Тепловая электростанция типа кочстар



Тепловая электростанция типа кочстар
Тепловая электростанция типа кочстар
Тепловая электростанция типа кочстар
Тепловая электростанция типа кочстар
Тепловая электростанция типа кочстар
Тепловая электростанция типа кочстар
Тепловая электростанция типа кочстар

 


Владельцы патента RU 2532862:

Стареева Мария Олеговна (RU)
Стареева Мария Михайловна (RU)
Кочетов Олег Савельевич (RU)

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, причём оросительное устройство градирни содержит сложенные слоями параллельно друг другу трубчатые элементы из термопластичного материала с решетчатой стенкой, или ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, трубы выполнены цилиндрическими, размещены во всех слоях параллельно друг другу и сварены по торцам модуля между собой в местах соприкосновения, при этом полости каждой из труб и межтрубное пространство заполнены полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб. Изобретение позволяет повысить экономичность тепловой электрической станции. 2 з.п. ф-лы, 7 ил.

 

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.

Известна тепловая электрическая станция по патенту РФ №2350760, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем.

Недостатком при использовании известной тепловой электрической станции, относится то, что тепловая электрическая станция обладает пониженной экономичностью, так как на тепловой электрической станции не используется теплота конденсации отработавшего в турбине пара, а отводится в окружающую среду с атмосферным воздухом.

Технический результат - повышение экономичности тепловой электрической станции.

Это достигается тем, что тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с форсунками и с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем, а оросительное устройство градирни содержит сложенные слоями параллельно друг другу трубчатые элементы из термопластичного материала с решетчатой стенкой, причем по торцам трубчатые элементы сварены между собой, трубчатые элементы выполнены с треугольным поперечным сечением и между каждым слоем трубчатых элементов поперек трубчатых элементов вдоль каждого их торца проложена полоса из термопластичного материала, сваренная с трубчатыми элементами в местах их соприкосновения с полосой, причем в процессе сварки оплавляют торцевые участки трубчатых элементов и проложенных между ними полос и формируют в процессе оплавления монолитные торцевые стенки блока, при этом полости каждого из трубчатых элементов и межтрубное пространство заполнено полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки решетчатой стенки трубчатых элементов, а водоуловитель представляет собой блок, состоящий из пластмассовых профилей на основе полимеров, имеющих рядное расположение в виде линейных волнообразных или уголковых сплошных элементов, причем рабочие элементы водоуловителя представляют изогнутый оребренный профиль, а сборка рабочих элементов производится специальными фиксирующими и одновременно крепежными элементами коробчатого типа, при этом возможна перфорация на линейных волнообразных или уголковых сплошных элементах, или ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, трубы выполнены цилиндрическими, размещены во всех слоях параллельно друг другу и сварены по торцам модуля между собой в местах соприкосновения, при этом полости каждой из труб и межтрубное пространство заполнены полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб.

На фиг.1 представлена схема тепловой электрической станции, на фиг.2 - ороситель градирни в аксонометрии, на фиг.3 - водоуловитель градирни в аксонометрии, на фиг.4 представлен вариант оросителя градирни в аксонометрии, на фиг.5, 6 и 7 - варианты выполнения полимерных ячеистых труб.

Тепловая электрическая станция (фиг.1) содержит систему оборотного водоснабжения градирни 1, декарбонизатор 2 с форсунками и с воздуховодом 3, в который включены воздухоподогреватель 4 и вентилятор 5, систему оборотного водоснабжения, включающую градирню, водоприемный колодец 6, самотечный водовод 7, циркуляционный насос 8, напорный трубопровод 9 к конденсатору 1 паровой турбины и сливной напорный трубопровод 10 к градирне, состоящей из вытяжной башни 11 и водосборного бассейна 12, соединенного самотечным перепускным каналом 13 с водоприемным колодцем 6, трубопровод 14, соединяющий вытяжную башню 11 градирни с всасывающим коробом вентилятора 5 для подачи подогретого и насыщенного водяными парами воздуха под насадку декарбонизатора 2, при этом вытяжная башня 11 градирни снабжена водораспределительным лотком 15 с разбрызгивающими соплами 16, оросительным устройством 17 и водоуловителем 18.

Оросительное устройство градирни (фиг.2) содержит сложенные слоями параллельно друг другу трубчатые элементы 19 из термопластичного материала с решетчатой стенкой. По торцам 20 трубчатые элементы 19 сварены между собой, выполнены с треугольным поперечным сечением и между каждым слоем трубчатых элементов 19 поперек трубчатых элементов 19 вдоль каждого их торцов 20 проложена полоса 21 из термопластичного материала, сваренная с трубчатыми элементами 19 в местах их соприкосновения с полосой 21, причем в процессе сварки оплавляют торцевые участки трубчатых элементов 19 и проложенных между ними полос 21 и формируют в процессе оплавления монолитные торцевые стенки блока. Полости каждого из трубчатых элементов 19 и межтрубное пространство заполнены полыми полимерными шарами 22, причем диаметр шаров на 5÷10% больше максимального размера ячейки решетчатой стенки трубчатых элементов 19.

Кроме того, в блоке насадки в поперечном сечении все трубчатые элементы 19 могут иметь одинаковое поперечное сечение и могут быть выполнены в форме равностороннего или равнобедренного треугольника. Трубчатые элементы 19 в слоях могут быть уложены таким образом, что в поперечном сечении трубчатые элементы 19 расположены один под другим или трубчатые элементы 19 в слоях могут быть уложены таким образом, что в поперечном сечении в соседних слоях трубчатые элементы 19 одного слоя расположены между трубчатыми элементами 19 соседнего слоя.

Водоуловитель (фиг.3) представляет собой блок, состоящий из пластмассовых профилей на основе полимеров, имеющих рядное расположение в виде линейных волнообразных или уголковых сплошных элементов, причем рабочие элементы водоуловителя представляют изогнутый оребренный профиль, а сборка рабочих элементов производится специальными фиксирующими и одновременно крепежными элементами коробчатого типа.

Возможна перфорация на линейных волнообразных или уголковых сплошных элементах. Таким образом достигаются требуемые прочностные характеристики и неизменяемость формы элементов и блоков, обеспечивается регулирование расстояния между рабочими элементами.

Система оборотного водоснабжения с применением градирен содержит градирни, соединенные между собой гидравлическими контурами приготовления и потребления воды. Для одного потребителя (на чертеже не показано) система включает в себя корпус градирни, в нижней части которой расположен бак для сбора воды с системой подпитки воды, затрачиваемой на испарение. Бак соединен с насосом, который подает охлажденную в градирне воду потребителю через фильтр.

Ороситель градирни (фиг.4) может быть выполнен в виде модуля из слоев 23 полимерных ячеистых труб 24. Трубы ориентированы во всех слоях 23 параллельно друг другу и спаяны по торцам 25 модуля между собой в местах 26 соприкосновения. Полости каждой из труб и межтрубное пространство заполнено полыми полимерными шарами 27, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб 24. Это дает возможность избежать просадки слоев оросителя, т.е. обеспечить при монтаже и сохранить в процессе эксплуатации оптимальную геометрию изогнутых ячеистых поверхностей труб для создания по всему объему оросителя тонкой водяной пленки без каплеобразования. Так достигается равномерность тепломассообмена и, следовательно, повышается охлаждающая способность оросителя и снижается его материалоемкость. Дополнительную жесткость конструкции придает заполнение труб и межтрубного пространства полыми полимерными шарами 27.

Ячеистые полимерные трубы 24 получают методом экструзии, нарезают на секции, длина которых соответствует длине боковой стороны модуля, и укладывают в кондуктор, соблюдая необходимое направление укладки, т.е. располагая трубы 24 параллельно друг другу. После накопления в кондукторе необходимого количества труб 24 к их торцам подводят нагревательные элементы и сваривают их между собой в местах 26 соприкосновения. За счет этого по торцам модуля оросителя образуются диафрагмы жесткости, позволяющие ему в процессе эксплуатации сохранить исходную оптимальную геометрию своих элементов. Дополнительную жесткость конструкции придает более плотная укладка труб в шахматном порядке в смежных слоях.

Трубы в модуле могут быть расположены наклонно (фиг.5). Трубы могут быть выполнены извилистыми (фиг.6). Трубы могут быть собраны из гофрированных листов (фиг.7), которые сварены по краям гофр, причем структура каналов может быть как прямой, извилистой, наклонной, так и состоящей из комбинаций этих форм.

Материал оросителя ПВХ (поливинилхлорид) с добавкой, обеспечивающей высокопрочный, химически стойкий пластик не поддерживающий горения и сохраняющий свои эксплуатационные свойства при температуре наружного воздуха от -60°С до +55°С. Вентилятор градирни выполнен с пластиковым рабочим колесом, а также с односкоростным или, многоскоростным электродвигателем, позволяющим в процессе работы в зависимости от погодных условий менять производительность градирни за счет изменения расхода воздуха. Возможна конструкция со специальным частотным приводом регулирования оборотов вращения вентилятора, что обеспечит более чем двукратную экономию потребления электроэнергии. Градирня имеет аэродинамически выверенную конфигурацию проточной части корпуса, что повышает равномерность распределения потока воздуха через ороситель 20 градирни и увеличивает равномерность и степень охлаждения воды в градирне.

Работа тепловой электрической станции осуществляется следующим образом.

Охлажденная в градирне вода циркуляционным насосом 8 по напорному трубопроводу 9 подается в конденсатор 1 паровой турбины. В конденсаторе 1 циркуляционная вода нагревается за счет теплоты конденсации (парообразования) отработавшего в турбине пара и подается по сливному напорному трубопроводу 10 в водораспределительный лоток 15 вытяжной башни 11.

Из водораспределительного лотка 15 вода поступает в разбрызгивающие сопла 16. С помощью сопел 16 поток воды разбрызгивается и в форме струй и капель падает на оросительное устройство 17, а затем стекает в виде дождя в водосборный бассейн 12. В вытяжной башне 11 градирни навстречу потоку воды движется атмосферный воздух. В процессе непосредственного контакта теплоносителей осуществляется тепло- и массообмен между водой и воздухом, при этом вода охлаждается, а воздух подогревается и насыщается водяными парами. Затем воздух проходит водоуловитель 18, где из него отделяется капельная влага, и через вытяжную башню 11 градирни отводится в атмосферу.

Эффект охлаждения в градирне достигается за счет испарения 1% циркулирующей через градирню воды, которая разбрызгивается форсунками и в виде пленки стекает в бак через сложную систему каналов оросителя навстречу потоку охлаждающего воздуха, нагнетаемого вентиляторами (на чертеже не показано). Эффективный каплеотделитель позволяет снизить потери воды в результате капельного уноса. Количество капельной влаги, уносимое потоком воздуха, зависит от плотности орошения и при максимальном значении 25 м3/(час·м2) не превышает 0,1% от величины объемного расхода охлаждаемой воды через градирню.

Часть общего потока подогретого и насыщенного водяными парами в вытяжной башне градирни атмосферного воздуха по трубопроводу 14 направляется во всасывающий короб вентилятора 5 и подается под насадку форсунками декарбонизатора 2.

Оросительное устройство градирни работает следующим образом. Воду, подлежащую охлаждению в градирне, разбрызгивают на ороситель, а затем она стекает по поверхности трубчатых элементов 19 и охлаждается встречным потоком воздуха, при этом в процессе эксплуатации жесткая конструкция блоков позволяет сохранять исходную конфигурацию собранного блока, что позволяет повысить эффективность процесса тепломассообмена в градирне.

При использовании оросительного устройства в качестве водоуловителя капли воды, которые уносятся вместе с воздушным потоком, при проходе несколько слоев трубчатых элементов 19 оседают на поверхности последних, собираются в большие капли и стекают обратно в бассейн градирни. Таким образом предотвращается потеря воды с капельным уносом.

Водоуловитель не отклоняет воздушные потоки в разные стороны и не создает разнонаправленные восходящие динамические воздушные потоки, которые вызывают поломку лопастей и повышенную вибрацию работы электродвигателей вентиляторных градирен, а сборка рабочих элементов производится специальными фиксирующими и одновременно крепежными элементами коробчатого типа.

Такая конструкция позволяет достичь требуемых прочностных характеристик и неизменяемость формы элементов и блоков, обеспечивается регулирование расстояния между рабочими элементами. Интервал температур: от -55 до +80°С, в которых элементы водоуловителя не подвергаются деформации, а выполнение их из полимеров предотвращает биологическое обрастание. Примерный размер блока: 1600×1000×185 мм.

Исходная химически очищенная вода подается в декарбонизатор 2, где декарбонизируется встречным потоком воздуха, подаваемого под насадку декарбонизатора из вытяжной башни 11 градирни по трубопроводу 14 вентилятором 5. Декарбонизированная вода направляется в деаэратор, откуда подается, например, на подпитку системы теплоснабжения. В случае, когда температура воздуха, подаваемого из вытяжной башни 11 градирни, недостаточна для осуществления процесса декарбонизации воды, то его направляют в воздухоподогреватель 4, в котором догревают и вентилятором 5 подают под насадку декарбонизатора 2.

Из водосборного бассейна 12 охлажденная вода по самотечному перепускному каналу 13 поступает в водоприемный колодец 6 и в самотечный водовод 7, откуда циркуляционным насосом 8 снова подается в напорный трубопровод 9.

Снабжение тепловой электрической станции системой оборотного водоснабжения градирни уменьшает количество воды, испаряемой в воздух в процессе тепло- и массообмена в насадке декарбонизатора и отводимой с воздухом в атмосферу, что дополнительно повышает экономичность тепловой электрической станции за счет снижения потерь химически очищенной воды с выпаром декарбонизатора.

1. Тепловая электростанция, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем, ороситель градирни содержит сложенные слоями параллельно друг другу трубчатые элементы из термопластичного материала с решетчатой стенкой, причем по торцам трубчатые элементы сварены между собой, трубчатые элементы выполнены с треугольным поперечным сечением, и между каждым слоем трубчатых элементов поперек трубчатых элементов вдоль каждого их торца проложена полоса из термопластичного материала, сваренная с трубчатыми элементами в местах их соприкосновения с полосой, причем в процессе сварки оплавляют торцевые участки трубчатых элементов и проложенных между ними полос и формируют в процессе оплавления монолитные торцевые стенки блока, при этом полости каждого из трубчатых элементов и межтрубное пространство заполнено полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки решетчатой стенки трубчатых элементов, водоуловитель представляет собой блок, состоящий из пластмассовых профилей на основе полимеров, имеющих рядное расположение в виде линейных волнообразных или уголковых сплошных элементов, причем рабочие элементы водоуловителя представляют изогнутый оребренный профиль, а сборка рабочих элементов производится специальными фиксирующими и одновременно крепежными элементами коробчатого типа, при этом возможна перфорация на линейных волнообразных или уголковых сплошных элементах, ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, трубы выполнены цилиндрическими, размещены во всех слоях параллельно друг другу и сварены по торцам модуля между собой в местах соприкосновения, при этом полости каждой из труб и межтрубное пространство заполнено полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб, отличающаяся тем, что ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, а трубы в модуле расположены наклонно, а полости каждой из труб и межтрубное пространство заполнены полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб.

2. Тепловая электростанция по п.1, отличающаяся тем, что ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, а трубы выполняют извилистыми, а полости каждой из труб и межтрубное пространство заполнены полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб.

3. Тепловая электростанция по п.1, отличающаяся тем, что ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, собранных из гофрированных листов, которые сваривают по краям гофр, а структура каналов труб может состоять из следующих комбинаций: прямая - извилистая, прямая - наклонная, извилистая - наклонная.



 

Похожие патенты:

Изобретение относится к энергетике. Установка для подготовки подпиточной воды теплоэлектроцентрали, у которой паровая турбина оснащена поверхностным конденсатором первой и второй ступеней нагрева для подогрева сырой подпиточной воды.

Изобретение относится к энергетике. Тепловая электрическая станция содержит конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения, которая включает градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, которые, в свою очередь, выполнены в виде форсунки с распылительным диском, содержащей цилиндрический корпус со штуцером, жестко связанным с корпусом и соосно расположенным в верхней части корпуса и имеющим цилиндрическое отверстие для подвода жидкости, соединенное с диффузором, осесимметричным корпусу и штуцеру, а к корпусу, в его нижней части, посредством, по крайней мере, трех спиц подсоединен распылитель, расположенный перпендикулярно оси корпуса и выполненный в виде сплошного диска.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Способ работы тепловой электрической станции характеризуется тем, что вырабатываемый в котле пар подают в турбину, паром отборов турбины нагревают сетевую воду в сетевых подогревателях, из сетевых подогревателей отводят паровоздушную смесь отдельным эжектором, а перед подачей в эжектор охлаждают редуцированным газом, который подают в горелки котла.

Изобретение относится к энергетике. В способе работы теплофикационной паротурбинной установки производят генерацию пара в паровом котле, его расширение в турбине с одновременной выработкой электроэнергии и подогревом сетевой воды в зависимости от температурного графика тепловой сети и графика электрической нагрузки в основных сетевых подогревателях паром из теплофикационных отборов турбины или острым паром от редуционно-охладительной установки в дополнительных сетевых подогревателях при отключении основных сетевых подогревателей и снижении подачи пара на турбину.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным насосом и направляют в регенеративные подогреватели низкого давления.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным насосом и направляют в регенеративные подогреватели низкого давления.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным насосом и направляют в регенеративные подогреватели низкого давления.

Изобретение относится к области теплоэнергетики. .

Изобретение относится к турбиностроению и теплоэнергетике и может быть использовано при разработке и эксплуатации паровых турбин для парогазовых установок (ПГУ) бинарного типа с котлами-утилизаторами.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к энергетике. Установка для подготовки подпиточной воды теплоэлектроцентрали содержит паровую турбину с промышленным отбором пара и конденсатором со встроенным пучком, химводоочистку, вакуумный деаэратор, трубопроводы сырой, умягченной подпиточной воды, прямой и обратной сетевой воды, дополнительную паровую турбину, снабженную поверхностным конденсатором, в котором по ходу отработавшего пара последовательно размещены первая и вторая поверхности нагрева, причём трубопровод сырой воды подключен к входу первой поверхности нагрева, выход которой трубопроводом сырой подогретой воды соединен через встроенный пучок конденсатора паровой турбины с промышленным отбором пара, с входом химводоочистки, выход которой связан трубопроводом умягченной подпиточной воды через вторую поверхность нагрева конденсатора дополнительной паровой турбины, трубопровод умягченной подпиточной воды, вакуумный деаэратор и трубопровод деаэрированной подпиточной воды с трубопроводом обратной сетевой воды. Изобретение позволяет повысить термодинамическую эффективность паровой турбины теплоэлектроцентрали и увеличить выработку электроэнергии на тепловом потреблении. 2 ил.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с форсунками и с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем, ороситель градирни выполняют в виде модуля из слоев полимерных ячеистых труб, трубы выполнены цилиндрическими, размещены во всех слоях параллельно друг другу и сварены по торцам модуля между собой в местах соприкосновения, при этом полости каждой из труб и межтрубное пространство заполнено полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб. Изобретение позволяет повысить экономичность тепловой электрической станции. 3 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем, а форсунка декарбонизатора для распыления жидкости содержит корпус с камерой завихрения и сопло, причем корпус выполнен в виде подводящего штуцера с центральным отверстием и жестко соединенной с ним и соосной цилиндрической гильзой с внешней резьбой. Изобретение позволяет повысить экономичность тепловой электрической станции. 3 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин в зимний период времени. Раскрыт способ работы тепловой электрической станции, по которому используют тепловой двигатель (5) с замкнутым контуром циркуляции, который работает по органическому циклу Ренкина. В тепловом двигателе (5) в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Рабочее тело расширяют в турбодетандере (6) теплового двигателя (5), конденсируют в теплообменнике-конденсаторе (8) и сжимают в конденсатном насосе (9). Отработавший пар поступает из паровой турбины (1) в паровое пространство конденсатора (2) паровой турбины, конденсируется на поверхности конденсаторных трубок. Конденсат с помощью конденсатного насоса (3) конденсатора (2) паровой турбины направляют в систему регенерации. При помощи указанного теплового двигателя (5) осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине (1) пара. При этом тепловой двигатель (5) используют при конденсации отработавшего в турбине (1) пара. Низкокипящее рабочее тело, после его сжатия в конденсатном насосе (9) теплового двигателя (5), нагревают и испаряют в конденсаторе (2) паровой турбины, используя скрытую теплоту парообразования, которую отводят при помощи низкокипящего рабочего тела, циркулирующего в замкнутом контуре, в турбодетандер (6) теплового двигателя. Расширение низкокипящего рабочего тела осуществляют до температуры насыщения с влажностью, не превышающей 12%. Изобретение позволяет повысить коэффициент полезного действия тепловой электрической станции за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, а также для повышения ресурса и надежности работы конденсатора паровой турбины. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано на тепловых электрических станциях. В способе работы тепловой электрической станции используют тепловой двигатель (5) с замкнутым контуром циркуляции. Тепловой двигатель (5) работает по органическому циклу Ренкина, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, которое циркулирует в замкнутом контуре. Рабочее тело расширяют в турбодетандере (6) теплового двигателя (5), конденсируют в теплообменнике-конденсаторе (8) теплового двигателя (5) и сжимают в конденсатном насосе (9) двигателя (5). Отработавший пар из паровой турбины (1) поступает в паровое пространство конденсатора (2), а пар производственных отборов из паровой турбины и производственных отбором пара в конденсатор (13). Пар конденсируется на поверхностях соответствующих конденсаторных трубок, а конденсаты с помощью конденсатных насосов (3, 14) паровой турбины (1) и паровой турбины (11) с производственным отбором пара направляют в систему их регенерации. При конденсации пара производственных отборов осуществляют утилизацию высокопотенциальной тепловой энергии при помощи охлаждающей жидкости теплового двигателя (5). Тепловой двигатель (5) используют при конденсации отработавшего в турбине (1) пара и осуществляют утилизацию сбросной низкопотенциальной тепловой энергии пара, отработавшего в турбине (1). После сжатия в конденсатном насосе (9) теплового двигателя (5) низкокипящее рабочее тело, при сверхкритическом давлении, нагревают в конденсаторе (2) паровой турбины (1) до критической температуры, используя скрытую теплоту парообразования. В конденсаторе (13) паровой турбины (11) с производственным отбором пара низкокипящее рабочее тело испаряют и перегревают до сверхкритической температуры, используя скрытую теплоту парообразования. Расширение рабочего тела в турбодетандере (6) осуществляют до температуры насыщения с влажностью не более 12%. Технический результат заключается в повышении коэффициента полезного действия тепловой электрической станции за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышении ресурса и надежности конденсатора паровой турбины и снижении выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано на тепловых электрических станциях. В способе работы тепловой электрической станции используют тепловой двигатель (5) с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. В качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Рабочее тело расширяют в турбодетандере (6) теплового двигателя (5), снижают его температуру в теплообменнике-рекуператоре (15) теплового двигателя (5), конденсируют в теплообменнике-конденсаторе (8) теплового двигателя (5), сжимают в конденсатном насосе (9) теплового двигателя (5) и нагревают в теплообменнике-рекуператоре (15) теплового двигателя (5). Отработавший пар и пар производственных отборов поступают, соответственно, из паровой турбины (1) в паровое пространство конденсатора (2) паровой турбины (1) и из паровой турбины (11) с производственным отбором пара в конденсатор (13) паровой турбины (11) с производственным отбором пара. Отработавший пар и пар производственных отборов конденсируются на поверхности, соответственно, конденсаторных трубок паровой турбины (1) и конденсаторных трубок паровой турбины (11) с производственным отбором пара. Соответствующие конденсаты с помощью конденсатного насоса (3) конденсатора (2) паровой турбины (1) и конденсатного насоса (14) паровой турбины (11) с производственным отбором пара направляют в систему их регенерации. При конденсации пара производственных отборов осуществляют утилизацию высокопотенциальной тепловой энергии при помощи охлаждающей жидкости теплового двигателя (5). При помощи теплового двигателя (5) осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине (1) пара и используют его при конденсации отработавшего в турбине (1) пара. Низкокипящее рабочее тело при сверхкритическом давлении после его нагрева в теплообменнике-рекуператоре (15) теплового двигателя (5) нагревают в конденсаторе (2) паровой турбины (1) в пределах критической температуры, используя скрытую теплоту парообразования. Далее низкокипящее рабочее тело испаряют и перегревают до сверхкритической температуры в конденсаторе (13) паровой турбины (11) с производственным отбором пара, используя скрытую теплоту парообразования, которую отводят при помощи циркулирующего в замкнутом контуре низкокипящего рабочего тела в турбодетандер (6) теплового двигателя (5). Технический результат заключается в повышении коэффициента полезного действия тепловой электрической станции за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышении ресурса и надежности конденсаторы паровой турбины и снижении выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Способ работы теплоэлектроцентрали с открытой теплофикационной системой, содержащей: котельные агрегаты, паровые турбины с промышленными отборами пара, конденсаторами и электрогенераторами, подогреватели сырой воды, химводоочистку для умягчения подпиточной сетевой воды, вакуумные деаэраторы подпиточной воды, питательные насосы, систему подогрева сетевой воды теплосети, согласно которому сырую воду вначале подогревают теплотой пара в конденсаторе дополнительной конденсационной паровой турбины, пар в которую подают из промышленных отборов паровых турбин, полезную работу дополнительной конденсационной паровой турбины используют для привода одного из питательных насосов; при частичных электрических и тепловых нагрузках теплоэлектроцентрали уменьшают подачу пара на дополнительную конденсационную паровую турбину, регулируя ее мощность и число оборотов, а также напор и расход питательной воды приводимого ею питательного насоса в соответствии с расходом питательной воды теплоэлектроцентрали. Изобретение позволяет повысить тепловую экономичность теплоэлектроцентрали и повысить выработку электроэнергии на тепловом потреблении. 2 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины. Изобретение позволяет повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, снизить тепловые выбросы в окружающую среду. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу утилизации тепловой энергии на тепловых электрических станциях (ТЭС). Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии. В тепловой электрической станции используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем. Дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. Указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электростанцией (ТЭС). Отработавший пар поступает из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью насоса направляют в систему регенерации. В ТЭС используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем. Осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. Указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина , в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело. Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышении ресурса и надежности работы конденсатора паровой турбины и снижении тепловых выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил.
Наверх