Спсоб удаления серы


 


Владельцы патента RU 2533146:

ТИССЕНКРУПП УДЕ ГМБХ (DE)

Изобретение относится к химической промышленности. Газовую смесь для сепарации высокосернистых компонентов газа подвергают процессу разделения, при котором образуется высокосернистый газ, содержащий диоксид углерода и соединения серы. Высокосернистый газ для выделения элементарной серы подводят к установке Клауса. В качестве реакционного газа в установку Клауса подводят технически чистый кислород. Остаточный газ, выходящий из установки Клауса и содержащий диоксид углерода и компоненты серы, подвергают каталитическому дожиганию с технически чистым кислородом, а водяной пар извлекают с помощью конденсации. Остаточный газ, состоящий в основном из диоксида углерода, имеет чистоту, которая делает возможным непосредственное хранение или техническое использование. Изобретение позволяет использовать диоксид углерода, содержащийся в высокосернистом газе. 23 з.п. ф-лы.

 

Изобретение относится к способу удаления серы, причем газовая смесь для сепарации высокосернистых компонентов газа подвергается процессу разделения, при котором образуется высокосернистый газ, содержащий диоксид углерода и соединения серы, в частности сероводород. При осуществлении способа сначала из потока газа с помощью подходящего абсорбента удаляются высокосернистые компоненты газа и при этом отделяются от полезных компонентов газа. При регенерации абсорбента, введенного в циркуляцию, содержащиеся высокосернистые компоненты газа освобождаются и затем направляются в установку Клауса (Claus).

Обычно способ Клауса осуществляется таким образом, что высокосернистый газ сжигается с воздухом, причем сероводород (H2S) с кислородом (02), содержащимся в воздухе для горения, превращается в элементарную серу (S) и воду (НзО), и причем элементарная сера (S) с помощью последующего охлаждения осаживается в конденсаторах ("Ullmanns Enzyklopadie der technische Chemie, Band 10, 4. Auflage 1975, Seite 594). С помощью известного способа Клауса выход может достигаться 98%. Чтобы получить дополнительную очистку остаточного газа, он может быть подвергнут способу очистки остаточного газа. В то время как элементарная сера, полученная способом Клауса, может извлекаться и коммерчески реализоваться, очищенный остаточный газ обычно бесполезно выпускается в окружающую среду.

Так как диоксид углерода в качестве так называемого климатического газа способствует глобальному парниковому эффекту, возникает потребность в предотвращении высвобождения диоксида углерода. Далее в настоящее время известны также способы, для осуществления которых требуется большое количество диоксида углерода в качестве технологического газа. Так, например, диоксид углерода может применяться при добыче нефти для повышения выхода, причем диоксид углерода закачивается в месторождение нефти ("Enhanced Oil Recover" EOR). Как для хранения диоксида углерода для предотвращения эмиссии, так и для технического использования диоксид углерода обычно должен отделяться от других компонентов, например, азота, что связано обычно со значительными затратами.

В публикации ЕР 0059412А2 описывается способ регулирования количества балластного газа в процессе горения, в частности при эксплуатации установки Клауса, причем образованный остаточный газ обычным образом выпускается в окружающую среду. Для достижения оптимального горения предусмотрено подводить воздух и технически чистый кислород, причем отношение воздуха и технически чистого кислорода подгоняется к соответственно имеющейся в горючем газе составляющей инертного газа. Понятие технически чистый кислород относится к газу, который большей частью состоит из кислорода и получен с помощью обычных промышленных способов. Чистота обычно составляет более 90% при криогенных способах разложения, типичным образом, по меньшей мере, 98%.

Из статьи Г.Фишера (H.Fischer) в Chemie-Ing.-Techn. 39 (1967), страницы 515-520 далее известно, при доле сероводорода между 20% и до примерно 5% по объему подводить в установку Клауса технически чистый кислород для преобразования высокосернистого газа, чтобы достичь достаточно высокой температуры горения. Остаточный газ при этом также высвобождается обычным образом в качестве газообразных отходов.

Задача предлагаемого изобретения состоит в создании способа, с помощью которого при небольших затратах становится возможным использование диоксида углерода, содержащегося в высокосернистом газе.

Указанная задача согласно изобретению решается с помощью признаков способа согласно пункту 1 формулы изобретения. Согласно настоящему изобретению содержащиеся в высокосернистом газе фракция компонентов серы и фракция диоксида углерода должны разделяться в возможно более чистой форме. С помощью известных из уровня техники способов такое разделение, в значительной степени чистое разделение, возможно только при очень высоких затратах, так как известные процессы абсорбции компонентов серы с одной стороны и диоксида углерода с другой стороны не могут отдельно разделять газовую смесь при высокой селективности. Напротив сравнительно просто осуществляется общее отделение диоксида углерода и компонентов серы в общей фракции высокосернистого газа, которая подводится для дальнейшей переработки в установку Клауса и которая в рамках предложенного согласно изобретению способа с небольшими затратами преобразуется в элементарную серу и диоксид углерода. Для совместного разделения диоксида углерода и компонентов серы могут, к примеру, применяться основанные на химическом и физическом действии способы промывки. Согласно изобретению к установке Клауса подводится реакционный газ, содержащий в качестве кислорода исключительно технически чистый кислород. Благодаря этому особо предпочтительным образом достигается, что при обогащении высокосернистого газа не подводится никаких инертных составляющих, которые дополнительно с большими затратами должны были бы отделяться от диоксида углерода

В рамках предпочтительного варианта исполнения предложенного согласно изобретению способа предусмотрено, что при превышении максимально допустимой температуры горения внутри камеры сгорания установки Клауса ниже по течению отбирается часть свойственного процессу остаточного газа и подводится для охлаждения вместе с технически чистым кислородом к камере сгорания. Благодаря описанным мероприятиям возможно точно управлять процессом горения, не оказывая при этом отрицательного влияния на концентрацию диоксида углерода.

Для высокосернистого газа, который в основном состоит из диоксида углерода и компонентов серы, в частности H2S, COS и меркаптанов, может достигаться в значительной степени полная сепарация. Элементарная сера и вода, которые образуются в процессе Клауса благодаря реакции компонентов серы с кислородом, выделяются способом конденсации из остаточного газа, так что осуществляется сильное обогащение диоксида углерода. Чтобы, по меньшей мере, в значительной степени удалить еще остающийся остаток соединений серы, выходящий из установки остаточный газ может подвергаться осуществляемому ниже по течению способу очистки. Так, например, может быть предусмотрена гидрогенизация, при которой содержащиеся наряду с H2S в остаточном газе компоненты серы гидрогенизируются в H2S. Остаточный газ затем охлаждается и подвергается селективной промывке, преимущественно с химическим абсорбентом, причем имеющийся еще в остаточном газе H2S в значительной степени удаляется. После дополнительного удаления компонентов серы остаточный газ состоит в основном из диоксида углерода, воды и небольших частей оксида углерода и водорода. В качестве способа очистки остаточного газа годен, например, способ - SCOT ® (Shell Claus Off gas Treatment).

Чтобы части водорода и/или оксида углерода превратить в воду соответственно диоксид углерода может быть предусмотрено дожигание остаточного газа с технически чистым кислородом, которое осуществляется преимущественно каталитически. Поскольку высокосернистый газ, первоначально подведенный к установке Клауса, состоит, в основном из соединений серы и диоксида углерода, после проведения способа очистки остаточного газа и дожигания для удаления водорода и/или оксида углерода остаточный газ содержит только почти чистый диоксид углерода и водяной пар, который при дальнейшей обработке остаточного газа выделяется с помощью конденсации. Далее для сушки газа могут применяться известные способы, чтобы еще уменьшить содержание воды. Остаточный газ, состоящий после удаления воды в основном из диоксида углерода, обычно сжимается или сжижается для хранения, т.е., в частности, для закачки в геологические формации, такие как месторождения нефти, месторождения природного газа, водоносные слои, угольные пласты или открытое море, или для технического использования, причем, в частности, может быть предусмотрено промежуточное складирование или транспортировка диоксида углерода. В зависимости от предусмотренного дальнейшего применения диоксида углерода чистота в газообразном состоянии составляет целесообразным способом 80%, предпочтительно 90%, особенно предпочтительно 95% по объему.

Дополнительно или в качестве альтернативы дожиганию водорода и/или оксида углерода с технически чистым кислородом, также с помощью изменения давления и/или температуры остаточного газа может достигаться удаление названных компонентов. Так, например, может быть предусмотрено удаление из остаточного газа после осуществления способа очистки остаточного газа с помощью охладителя газа или охладительной колонны большей части водяного пара и после этого для сжижения сжимание диоксида углерода. Оксид углерода и водород потом могут удаляться в подходящем устройстве для отделения из сжиженного диоксида углерода.

Поскольку высокосернистый газ, подведенный к установке Клауса, наряду с диоксидом углерода и компонентами серы еще содержит компоненты инертных газов, могут, по меньшей мере, уменьшиться затраты на последующее отделение, так как при предложенном согласно изобретению способе для удаления серы не подводится никаких дополнительных компонентов инертных газов.

Предусмотренное согласно изобретению применение технически чистого кислорода позволяет особенно предпочтительным образом при заданном количестве высокосернистого газа иметь небольшие размеры установки Клауса и оптимально предусмотренное устройство для очистки остаточного газа, так что могут компенсироваться дополнительные затраты, необходимые для выработки технически чистого кислорода.

Предметом изобретения является также устройство для осуществления способа согласно пункту 11 формулы изобретения. Устройство наряду с обычными компонентами, включает, в частности, соединительный трубопровод, который соединяет впуск камеры сгорания установки Клауса с находящимся ниже по течению газовыделением или с расположенной ниже по течению установки Клауса запасной емкостью для остаточного газа. Далее на соединительном трубопроводе предусмотрено устройство управления, чтобы на впуске в соответствии со спросом управлять примесью свойственного процессу остаточного газа.

1. Способ удаления серы, в котором газовую смесь для сепарации высокосернистых компонентов газа подвергают процессу разделения, при котором образуется высокосернистый газ, содержащий диоксид углерода и соединения серы, в частности сероводород, причем высокосернистый газ для выделения элементарной серы подводят к установке Клауса, к которой в качестве реакционного газа, содержащего кислород, подводят исключительно технический чистый кислород, при этом остаточный газ, выходящий из установки Клауса, подвергают дальнейшему разделению, при котором воду, образованную в процессе Клауса, удаляют, по меньшей мере, частично, а ниже по течению установки Клауса диоксид углерода отбирают с чистотой, при которой становится возможным непосредственное хранение или техническое использование, отличающийся тем, что остаточный газ для удаления водорода и оксида углерода подвергают каталитическому дожиганию с технически чистым кислородом, и что водяной пар извлекают из остаточного газа с помощью конденсации.

2. Способ по п.1, отличающийся тем, что при превышении максимально допустимой температуры горения в камере сгорания к установке Клауса подводят примесь части свойственного процессу остаточного газа, отобранной ниже по течению по отношению к установке Клауса.

3. Способ по п.1, отличающийся тем, что при процессе разделения все компоненты высокосернистого газа отделяют вместе и выделяют в общей фракции в виде высокосернистого газа.

4. Способ по п.1, отличающийся тем, что процесс разделения включает промывку газовой смеси с физическим и/или химическим абсорбентом и регенерацию абсорбента.

5. Способ по п.1, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

6. Способ по п.1, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

7. Способ по п.3, отличающийся тем, что при процессе разделения все компоненты высокосернистого газа отделяют вместе и выделяют в общей фракции в виде высокосернистого газа.

8. Способ по п.2, отличающийся тем, что процесс разделения включает промывку газовой смеси с физическим и/или химическим абсорбентом и регенерацию абсорбента.

9. Способ по п.3, отличающийся тем, что процесс разделения включает промывку газовой смеси с физическим и/или химическим абсорбентом и регенерацию абсорбента.

10. Способ по п.2, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

11. Способ по п.3, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

12. Способ по п.4, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

13. Способ по п.2, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

14. Способ по п.3, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

15. Способ по п.4, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

16. Способ по п.5, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

17. Способ по п.7, отличающийся тем, что процесс разделения включает промывку газовой смеси с физическим и/или химическим абсорбентом и регенерацию абсорбента.

18. Способ по п.7, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

19. Способ по п.8, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

20. Способ по п.9, отличающийся тем, что остаточный газ, выходящий из установки Клауса, подвергают способу очистки остаточного газа, в частности Scot®-способу, с тем, чтобы удалить, по меньшей мере, в значительной степени остатки серных соединений.

21. Способ по п.7, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

22. Способ по п.8, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

23. Способ по п.9, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.

24. Способ по п.10, отличающийся тем, что остаточный газ сжимают для дальнейшего использования.



 

Похожие патенты:

Изобретение относится к газожидкостному контактному аппарату. Газожидкостный контактный аппарат для распыления жидкости сверху вниз в контактной колонне, в которой газ перемещается и проходит таким образом, что газ, перемещающийся снизу вверх, приходит в непосредственный контакт с жидкостью, указанный газожидкостный контактный аппарат содержит: пристеночные форсунки, расположенные вдоль поверхности стенки в контактной колонне для распыления жидкости внутри контактной колонны, и форсунки для диспергирования жидкости, расположенные внутри контура, образованного пристеночными форсунками в контактной колонне, для равномерного распыления жидкости внутри контактной колонны, при этом форсунки для диспергирования жидкости и пристеночные форсунки включают форсунки двух или более типов, которые используются в соответствии со скоростью потока газа.
Изобретение относится к способу эксплуатации электростанции IGCC с интегрированным устройством для отделения CO2. При этом способе технологический газ с содержанием Н2 и СO2 разделяют посредством адсорбции с переменным давлением (PSA) на технически чистый водород и фракцию с высоким содержанием CO2, причем фракция с высоким содержанием СО2 выделяется в результате снижения давления в виде отходящего газа установки PSA.

Изобретение относится к области очистки газов от вредных примесей и может быть использовано для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания.

Изобретение может быть использовано при утилизации перфторуглеродных текучих сред и холодильных агентов. Способ обработки и/или разложения текучих сред органических галоидов включает осуществление в первом реакторе реакции одного или нескольких органических галоидов, безводного водорода и безводного диоксида углерода для получения моноксида углерода и одного или нескольких безводных галоидов водорода.

Изобретение может быть использовано для производства удобрений и смешанных видов топлива из простаивающего природного газа. Способ производства мочевины включает добычу простаивающего сырьевого природного газа, его смешение, удаление влаги и потенциально разрушительных веществ, риформинг, восстановление потока CO2 из природного риформинг-газа, сочетание регенерированного потока CO2 с потоком аммиака и выделение мочевины.

Изобретение относится к области применения возобновляемых источников энергии и к области получения электрической и тепловой энергии. .
Изобретение относится к химической промышленности, а именно к способам утилизации диоксида углерода. .

Изобретение относится к способу переработки углекарбонатного минерального сырья, включающему обжиг известняка в реакторе с получением окиси кальция, производство карбида кальция реакцией части окиси кальция, полученной при обжиге известняка, с углеродом, контактирование части объема полученного карбида кальция с водой с получением ацетилена и едкого кальция, контактирование газообразных отходов процесса обжига известняка с водой для получения угольной кислоты, при этом для обжига известняка используют тепло, получаемое сжиганием части объема ацетилена, получаемого из части объема карбида кальция.

Изобретение относится к химической промышленности. Сероводород окисляют кислородом или воздухом на установке с неподвижным слоем гетерогенного катализатора на любом твердом пористом носителе при температуре 130-200°С и мольном соотношении кислород:сероводород 0,5-5.

Изобретение может быть использовано в химической промышленности. Способ получения серы из сероводородсодержащего газа методом Клауса включает термическую стадию и, по меньшей мере, одну стадию каталитической конверсии.

Изобретение относится к катализаторам, используемым для получения элементарной серы по процессу Клауса. Предлагаемый катализатор получения элементарной серы по процессу Клауса на основе оксида алюминия представляет собой смесь χ-, γ-Al2O3 и рентгеноаморфной фазы оксида алюминия в следующем соотношении: χ-Al2O3 и рентгеноаморфная фаза 65-99,9 мас.% и γ-Al2O3 0,1-35, мас.%.

Изобретение относится к способу получения элементной серы из отходящего газа, содержащего диоксид серы. Способ включает концентрирование диоксида серы, частичное высокотемпературное восстановление концентрированного диоксида серы концентрированным водородом до серы, сероводорода и воды, конденсацию образованных паров серы с выводом жидкой серы в сборник серы.

Изобретение может быть использовано в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности. Способ очистки газа от сероводорода включает предварительное смешивание очищаемого газа с балансовой частью газа сепарации.

Изобретение относится к области химии и может быть использовано для управления процессом восстановления кислородсодержащих сернистых газов с получением элементарной серы в цветной металлургии, химической и нефтеперерабатывающей промышленности.

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Изобретение относится к подготовке углеводородного газа. Cпособ комплексной подготовки углеводородного газа, включающий очистку от тяжелых углеводородов, меркаптанов, сероводорода и осушку с получением очищенного газа и газов регенерации, а также утилизацию кислого газа регенерации с получением серы и отходящего газа, при этом углеводородный газ предварительно смешивают со смесью газов регенерации и отходящего газа и подвергают абсорбционной очистке хемосорбентом с получением органической фазы, воды и предварительно очищенного газа, направляемого на дальнейшую очистку, при этом в качестве хемосорбента используют углеводородный раствор серы, органических ди- и полисульфидов, а также каталитическое количество органического соединения, содержащего третичный атом азота, который получают путем смешения органической фазы с серой в количестве, обеспечивающем полное окислительное превращение меркаптанов.

Изобретение относится к области химии. Серу получают методом каталитического прямого окисления сероводорода кислородом в две или более стадии в условиях отвода тепла реакции из объема катализатора.

Изобретение может быть использовано в нефтяной, газовой, газоперерабатывающей, нефтеперерабатывающей, нефтехимической отраслях промышленности и относится к способам жидкофазной окислительной конверсии сероводорода, содержащегося в газах, с получением элементарной серы.

В изобретении описан комплексный способ улавливания CO2, выделяемого, по меньшей мере, частью дымовых газов, покидающих зону регенерации установки каталитического крекинга, предполагающей использование установки, работающей с использованием аминосодержащих продуктов, в котором установка каталитического крекинга оборудована внешним теплообменником, в котором в качестве горячего теплоносителя используется часть катализатора, отбираемого в зоне регенерации, а энергия, необходимая для работы установки, работающей с использованием аминосодержащих продуктов, поставляются полностью установкой каталитического крекинга за счет использования пара, вырабатываемого указанным выше внешним теплообменником.
Наверх