изделия без покрытия на другом стальном основании. Рассчитывают градуировочную характеристику Δφ2п) для изделий на таком основании и используют ее при измерениях. Измерительный комплекс состоит из вихретокового преобразователя, содержащего сердечник с обмотками возбуждения, фазового детектора, схемы балансировки, контролируемого изделия и компьютера, выполненного в виде микроконтроллера. Технический результат - повышение точности. 2 ил.

 

Изобретение относится к области неразрушающего контроля методом вихревых токов и может быть использовано для измерения толщин неферромагнитных покрытий из цинка, висмута, свинца, кобальта, кадмия и их сплавов на стальном основании. Выбор стали обусловлен тем, что в большинстве практических случаев основанием для покрытий являются стали различного сортамента.

Известен способ вихретокового измерения толщины покрытий [1], заключающийся в том, что зондируют изделие, для чего измерителем возбуждают в нем электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), по которому определяют толщину покрытия.

Недостатком такого способа является низкая точность, связанная с тем, что вихретоковые измерения сопровождаются воздействием множества мешающих параметров и для точного измерения толщины покрытий необходимы калибровки, которые в [1] не рассматриваются.

В [2] показано, что вихретоковый фазовый метод может быть успешно применен для определения толщины металлических покрытий массово выпускаемых изделий. Однако для его применения в [2] предлагают использовать образцовые меры с известными толщинами покрытий и на том типе стали, которую имеют изделия, подлежащие измерению. Очевидно, что сортамент сталей на производствах огромен, и иметь образцовые меры для каждой из них крайне затруднительно.

Наиболее близким к заявляемому способу является способ измерения толщины неферромагнитного электропроводящего покрытия [3], заключающийся в том, что зондируют изделие, для чего измерителем возбуждают в нем электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), при изготовлении измерителя градуируют его, для чего зондируют мерные образцы с известными толщинами Тпи неферромагнитного электропроводящего покрытия, получают и сохраняют в измерителе градуировочную зависимость толщины покрытия Тп от указанного фазового сдвига Тп=Fи(Δφи) при измерениях изделий с неизвестной толщиной Тпн покрытия, зондируют его, оценивают указанный фазовый сдвиг Δφн и по градуировочной зависимости определяют толщину Тизм покрытия изделия.

Недостатком данного способа является сложность калибровки, связанная с тем, что для нее требуются образцовые меры, близкие по характеристикам к предлагаемым изделиям. Таким образом, если такая калибровка производится при изготовлении прибора, то он оказывается узкоспециализированным, а если калибровка происходит непосредственно на месте применения, то потребителю необходим набор дорогостоящих образцовых мер, а сами измерения становятся трудоемкими.

Основной проблемой при изготовлении и использовании вихретоковых фазовых измерителей толщины является множество параметров, влияющих на точность измерения. К указанным параметрам относятся: индивидуальные особенности самого измерителя, различия в электромагнитных свойствах покрытий и оснований, ожидаемые толщины и шероховатость покрытий, температура и многие другие. Влияние этих факторов может быть в значительной степени устранено за счет градуировки и калибровки измерителя. Желательно, чтобы эти действия в большей степени производились на этапе изготовления прибора так, чтобы потребитель имел как можно меньше хлопот и затрат при его использовании.

Задачей, решаемой заявляемым изобретением, является создание простых и удобных способов градуировки и калибровки, обеспечивающих точное измерение толщины неферромагнитных электропроводящих покрытий на стали.

Для решения поставленной задачи в способе измерения толщины неферромагнитного электропроводящего покрытия стали, заключающемся в том, что зондируют изделие, для чего измерителем возбуждают в нем электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), при изготовлении измерителя градуируют его, для чего зондируют мерные образцы, изготовленные с основанием из известной стали с известными толщинами Тпи покрытия, получают и сохраняют в измерителе градуировочную зависимость указанного фазового сдвига Δφгп) от толщины покрытия Тп при измерениях изделий из стали с неизвестной толщиной Тпн покрытия, зондируют его, оценивают указанный фазовый сдвиг Δφн и по градуировочной зависимости определяют толщину Тизм покрытия изделия, при градуировке измерителя используют дополнительно мерные образцы без покрытия Тпи=0 и с толщиной покрытия не меньше максимальной Тпи≥Тпмакс, где Тпмакс - расчетное значение максимальной толщины покрытия, которую способен измерить данный измеритель, перед измерениями изделий с неизвестной толщиной Тпн покрытия и с основанием из произвольной стали предварительно калибруют измеритель, для чего зондируют изделие с таким же основанием без покрытия, определяют и сохраняют кажущуюся толщину Тизм=ΔТ0 покрытия, а при измерении неизвестной толщины покрытия определяют измерителем толщину покрытия Тизм и вычисляют действительное значение толщины покрытия по формуле:

T п д = Т п max ( Т и з м Δ Т 0 ) Т п max Δ Т 0 .

Существенные отличия заявляемого способа от прототипа заключаются в следующем.

При градуировке измерителя используют дополнительно мерные образцы без покрытия Тпи=0 и с толщиной покрытия больше максимальной Тпи≥Тпмакс, где Тпмакс - расчетное значение максимальной толщины покрытия, которую способен измерить данный измеритель. Использование таких мер при градуировке позволяет определить граничные точки градуировочной зависимости Δφгп). Градуировка измерителя производится однократно при его изготовлении, что упрощает использование приборов потребителем. При градуировке могут использоваться образцы толщин покрытий на любых (одинаковых) имеющихся в распоряжении производителя основаниях из стали, что удешевляет градуировку для изготовителя прибора.

В прототипе калибровка и градуировка совмещены и осуществляются путем измерения образцов с толщинами покрытия, близкими к измеряемой. Получение таких образцов является непростым делом, что ставит перед пользователем серьезные проблемы.

Перед измерениями изделий с неизвестной толщиной Тпн покрытия и с основанием из произвольной стали предварительно калибруют измеритель, для чего зондируют изделие с таким же основанием без покрытия, определяют и сохраняют кажущуюся толщину Тизм=ΔТ0 покрытия. Таким образом, простое и единственное измерение позволяет определить положение новой градуировочной зависимости.

В прототипе изменение материалов требует новой калибровки на образцах с известными толщинами покрытий, что достаточно сложно и дорого.

При измерении неизвестной толщины покрытия определяют измерителем толщину покрытия Тизм и вычисляют действительное значение толщины покрытия по формуле:

T п д = Т п max ( Т и з м Δ Т 0 ) Т п max Δ Т 0 .

Таким образом, вычисление простой линейной функции позволяет получить действительное значение толщины покрытия.

В прототипе толщина покрытия определяется по градуировочным данным.

Заявляемый способ иллюстрируют следующие графические материалы.

Фиг.1 - градуировочные характеристики вихретокового фазового преобразователя - зависимость фазового сдвига Δφ сигнала, наведенного в изделии u2(ωt) относительно возбуждающего сигнала u1(ωt), от толщины покрытия Тп, где:

1 - градуировочная характеристика зависимости, снятая на эталонных мерах толщины цинкового покрытия, нанесенных на основания из стали Ст20 [5];

2 - градуировочная характеристика изделия с цинковым покрытием и основанием, у которой магнитная проницаемость основания меньше магнитной проницаемости стали Ст20.

Фиг.2 - устройство, реализующее заявляемый способ, где:

4. Вихретоковый преобразователь.

5. Фазовый детектор.

6. Компьютер.

7. Изделие с толщиной покрытия Тп.

8. Результаты измерений Тпд.

9. Входы управления.

Рассмотрим возможность реализации заявляемого способа.

При реализации заявляемого способа или разработке соответствующего измерителя предварительно ограничивают область его применения, в частности задаются типом покрытия, например цинк на стали, максимальной толщиной покрытия, которая может быть у измеряемых изделий, и другими предполагаемыми параметрами. Эти параметры позволяют выбрать амплитуды и частоты возбуждающих сигналов, чувствительность и характеристики приемного тракта и т.п. Данный этап разработки выходит за рамки заявляемого способа.

Процесс зондирования измерителем изделия с основанием из стали с неферромагнитным электропроводящим покрытием заключается в том, что со стороны покрытия в изделии возбуждают электромагнитное поле гармоническим сигналом u1(ωt) и получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии. Оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt). В общем случае фазовый сдвиг Δφ пропорционален толщине покрытия, но имеет сложную нелинейную зависимость, которую необходимо определить. Для этого необходимо провести градуировку, т.е. связать значения фазовых сдвигов Δφ с абсолютными величинами толщин покрытий Тп.

Градуировка производится путем зондирования мер - изделий с основанием из стали с известными толщинами покрытий. Такие меры сложны в изготовлении, достаточно дороги и требуют аттестации. Таким образом, градуировку выполняют у производителя измерителя. Производитель может иметь один набор таких мер, например, с покрытием на основании из стали марки Ст20. В результате градуировки получают зависимость Δφ(Тп) - кривая 1, фиг.1, которую сохраняют в измерителе. Среди мерных образцов должен присутствовать образец без покрытия, которому соответствует сдвиг фаз Δφ1 - точка А, фиг.1.

При измерениях существует максимальная толщина покрытия Тпмакс, при которой все поле, создаваемое возбуждающим гармоническим сигналом u1(ωt), не выходит за пределы покрытия. В результате дальнейшее увеличение толщины покрытия не изменяет фазовый сдвиг. Изделию с такой толщиной покрытия соответствует фазовый сдвиг Δφ(Тпмакс), точка В, фиг 1. Для получения Δφгпмакс) проводят зондирование покрытия без основания, в рассматриваемом случае можно использовать толстую Тп≥Тпмакс цинковую пластину. Величину Тпмакс определяют теоретически [4] по формуле:

T п м а к с = 2 / σ ω μ 0 , ( 1 )

где σ - электропроводность покрытия, µ0 - магнитная постоянная, ω - круговая частота сигнала возбуждения u1(ωt).

Полученная и сохраненная в измерителе градуировочная зависимость Δφгп) - кривая 1, фиг.1 пригодна для измерений толщины покрытий изделий на основании из стали Ст20. Однако в производственном процессе потребителя измерительного прибора могут использоваться основания из других типов сталей. Построение градуировочных зависимостей для разных типов сталей привело бы к неоправданным затратам изготовителя или потребителя.

Пусть требуется найти градуировочную зависимость для изделий с цинковыми покрытиями на стали, у которой магнитная проницаемость основания меньше магнитной проницаемости стали Ст20, например нержавеющей стали 45X13, т.е. провести калибровку измерителя. Неизвестная градуировочная зависимость имеет вид 2, фиг.1. Положение точки В, фиг.1 не зависит от свойств основания и оказывается общим для всех градуировочных зависимостей.

Для определения точки С этой градуировочной зависимости 2, фиг.1 проводят зондирование изделия из стали 45X13 без покрытия и получают фазовый сдвиг Δφ2, фиг.1. По градуировочной зависимости 1 определяют толщину покрытия ΔТ0, которую имело бы это изделие, если бы оно было выполнено из стали Ст20, и сохраняют это значение. В результате этого измерения становится известным положение точки С градуировочной зависимости 2 для стали 45X13. Предполагают, что градуировочные зависимости 1 и 2 отличаются на линейную функцию 3, равную Δφ1-Δφ2 при толщине покрытия равной нулю Тп=0 и равную нулю при Тппмакс. Измерения показали, что такое предположение оправдано и обеспечивает с достаточной для практических применений точностью получение градуировочной зависимости для оснований из стали, отличной от использовавшейся при градуировке.

При измерениях изделий для определения неизвестной толщины покрытия на стали 45X13 определяют измерителем толщину покрытия Тизм, используя градуировочную зависимость 1, точка Е, фиг.1. А затем вычисляют действительное значение толщины покрытия по формуле, используя корректировочную прямую 3, фиг.1:

T п д = Т п max ( Т и з м Δ Т 0 ) Т п max Δ Т 0 . ( 2 )

Если измерению подвергается изделие с основанием из стали Ст20, то ΔT0 и Тпд= Tизм.

Таким образом, описанная калибровка измерителя позволяет с достаточной точностью определять толщины покрытий на основании из любой стали. Заявляемый способ удобен как для изготовителя измерителей, т.к. требует градуировки на образцовых мерах с одним типом оснований, так и для пользователя, т.к. требует проведения простой однократной калибровки путем измерения изделия без покрытия.

Рассмотри работу устройства, фиг.2, реализующего заявляемый способ. В целом, работа устройства не отличается от классических схем вихретоковых измерителей [1,3].

Вихретоковый преобразователь 4 предназначен для возбуждения электромагнитного поля в изделии 7 под воздействием гармонического сигнала u1(ωt) и получения сигнала u2(ωt), пропорционального электромагнитному полю вихревых токов, возникших в изделии. Вихретоковый преобразователь 4 [3] содержит сердечник с обмотками возбуждения, измерительной и компенсационной, также схему балансировки.

Фазовый детектор 5 предназначен для нахождения фазового сдвига Δφ сигнала u2(ωt) относительно u1(ωt).

Компьютер 6 обеспечивает формирование зондирующего сигнала u1(ωt), прием фазового сдвига Δφ, хранение градуировочных и калибровочных данных, расчет толщин покрытий и передачу результатов измерений через выход 8. Управление режимами работы измерителя осуществляется через входы 9. Компьютер 6 реализован в виде микроконтроллера.

Для зондирования сердечник вихретокового преобразователя 4 прислоняется к изделию 7. Компьютер 6 формирует зондирующий сигнал u1(ωt), вихревое поле, наведенное в изделии, преобразуется в измерительной обмотке в напряжение u2(ωt), пропорциональное электромагнитному полю, которое подается на фазовый детектор 5. На его второй вход подается напряжение u1(ωt) не от компьютера, а снятое с компенсационной обмотки, что выгоднее исходя из схемотехнических соображений.

Фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt) с фазового детектора через аналого-цифровой преобразователь (не показан) поступает в компьютер 6.

При производстве выполняется балансировка вихретокового преобразователя 4, а затем компьютер 6 переводит измеритель в режим градуировки. При этом в качестве изделия используются мерные аттестованные образцы с известными толщинами покрытия Тп. В качестве мерных следует использовать образцы, у которой магнитная проницаемость стали основания больше, чем σосноснi для всех изделий, подлежащих измерению. Определяют соответствующие фазовые сдвиги Δφ и сохраняют зависимость Δφ(Тп) в виде таблицы. Для решения обратной задачи - нахождения неизвестной толщины Тп по фазовому сдвигу Δφ аппроксимируют Δφ(Тп) полиномом.

Рассчитывают величину Тпмакс, используя формулу (1), и сохраняют полученное значение в памяти компьютера 6.

Перед измерениями толщин покрытий измеритель через вход 9 компьютера 6 переводят в режим калибровки. Проводят зондирование изделия без покрытия. Сохраняют в компьютере 6 значение ΔТ0.

При измерениях зондируют изделия с покрытием, определяют по градуировочной зависимости 1, фиг.1, толщину покрытия Тизм (точка Е), а затем по формуле (2) вычисляют действительную толщину Тпд покрытия (точку F, фиг.1, градуировочной зависимости 2).

Исследования показали, что при предложенном методе калибровки ошибка в измерении толщины ΔТп<±(0,01Тп+1) мкм в диапазоне контролируемых толщин до 100 мкм, что вполне пригодно для практических применений.

Таким образом, заявляемый способ может быть реализован на практике и при достаточной точности обеспечивает простоту и удобство изготовления устройств и их применения.

Источники информации

1. Патент RU 2384839.

2. Ноймайер П. Вихретоковый фазовый метод измерения толщины гальванических покрытий. - В мире неразрушающего контроля, 2008, №2, с.29-30.

3. Патент RU 2456589.

4. Потапов А.И., Сясько В.А. Неразрушающие методы и средства контроля толщины покрытий и изделий / Научное, методическое, справочное пособие. - СПб.: Гуманистика, 2009. - 904 с.

Способ измерения толщины неферромагнитного электропроводящего покрытия стали, заключающийся в том, что зондируют изделие, для чего измерителем возбуждают в нем электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), при изготовлении измерителя градуируют его, для чего зондируют мерные образцы, изготовленные с основанием из известной стали с известными толщинами Тпи покрытия, получают и сохраняют в измерителе градуировочную зависимость указанного фазового сдвига Δφгп) от толщины покрытия Тп при измерениях изделий из стали с неизвестной толщиной Тпн покрытия, зондируют его, оценивают указанный фазовый сдвиг Δφн и по градуировочной зависимости определяют толщину Тизм покрытия изделия, отличающийся тем, что при градуировке измерителя используют дополнительно мерные образцы без покрытия Тпи=0 и с толщиной покрытия не меньше максимальной Тпи≥Тпмакс, где Тпмакс - расчетное значение максимальной толщины покрытия, которую способен измерить данный измеритель, перед измерениями изделий с неизвестной толщиной Тпн покрытия и с основанием из произвольной стали предварительно калибруют измеритель, для чего зондируют изделие с таким же основанием без покрытия, определяют и сохраняют кажущуюся толщину Тизм=ΔТ0 покрытия, а при измерении неизвестной толщины покрытия определяют измерителем толщину покрытия Тизм и вычисляют действительное значение толщины покрытия по формуле: T п д = Т п max ( Т и з м Δ Т 0 ) Т п max Δ Т 0 .



 

Похожие патенты:

Изобретение относится к устройству для регистрации дефектов в контролируемом образце, перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, которое имеет блок передающих катушек, содержащий по меньшей мере одну передающую катушку, предназначенную для намагничивания контролируемого образца периодическими переменными электромагнитными полями, блок улавливающих катушек, содержащий по меньшей мере одну улавливающую катушку, предназначенную для регистрации периодического электрического сигнала, содержащего несущее колебание, при этом когда дефект регистрируется улавливающими катушками, наличие дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, блок обработки сигналов, предназначенный для формирования полезного сигнала из сигнала улавливающей катушки, и блок обработки результатов, предназначенный для обработки полезного сигнала с целью обнаружения дефектов в контролируемом образце.

Изобретение относится к устройству для регистрации дефектов (23) в контролируемом образце (13), перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, причем передающие катушки (18) намагничивают образец периодическими переменными электромагнитными полями, улавливающие катушки (15) регистрируют периодический электрический сигнал, содержащий несущее колебание, при этом, когда дефект регистрируется улавливающими катушками, наличие этого дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, блок (60, 50, 64) обработки результатов обрабатывает полезный сигнал с целью обнаружения дефекта в контролируемом образце.

Предложение относится к неразрушающему контролю и может быть использовано для дефектоскопии и измерения толщины стенки полых деталей типа лопаток газотурбинных двигателей, выполненных как из металла, так и полностью или частично выполненных из керамики.

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним.

Использование: для неразрушающего контроля изделий посредством вихревых токов. Сущность изобретения заключается в том, что установка для неразрушающего контроля дефектов в проверяемом изделии посредством вихревых токов содержит катушку возбуждения (14), на которую может подаваться сигнал (SE) возбуждения для воздействия на проверяемое изделие (16) переменным электромагнитным полем, аналого-цифровой преобразователь (21), фильтрующее устройство (22), вход которого соединен с аналого-цифровым преобразователем (21) и которое выполнено с возможностью осуществления полосовой фильтрации, демодулятор (27), вход которого соединен с выходом указанного фильтрующего устройства (22), приемную катушку (17), предназначенную для формирования сигнала (SP) катушки, зависящего от дефекта в проверяемом изделии (16), причем вход аналого-цифрового преобразователя (21) соединен с приемной катушкой (17), причем фильтрующее устройство (22) выполнено с возможностью уменьшения частоты сканирования.

Использование: для обнаружения трещин на деталях вращения. Сущность изобретения заключается в том, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом деталь вращают, а вихретоковый преобразователь скользит по поверхности детали в окружном направлении, получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля.

Использование: для дефектоскопии технологических трубопроводов. Сущность изобретения заключается в том, что комплекс дефектоскопии технологических трубопроводов состоит из: подвижного модуля, бортовой электронной аппаратуры, бортового компьютера; датчиков дефектов; одометров; троса; наземной лебедки с барабаном для троса; бортового источника электропитания; наземного компьютера; при этом в него ведены: первый и второй направляющие конусы, несколько опорно-ходовых манжет, несколько групп ходовых пружинных узлов (ХПУ), несколько групп прижимных пружинных узлов (ППУ), несколько групп ультразвуковых датчиков системы неразрушающего контроля (УДСНК), несколько групп толкателей, несколько ультразвуковых эхолокаторов, несколько контроллеров управления прижимными пружинными узлами, несколько контроллеров управления ходовыми пружинными узлами, первый радиомодем, второй радиомодем, несколько контроллеров управления ультразвуковыми датчиками системы неразрушающего контроля (КУУДСНК).

Использование: для диагностики устройств контроля схода подвижного состава (УКСПС). Сущность изобретения заключается в том, что контроль производят методом магнитной памяти металла (МПМ) и вихретоковым методом (ВТМ), о непригодности элементов судят при обнаружении дефектов в элементе одним из методов, при этом дефектом при контроле методом МПМ является наличие локальных зон с измененной структурой материала, имеющих высокие механические напряжения, градиент напряженности собственных магнитных полей рассеяния которых не превышает эталонное значение 5*104 А/м2 на разрушаемых элементах цилиндрической формы, а на элементах плоской формы - 13*104 А/м2, а дефектом при контроле ВТМ является наличие микротрещин в разрушаемом элементе с раскрытием более 0,05 мм.

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей.

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Изобретение относится к неразрушающему контролю качества материалов и изделий и может быть использовано для измерения толщины немагнитных металлических покрытий на диэлектрической основе или на немагнитной основе с другой удельной электрической проводимостью. Технический результат заключается в повышении чувствительности и точности измерения толщины электропроводных покрытий. Устройство содержит генератор возбуждающего сигнала, вихретоковый трансформаторный преобразователь с ферритовым сердечником, обмоткой возбуждения и встречно включенными измерительной и компенсационной обмотками, средняя точка которых соединена с нулевой цепью, первый и второй усилители, фазовый детектор, фильтр низкой частоты, амплитудный детектор и микроконтроллер с аналого-цифровым преобразователем. Указанный технический результат достигается применением двух конденсаторов в компенсирующей и измерительной обмотках для обеспечения резонансного режима работы вихретокового трансформаторного преобразователя, а также двухканального аналогового переключателя с коммутатором напряжения для переключения измерительных каналов с вычислением разности результатов измерений за два такта преобразования. 1 ил.

Изобретение относится к измерительной техники, конкретно к способам неразрушающего контроля, и позволяет повысить точность определения параметров дефектов. Снимают годографы влияния зазора между преобразователем и объектом контроля на сигнал на бездефектном участке настроечного образца и на участке этого образца с калибровочным дефектом известной величины. Годографы представлены на комплексной плоскости вносимых напряжений Im (Uвн) и Re (Uвн). Кривая 1 - годограф влияния зазора над бездефектным участком настроечного образца. Точка А соответствует положению преобразователя непосредственно на настроечном образце, а точка Н - на расстоянии, где влиянием настроечного образца можно пренебречь. Кривая 2 - годограф влияния зазора на участке настроечного образца с калибровочным дефектом известной величины. Снимают годограф влияния зазора на сигнал на бездефектном участке объекта контроля, показанный кривой 3. Если между направлениями годографов 1 и 3 угол составляет величину Ф, то изменяют фазу тока возбуждения на этот угол Ф так, чтобы годографы влияния зазора на бездефектных участках настроечного образца и объекта контроля совпали и потом осуществляют контроль объекта. 1 ил.

Изобретение относится к устройствам контроля вихревыми токами для определения дефектов на поверхности или на малой глубине детали, в частности лопасти вентилятора авиационного двигателя. Устройство содержит зонд (20), в котором размещен датчик (21), при этом зонд установлен с возможностью поворота на конце рукоятки (27), а направляющая (29) имеет базовую поверхность (31) и средства контролируемого регулирования положения направляющей параллельно оси трубки. При этом упомянутая направляющая (29) имеет форму муфты, коаксиальной упомянутой рукоятке (27), из которой выступает упомянутый зонд, при этом один из концов муфты имеет кольцевую поверхность, образующую упомянутую базовую поверхность (31). Технический результат - создание устройства, являющегося простым при манипулировании и легко адаптируемым для неразрушающего контроля деталей, имеющих сложную форму. Кольцевая базовая поверхность может быть приспособлена к любым поверхностям, и устройство имеет возможность поворота относительно его продольной оси. 7 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к устройству производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя, в частности турбомашины. Устройство (10) производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя турбомашины, содержащее трубку (12), на дистальном конце которой установлен палец (14), который удерживает на одном из своих концов пластинку (16) поддержки инструмента контроля (18), а на своем противоположном конце лапку (20) поддержки и (или) зацепления на конструктивном элементе двигателя; причем эта лапка перемещается в направлении (30), параллельном продольной оси пальца. Технический результат - разработка устройства неразрушающего контроля, позволяющего осуществлять контроль конструктивных элементов независимо от их положения в турбомашине и доступности и твердо удерживать инструмент или датчик контроля на этапе контроля. 11 з.п. ф-лы, 8 ил.

Использование: для проверки длинномерных изделий с помощью вихревых токов. Сущность изобретения заключается в том, что узел проходной катушки (100) для применения в устройстве проверки длинномерных изделий непрерывным способом с помощью вихревых токов включает узел катушки возбуждения с катушкой возбуждения (122), окружающей проходное отверстие (112) для пропуска длинномерного изделия (190) в направлении прохода (192), и расположенный вокруг проходного отверстия узел приемной катушки. Узел приемной катушки включает два или несколько распределенных по периферии проходного отверстия (112) сегментных узлов катушек (142-1÷142-8), при этом каждый сегментный узел катушек имеет зону приема, покрывающую лишь часть периферии поверхности длинномерного изделия. Сегментные узлы катушек (142-1÷142-8) распределены по меньшей мере по двум окружающим проходное отверстие оболочкам (S1, S2), находящимся на различных расстояниях (А1, А2) от базовой оси (114) узла проходной катушки. При этом первые сегментные узлы катушек (142-1÷142-4) без взаимного перекрытия расположены в первой оболочке (S1), а вторые сегментные узлы катушек (142-5÷142-8) без взаимного перекрытия расположены во второй оболочке (S2). Первые и вторые сегментные узлы катушек расположены с таким сдвигом по периферии относительно друг друга, что вторые сегментные узлы катушек промеряют участки периферии, не покрытые первыми сегментными узлами катушек. Технический результат: обеспечение возможности создания высокопрочного узла проходной катушки, позволяющего получать достоверные и содержательные результаты контроля на наличие дефектов и других неоднородностей в проверяемом объекте. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к устройству для регистрации электропроводных частиц (20) в жидкости (16), текущей в трубе (10) со скоростью (v), причем передающие катушки (18) подвергают жидкость воздействию периодических переменных электромагнитных полей для наведения в частицах вихревых токов, улавливающие катушки (15) регистрируют периодический электрический сигнал, соответствующий вихревым токам и содержащий несущее колебание, при этом, когда частицы попадают в эффективную ширину зоны чувствительности улавливающих катушек, наличие частицы способствует формированию амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, и блок (50, 60, 64) обработки данных обрабатывает полезный сигнал, чтобы зарегистрировать прохождение в трубе электропроводных частиц. В соответствии с изобретением посредством блока обработки сигналов путем осуществления контроля формы кривой преобразованного в цифровую форму сигнала улавливающей катушки определяют перемодуляцию каскада аналого-цифровых преобразователей сигналом улавливающей катушки, а затем путем математической аппроксимации преобразованного в цифровую форму сигнала улавливающей катушки восстанавливают часть сигнала, срезанную каскадом аналого-цифровых преобразователей. Технический результат - расширение диапазона измерений, увеличение вероятности быстрой локализации ошибки. 2 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для обнаружения коррозии в лопатках газотурбинной установки. Сущность: датчик содержит детекторную головку, форма которой согласована с геометрией поверхности переходной секции лопатки газовой турбины. Детекторная головка выполнена с возможностью перемещения вдоль осевого направления переходной секции для обнаружения питтинговой коррозии. По меньшей мере одно индукционное устройство, расположенное внутри детекторной головки, создает первое магнитное поле в области переходной секции, входящей в контакт с детекторной головкой. Приемное устройство обеспечивает обнаружение сигнала, соответствующего второму магнитному полю, принимаемому из области переходной секции, на которую воздействует первое магнитное поле. Второе магнитное поле генерируется посредством токов, созданных в данной области первым магнитным полем. Затем обрабатывающее сигнал устройство обрабатывает обнаруженный сигнал для корреляции соответствующей амплитуды обнаруженного сигнала с наличием питтинговой коррозии в данной области, так что наличие питтинговой коррозии определяют без какого-либо демонтажа корпуса газотурбинной установки. 8 н. и 15 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике, представляет собой устройство для вихретоковой дефектоскопии и может быть использовано для выявления и определения параметров подповерхностных дефектов в ферромагнитных объектах. Устройство содержит источник постоянного магнитного поля, линейку вихретоковых преобразователей между его полюсами, параллельную полюсам, и узел регулировки напряженности намагничивающего постоянного магнитного поля. Узел регулировки выполнен в виде рамы и подрамника, соединенных с возможностью поворота относительно оси вращения, направленной вдоль одной из сторон рамы и перпендикулярной линейке преобразователей, а также фиксатора подрамника относительно рамы с заданным углом между их плоскостями. Система обеспечивает создание постоянного магнитного поля, монотонно изменяющегося вдоль линейки преобразователей. Технический результат изобретения - повышение чувствительности и информативности контроля. 4 ил.

Использование: для неразрушающего контроля качества пайки токоведущих соединений. Сущность изобретения заключается в том, что предварительно определяют уровень пропаянности, для чего калибруют первую шкалу вихретокового устройства контроля, используя образец, имитирующий пропаянность 0%, у которого зазор между стенками П-образной оправки и вкладываемой в нее медной пластиной запаян только по поверхности. При этом чувствительность вихретокового устройства позволяет по зависимости показаний устройства контроля, полученной при перемещении П-образного преобразователя по всей длине соединения, определять уровень его пропаянности при существенном уменьшении влияния изменений внешнего сечения соединения на результаты контроля. Затем для калибровки второй шкалы вихретокового устройства используют образец, имитирующий пропаянность 0% для этой шкалы, с зазором между стенками П-образной оправки и вкладываемой в нее медной пластиной, запаянным на большую (6,0÷6,5 мм) глубину, при этом чувствительность вихретокового устройства увеличивается, что позволяет существенно повысить достоверность выявления дефектов пайки контролируемых соединений, относительно предварительно определенного уровня пропаянности, полученного при существенном уменьшении влияния изменений внешнего сечения соединения на результаты контроля, что повышает достоверность выявления дефектов пайки. Технический результат: повышение достоверности выявления дефектов пайки токоведущих кабелей. 7 ил., 1 табл.

Согласно изобретению предложен способ неразрушающего контроля материала испытываемого объекта (8), движущегося мимо датчика (1) с переменной относительной скоростью, содержащий следующие этапы: регистрация сигнала (US) датчика посредством датчика (1); аналого-цифровое преобразование сигнала (US) датчика с получением оцифрованного сигнала (USD) датчика в виде последовательности цифровых слов с заранее заданной, в частности постоянной, частотой повторения слов; n-ступенчатое прореживание частоты повторения слов оцифрованного сигнала (USD) датчика или цифрового детектированного сигнала (UM), выделенного из оцифрованного сигнала датчика, причем это n-ступенчатое прореживание осуществляют с помощью n-каскадного прореживателя (от 5_1 до 5_n), где n≥2; выбор выходного сигнала (от UA_1 до UA_n) одного из n каскадов (от 5_1 до 5_n) прореживателя в зависимости от мгновенной относительной скорости; и фильтрация выбранного выходного сигнала посредством цифрового фильтра (7), синхронизированного с частотой повторения слов выбранного выходного сигнала. Изобретение обеспечивает возможность надежно и просто осуществлять неразрушающий контроль материала испытуемого объекта при переменных относительных скоростях испытуемого объекта. 2 н. и 7 з.п. ф-лы, 1 ил.
Наверх