Стабилизация контактных линз

Контактная линза содержит оптическую зону линзы, периферическую зону, окружающую оптическую зону линзы, и стабилизирующие зоны, расположенные в периферической зоне линзы. Стабилизирующие зоны несимметричны относительно горизонтальной оси. В первом варианте ориентация стабилизирующих зон составляет 10,0 градусов от вертикали, и большая часть каждой стабилизирующей зоны находится над горизонтальной осью. Во втором варианте наибольшее утолщение линзы расположено на меридиане 0-180 градусов и скорость изменения наклона этих зон отличается в направлении от наивысшей точки утолщения линзы. Технический результат - улучшение стабилизации контактных линз. 2 н.п. ф-лы, 18 ил., 3 табл.

 

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Коррекция некоторых оптических дефектов может быть достигнута путем придания корректирующей асферичности одной или более поверхности цилиндрической, бифокальной или мультифокальной контактной линзы. Для получения нужного эффекта эти линзы, как правило, во время ношения должны удерживаться в глазу в определенном положении. Фиксация линзы в правильном положении на глазу обычно достигается путем изменения ее механических свойств. В качестве примеров подходов для стабилизации линз можно привести призматический балласт, включающий децентрацию передней поверхности линзы относительно задней, утолщение в нижней части периферии линзы, образование на поверхности линзы вдавлений или возвышений и трункацию, при которой происходит отсечение края линзы. Кроме того, динамическая стабилизация используется в том случае, если для стабилизации линзы были использованы тонкие зоны или области, на которых толщина периферии линзы уменьшена. Обычно тонкие зоны располагаются в двух областях, расположенных симметрично относительно вертикальной или горизонтальной оси линзы с точки зрения ее положения в глазу.

Оценка конструкции линзы включает выводы об эффективности линзы при ее ношении на глазу и последующей оптимизации ее дизайна при ее возможности и необходимости. Этот процесс обычно проводится путем клинической оценки исследуемой конструкции линзы при ее ношении пациентами. Однако данный процесс является трудоемким и дорогим, так как он требует участия значительного количества исследуемых пациентов, поскольку должна быть учтена вариативность результатов, которые могут быть получены у разных пациентов.

Существует постоянная необходимость в улучшении стабилизации некоторых конструкций контактных линз.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение представляет собой контактную линзу, сконструированную с улучшенной стабилизацией в сравнении с номинальной стабилизированной конструкцией.

В другой особенности изобретения метод стабилизации контактных линз включает в себя конструкцию линзы с номинальным набором параметров стабилизирующих зон, оценку эффективности конструкции линзы при ее ношении на глазу, расчет оценочной функции на основе эффективности линзы и оптимизацию параметров стабилизирующих зон при помощи оценочной функции. Этот процесс можно проводить итерационно при помощи виртуальной модели (например, разработанной на базе программного обеспечения), которая имитирует эффекты механики глаза, такие как моргание, и, соответственно, корректирует схему стабилизации.

Еще одной особенностью изобретения является то, что контактные линзы стабилизируются по схеме, в которой достигается баланс моментов количества движения при воздействии на линзу вращающего момента во время ее нахождения на глазу.

Еще одной особенностью изобретения является то, что контактные линзы стабилизируются за счет образования одной или более зон с различной толщиной, отличающейся от толщины остальной части линзы, в которых эти зоны располагаются так, что достигается баланс моментов количества движения при воздействии на линзу вращающего момента во время ее нахождения на глазу.

Еще одной особенностью изобретения является то, что на контактной линзе есть стабилизирующая зона, большая часть длины которой располагается под горизонтальной осью линзы.

Еще одной особенностью изобретения является то, что на контактной линзе есть стабилизирующая зона, имеющая отличную крутизну наклона (в области с наибольшей толщиной линзы) в одном направлении в сравнении с другими.

Еще одной особенностью изобретения является то, что контактная линза имеет профиль высоты над горизонтальной осью, отличный от профиля под горизонтальной осью.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет собой вид спереди стабилизированной контактной линзы.

Фиг.2A-C представляет собой схематическое изображение глаза со вставленной в него линзой,на котором показана ось вращения и различные действующие на линзу вращающие моменты.

Фиг.3 является графическим представлением, показывающим оптимизированный процесс стабилизации линз в соответствии с настоящим изобретением.

Фиг.4A-C представляют собой вид спереди стабилизированной линзы со стабилизирующими зонами и схемой периферических и радиальных утолщений в соответствии с примером 1.

Фиг.5A-C представляют собой вид спереди стабилизированной линзы со стабилизирующими зонами и схемой периферических и радиальных утолщений в соответствии с примером 2.

Фиг.6A-C представляют собой вид спереди стабилизированной линзы со стабилизирующими зонами и схемой периферических и радиальных утолщений в соответствии с примером 3.

Фиг.7A-C представляют собой вид спереди стабилизированной линзы со стабилизирующими зонами и схемой периферических и радиальных утолщений в соответствии с примером 4.

Фиг.8 представляет собой график измерения скорости вращения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Контактные линзы из данного изобретения имеют конструкцию, которая оптимизирует процесс их стабилизации за счет балансирования различных сил, которые воздействуют на линзу. Это связано с использованием процесса конструирования, благодаря которому достигается балансировка действующих на глаз вращающих моментов, учетом особенностей компонентов глаза, что в конечном итоге стабилизирует линзу во время ее ношения на глазу. Предпочтительно, чтобы улучшение стабилизации достигалось за счет того, что этот процесс начинается с усовершенствования исходной конструкции с использованием стабилизирующих элементов. Например, в конструкции линзы предусмотрено две стабилизирующие зоны, расположенные симметрично относительно горизонтальной и вертикальной осей, проходящих через ее центр, что делает ее удобным исходным образцом для оптимизации стабилизации линзы в соответствии с изобретенной методикой. Под “стабилизирующей зоной” подразумевается область на периферической части линзы, которая имеет большую толщину, чем имеет в среднем остальная часть периферии линзы. Под “периферической зоной” подразумевается область поверхности линзы, которая окружает оптическую зону линзы и выходит за ее пределы, но не захватывает край линзы. Периферия линзы без стабилизирующих зон обычно имеет осесимметричную поверхность, предпочтительно сферической формы. Другая стабилизированная конструкция, которая могла бы использоваться в качестве исходной конструкции, была описана в публикации патента США 20050237482, который приведен здесь в качестве ссылки, однако ни одна стабилизированная конструкция не может быть использована в качестве исходной конструкции, которая могла бы быть оптимизирована в соответствии с настоящим изобретением. Процесс усовершенствования стабилизированной конструкции также может включать исследование этого усовершенствования при помощи описанной ниже модели глаза, оценку результатов этого исследования и может продолжаться итеративно за счет усовершенствования этого процесса до достижения желаемого уровня стабилизации конструкции.

Фиг.1 изображает переднюю поверхность стабилизированной линзы. Линза 10 имеет оптическую зону 11. Периферия линзы окружает оптическую зону 11. Две утолщенные области 12 расположены на периферии линзы и являются стабилизирующими зонами.

Предпочтительная модель, используемая в технологическом процессе для изготовления новых конструкций, включает различные факторы и допущения, которые помогают моделировать влияние механических воздействий и их эффектов на стабильность линзы. Предпочтительно, чтобы данная модель была представлена в виде программного обеспечения при помощи стандартных методик программирования и кодирования в соответствии с известными методиками программирования. В целом, данная модель используется в процессе конструирования стабилизированных линз за счет моделирования приложения описанных ниже сил во время заданного количества морганий глаза. Соответственно были определены степени ротации и децентрации линзы. Затем конструкция была изменена таким образом, чтобы ротация и/или центрация линзы достигала более желаемого уровня. Затем конструкция вновь подвергается моделированию для определения ее перемещения во время моргания после заранее заданного количества морганий. Изменение конструкции осуществляется путем применения оценочных функций, которые более подробно описываются ниже.

Модель допускает, что глаз предпочтительно состоит из по меньшей мере двух частей со сферической поверхностью, соответствующих роговице и склере, и что начало осей координат x-y-z находится в центре сферы, которая имитирует роговицу. Также могут использоваться более сложные поверхности, такие как асферические поверхности. Исходная форма линзы состоит из частей сферической поверхности, однако исходный радиус кривой может меняться от центра линзы к ее краю. Для описания задней поверхности может использоваться более одной кривой. Допускается, что находящаяся на глазу линза имеет ту же форму, что и линза, которая находится вне глаза. Распределение толщины линзы не обязательно должно быть осесимметричным и действительно не является симметричным в соответствии с некоторыми предпочтительными вариантами осуществления изобретенных линз. Утолщенные зоны на краю линзы могут использоваться для контролирования ее положения и ориентации. Однородная тонкая пленка жидкости (слезная пленка), находящаяся между линзой и глазом, обычно имеет толщину от 1 до 7 мкм, предпочтительно 5 мкм. Эта слезная пленка называется подлинзовой слезной пленкой. На краю линзы толщина пленки жидкости между глазом и линзой намного меньше, и она называется муциновой слезной пленкой. Однородная тонкая пленка жидкости (также представленной слезной пленкой) с обычной толщиной от 1 до 10 мкм, предпочтительно 5,0 мкм, находящаяся между линзой и верхним и нижним веком, называется предлинзовой слезной пленкой. Границы верхнего и нижнего века лежат в плоскостях, имеющих единичный вектор нормали в плоскости x-y. Таким образом, проекции этих границ на плоскости, перпендикулярной оси z, являются прямыми линиями. Это допущение также используется во время движения век. Верхнее веко оказывает равномерное давление на контактную линзу. Это равномерное давление оказывается на всю поверхность контактной линзы, которая покрывается верхним веком, или на часть этой поверхности возле границы верхнего века с постоянной шириной (измеряется в направлении, перпендикулярном плоскости, проходящей через кривую, которая описывает края век). Нижнее веко оказывает равномерное давление на контактную линзу. Это давление оказывается на всю поверхность контактной линзы, которая покрывается нижним веком. Давление, оказываемое веками на контактную линзу, способствует действующему на линзу вращающему моменту за счет неодинакового распределения толщины (наличия утолщенной зоны) контактной линзы, в особенности возле ее края. Влияние этого давления на вращающий момент, действующий на контактную линзу, называется "эффектом арбузного семечка". Если линза подвижна на глазу, то в подлинзовой слезной пленке возникает вязкое трение. Если линза подвижна на глазу, то в муциновой слезной пленке между краем линзы и глазом также возникает вязкое трение. Кроме того, вязкое трение возникает в предлинзовой слезной пленке, если линза подвижна и/или подвижны веки. Растяжение и появление напряжения в линзе может приводить к ее деформации. Эти растяжения и напряжения приводят к накоплению в линзе энергии упругой деформации. В связи с подвижностью линзы на глазу изменяется степень ее деформации, из-за чего в линзе также изменяется содержание энергии упругой деформации. Линза стремится вернуться в положение, в котором содержание энергии упругой деформации минимально.

Параметры, описывающие геометрию глаза (роговицы и склеры), исходная форма линзы и движения век показаны на Фиг.2. Движения линзы зависят от баланса момента количества движений, которые действуют на линзу. Влияние инерции не учитывалось. Поэтому сумма всех моментов, действующих на линзу, равна нулю. Таким образом,

Первые 4 момента противостоят вращающему моменту и линейно зависят от движения линзы. Оставшийся вращающий момент является движущим моментом. Этот баланс момента количества движений следует из нелинейного дифференциального уравнения первого порядка для β положения линзы

Это уравнение решается при помощи схем Рунге-Кутты четвертого порядка. Положение точек на контактной линзе следует из ее вращения вокруг вектора вращения β(t). Матрица вращения R(t) трансформирует старое положение точек в текущее в соответствии с формулой Родрига

где n = β | β | и β = | β | .

В методе численного интегрирования используется временная дискретизация. Затем движение линзы может быть представлено как некоторое число последовательных вращений, следовательно, на следующем временном шаге t n + 1 матрица вращения представляет собой

R n + 1 = R Δ t R n

где R Δ t представляет собой вращение во время временного шага Δ t .

Матрица вращения разлагается на вращение R α и децентрацию R θ линзы

R ( t ) = R θ ( t ) R α ( t )

Вращение линзы является вращением вокруг ее оси. Децентрация является вращением вокруг линии в плоскости (x, y). Следовательно, положение линзы выглядит как вращение α линзы вокруг своей оси, которое сопровождается децентрацией θ .

В предпочтительном методе изобретения основанные на этих закономерностях оценочные функции (ОФ) моделируются для корректировки и, таким образом, усовершенствования схем стабилизации исходных конструкций. Эти оценочные функции определены на основе требований к эффективности линзы при ее ношении на глазу. В предпочтительном варианте осуществления настоящего изобретения оценочные функции определяются, но не ограничиваются: a) вращением линзы и эффективностью центрации (Уравнение 1), b) стабильностью линзы в положении покоя (Уравнение 2) или c) вращением линзы, эффективностью центрации и стабильностью в положении покоя (Уравнение 3).

(Уравнение 1)

Под вращением линзы подразумевается угловое движение линзы вокруг оси z, происходящее во время и в промежутках между морганиями. Вращение может происходить по часовой стрелке и против часовой стрелки в зависимости от исходного положения линзы на глазу или свойств линзы при моделировании ее движений на глазу.

Под центрацией линзы подразумевается расстояние между геометрическим центром линзы и верхушкой роговицы. Центрация записывается в системе координат x-y в плоскости верхушки роговицы.

Под стабильностью линзы подразумевается количество максимальных движений линзы в горизонтальном направлении (по оси x), в вертикальном направлении (по оси y) и количество вращений линзы во время периода моргания. Стабильность линзы предпочтительно записывается при отсутствии ее дезориентации и децентрации после того, как линза займет свое конечное положение.

Используя Уравнение 1 в качестве примера назначения и применения оценочной функции, Rot и Cent соответственно показывают эффективность конструкции линзы, которая должна быть оптимизирована, во время вращения и центрации. RREF и CREF являются переменными, описывающими эффективность исходной конструкции линзы во время вращения и центрации. WR и WC являются двумя весовыми коэффициентами, позволяющими регулировать вклад одного фактора в сравнении с другими, и могут принимать значения от 0 до 1. Как показано в примере ниже, при использовании эти функции лучше решаются в числовом виде. Весовые коэффициенты применяются таким образом, чтобы представляющим интерес компонентам было уделено соответствующее внимание. Они могут быть равными, или один компонент может представлять больший интерес, чем другой. Поэтому, например, если более важна оптимизация ротации линзы, а не ее центрация, то необходимо выбрать WR большее, чем WC. Стабилизированная конструкция является усовершенствованной в том случае, если ее оценочная функция убывает в сравнении с таковой для предшествующей конструкции. Кроме того, она считается оптимизированной в том случае, если оценочная функция сводится к своему минимуму. Конечно, одна конструкция линзы может быть более предпочтительной, чем другая, не только с точки зрения ее стабилизации, а и по другим причинам, однако улучшение стабилизации все же может проводиться в соответствии с настоящим изобретением в том случае, если оптимизация стабилизации конструкции не является обязательной.

(Уравнение 2)

В уравнении 2 XДиапазон, YДиапазон и θДиапазон описывают эффективность стабилизации конструкции оптимизированной линзы в горизонтальном направлении, вертикальном направлении и при ее вращении, XREF, YREF и θREF описывают эффективность стабилизации исходной конструкции линзы в горизонтальном направлении, вертикальном направлении и при ее вращении, и WX, WY и Wθ являются весовыми коэффициентами, позволяющими регулировать вклад факторов в сравнении с друг другом.

(Уравнение 3)

В уравнении 3 Rot, Cent и Stab описывают эффективность линзы при вращении, центрации и стабилизации конструкции оптимизированной линзы, RREF, CREF и SREF описывают эффективность линзы при вращении, центрации и стабилизации исходной конструкции линзы, и RREF, CREF и SREF являются весовыми коэффициентами, позволяющими регулировать вклад факторов в сравнении друг с другом.

В другом варианте осуществления настоящего изобретения оценочные функции включают удобство при одевании линз и могут также включать объем стабилизирующей зоны, площадь поверхности стабилизирующей зоны, осведомленность носителя мягких контактных линз о стабилизирующей зоне или любые другие релевантные критерии.

В дополнительных вариантах осуществления настоящего изобретения оценочные функции определяются следующими параметрами таким же образом, как и вышеперечисленные:

- Характеристики вращения:

- Площадь под кривой сопротивления вращению

- Время, за которое достигается положение покоя при вращении в пределах +/- 5,0 градусов

- Начальная скорость вращения.

- Характеристики центрации:

- Площадь под кривой сопротивления центрации

- Время, за которое достигается положение покоя при центрации

- Время, за которое в первый раз достигается итоговое положение покоя

- Скорость центрации.

- Характеристики стабильности:

- Амплитуда движения в горизонтальном направлении

- Амплитуда движения в вертикальном направлении

- Амплитуда вращения

- Продолжительность горизонтального движения

- Продолжительность вертикального движения

- Продолжительность вращения.

- Комфорт при ношении:

- Объем избыточного материала, необходимого для формирования стабилизирующей зоны

- Площадь поверхности, занимаемой стабилизирующей зоной

- Осведомленность носителя линз о стабилизирующей зоне.

В рамках данного метода нет ограничений по типу использованных вариантов стабилизации. Стабилизирующие зоны могут быть следующих типов:

- Симметричные относительно осей X и Y

- Симметричные относительно оси X или Y

- Асимметричные относительно обеих осей X и Y

- С постоянным расстоянием по радиусу

- С непостоянным расстоянием по радиусу.

Во время оптимизации могут быть оценены различные параметры стабилизирующей зоны, включая без ограничений следующие: длину зоны, расположение максимального утолщения, угол схода на каждой стороне этого утолщения, периферический угол наклона этой зоны и ее ширину. Оптимизационные параметры также могут включать диаметр линзы, базовую кривизну, толщину, диаметр оптической зоны, ширину периферической части линзы, свойства материала и другие параметры, описывающие характеристики линзы.

В предпочтительном варианте осуществления настоящего изобретения освещаются два подхода к усовершенствованию конструкции линзы. В первом подходе полная оптимизация проводится при помощи модели глаза с использованием итерации для корректировки стабилизации линзы за счет ОФ, требующих нескольких циклов моргания до тех пор, пока линза не достигнет своего положения покоя. В другом варианте осуществления настоящего изобретения конструкция усовершенствуется во время заранее определенного количества циклов моргания. Обычно три цикла моргания являются тем минимумом, при котором возможно эффективное осуществление значительного усовершенствования стабилизации линзы. В другом случае процесс проводится итеративно с применением ОФ для усовершенствования исходной конструкции. В том случае, если используются три цикла моргания, первое моргание служит для ориентации линзы под углом α в горизонтальной плоскости, промежуточное моргание служит для ориентации линзы под углом β в горизонтальной плоскости, и последнее моргание служит для позиционирования линзы в состоянии покоя. В наиболее предпочтительном варианте осуществления настоящего изобретения угол α составляет 45 градусов и угол β составляет 22 градуса (но оба угла не ограничиваются данными значениями). В другом варианте осуществления настоящего изобретения процесс оптимизации представлен комбинацией обоих подходов, когда уменьшенное количество циклов моргания предварительно используются для получения промежуточного решения, в то время как некоторые циклы моргания используются для подтверждения того, что оптимизация была проведена до достижения приемлемого уровня стабилизации.

Фиг.3 показывает схему этого процесса усовершенствования стабилизации линзы. Исходные стабилизирующие зоны могут иметь новую или уже существующую конструкцию. Параметры стабилизирующей зоны в этих конструкциях являются предопределенными. Эти параметры получены из расчетов эффективности конструкции, при которых эти параметры отклоняются от своих номинальных значений. Для процесса оптимизации предпочтительно выбираются параметры, которые обеспечивают наибольшие изменения эффективности линзы. На первом шаге параметры стабилизирующей зоны выбираются для их рассмотрения. Они могут включать, например, максимальную толщину стабилизирующей зоны (Z0), расположение наибольшего утолщения линзы вдоль меридиана 0-180 градусов (r0), расположение наибольшего утолщения линзы под углом к меридиану 0-180 градусов (θ0), наклон над и под наибольшим утолщением линзы, угловую длину стабилизирующей зоны (σθ), поворот стабилизирующих зон относительно расположения наибольшего утолщения линзы, ширину стабилизирующей зоны (σR) и многие другие параметры.

На втором шаге линза описывается математически в терминах параметров стабилизирующих зон для получения ее исходной или условной конструкции. Для описания стабилизирующих зон могут быть использованы любые виды математических функций без ограничений. Стабилизирующие зоны также могут быть описаны при помощи компьютерного программного обеспечения, такого как приложения для автоматизированного проектирования. Математическая модель описанной конструкции (с определенными параметрами) на шаге 3 вводится в модель глаза, после чего генерируются данные о ее вращении, центрации и стабильности, как показано в Таблице 1. Затем эти данные могут быть использованы для изменения одного или более параметров стабилизации на опциональном шаге 4.

Таблица 1
Показатели эффективности, полученные для конструкций образцов 1, 2, 3 и 4, используются в оценочных функциях, определяемых уравнениями (1) и (2)
Весовой коэффициент W R W C W X W Y W θ
Пример 1 1,00 1,00 0,50 0,50 1,70
Пример 2 1,00 1,00 0,50 0,50 1,70
Пример 3 1,00 1,00 0,50 0,50 1,70
Пример 4 1,00 1,00 0,50 0,50 1,70
Показатель эффективности R REF C REF X Диапазон Y Диапазон θ Диапазон
Пример 1 505,110 1,100 1,03 2,65 1,88
Пример 2 218,91 0,416 1,02 2,67 0,52
Пример 3 277,22 0,356 1,03 2,68 0,67
Пример 4 349,32 0,780 1,02 2,67 0,55
Оценочные функции % Усовершенствования
Уравн. (1) Уравн. (2) Уравн. (1) Уравн. (2)
Пример 1 1,414 1,643 Нет данных Нет данных
Пример 2 0,575 1,062 59,32 35,35
Пример 3 0,637 1,106 54,96 32,68
Пример 4 0,990 1,070 29,97 34,88

Стабилизирующие зоны модифицируются либо путем изменения формы, пропорционального изменения размеров, поворота, перемещения, либо использованием любой другой методики для изменения их текущей конструкции. На шагах 5a-5d измененные параметры стабилизации снова пропускаются через модель глаза для генерирования данных о вращении, центрации и стабильности для каждой вновь измененной конструкции. В каждом случае на соответствующих шагах 6a-6d оценочные функции создаются и применяются к каждой новой конструкции для генерирования новых данных о вращении, центрации и стабильности на шагах 7 и 8, когда происходит перемещение линзы (предпочтительно путем вращения). Затем на шаге 9 при каждой итерации происходит расчет оценочных функций, и на шаге 10 производится проверка их убывания. Убывание оценочных функций свидетельствует о усовершенствовании конструкции в сравнении с результатами предыдущей итерации. Если оценочные функции не убывают, то параметры стабилизации должны быть вновь модифицированы на опциональном шаге 11, и затем итоговая модифицированная конструкция линзы возвращается на шаги 7 и 8 для отбора и генерирования данных. Если оценочные функции убывают, то это свидетельствует об улучшении стабилизации, и данная конструкция линзы принимается как итоговая конструкция (шаг 12), или другие зоны продолжают усовершенствоваться на опциональном шаге 13.

Наиболее эффективным является применение изобретения в торических и мультифокальных линзах. Кроме того, конструкции могут быть использованы в линзах, которые изготавливаются по заказу с учетом специфики индивидуальной корнеальной топографии, линзах для коррекции аберраций волнового фронта высокого порядка или в обоих случаях. Предпочтительно, чтобы изобретение использовалось для стабилизации торических линз или торических мультифокальных линз, как, например, было описано в Патентах США № 5652638, 5805260 и 6183082, которые были полностью приведены здесь в виде ссылки.

В другом альтернативном варианте линзы, составляющие предмет настоящего изобретения, также могут обеспечивать коррекцию аберрации глаза высокой степени, корнеальной топографии или и то, и другое. Примеры таких линз были найдены в Патентах США № 6305802 и 6554425, которые были полностью приведены здесь в виде ссылки.

В другом альтернативном варианте линзы, составляющие предмет настоящего изобретения, также могут иметь косметические функции, такие как цветной рисунок, который должен быть определенным образом расположен на глазу для обеспечения косметической привлекательности.

Линзы, составляющие предмет настоящего изобретения, могут быть изготовлены из любого подходящего линзового материала для изготовления офтальмологических линз, включая, но не ограничиваясь этим, следующее: очковые, контактные и интраокулярные линзы. Показательные материалы для изготовления мягких контактных линз включают, без ограничений, силиконовые эластомеры, силиконосодержащие макромеры, включая, без ограничений, макромеры, описанные в Патентах США № 5371147, 5314960 и 5057578, которые были полностью приведены здесь в виде ссылки, гидрогели, силиконосодержащие гидрогели, похожие материалы и их комбинации. В более предпочтительном варианте поверхность выполнена из силоксана или содержит функциональную группу силоксана, включая, помимо прочего, полидиметилсилоксановые макромеры, метакрилоксипропил-полиалкил-силоксаны, и их смеси, силиконовые гидрогели или гидрогель, например этафилкон A.

Для полимеризации материала линз могут применяться любые подходящие способы. Например, материал для изготовления линз может быть помещен в форму для литья и полимеризован с использованием термической, радиационной, химической, электромагнитной полимеризации и т.д., либо их сочетания. В предпочтительных примерах осуществления контактных линз затвердевание выполняется при помощи ультрафиолетового излучения или полного спектра видимого излучения. Более конкретно, точные параметры условий полимеризации материала линзы зависят от выбранного материала и изготавливаемой линзы. Подходящие процессы приведены в Патенте США № 5540410, который был полностью приведен здесь в виде ссылки.

Контактные линзы, составляющие предмет настоящего изобретения, могут быть изготовлены любым из общепринятых способов. В одном их таких методов используется токарный станок OPTOFORM.TM. с насадкой VARIFORM.TM. для изготовления вкладышей формы. Вкладыши формы в свою очередь используются для создания форм для литья. Далее подходящая жидкая смола помещается между формами для литья и сжимается, а после отверждения получаются линзы, составляющие предмет настоящего изобретения. Специалисту в данной области будет понятно, что для производства линз, составляющих предмет настоящего изобретения, может применяться множество известных способов.

Изобретение будет далее описано со ссылкой на следующие неограничивающие примеры.

Пример 1

Контактная линза известной конструкции для коррекции зрения пациентов, страдающих астигматизмом, показана на Фиг.6. Она была сконструирована при помощи стандартного автоматизированного программного обеспечения для линз со следующими входными конструкционными параметрами:

Сферическая сила: -3,00 D

Цилиндрическая сила: -0,75 D

Цилиндрическая ось: 180 градусов

Диаметр линзы: 14,50 мм

Диаметр передней оптической зоны: 8,50 мм

Диаметр задней оптической зоны: 11,35 мм

Базовая кривизна линзы: 8,50 мм

Центральная толщина: 0,08 мм.

Использованные параметры модели глаза перечислены в Таблице 2A и 2B.

Стабилизирующая зона является наиболее утолщенной зоной, которая была добавлена в профиль толщины данной линзы. Исходные стабилизированные зоны были сконструированы при помощи комбинации нормализованных функций Гаусса, описывающих радиальные и угловые изменения толщины линзы. Математическое выражение, описывающее наклон стабилизирующей зоны в полярных координатах:

где Z0 является максимальной толщиной стабилизирующей зоны, r0 и θ0 отражают радиальное и угловое положение наибольшего утолщения, и σR и σθ являются параметрами, контролирующими изменения в профиле толщины линзы в радиальном и угловом направлениях.

Изменение угла наклона в радиальном и угловом направлении было получено при помощи логарифмически нормального распределения Гаусса. Уравнение принимает следующий вид:

Параметры конструкции, задающие свойства стабилизирующих зон, представлены:

Изменением максимальной толщины стабилизирующей зоны (Z0).

Изменением расположения наибольшего утолщения линзы вдоль меридиана 0-180 градусов (r0).

Изменением расположения наибольшего утолщения линзы под углом к меридиану 0-180 градусов (θ0).

Изменением угла наклона над и под наибольшим утолщением линзы.

Изменением угловой длины стабилизирующей зоны (σθ).

Поворотом стабилизирующих зон относительно наибольшего утолщения линзы.

Изменением ширины стабилизированной зоны (σR) вдоль меридиана 0-180 градусов.

Значения, по которым была построена исходная стабилизирующая зона:

Z0=0,25 мм

r0=5,75 мм

σR=0,50 мм

θ0=180 градусов и 0 градусов для правой и левой стабилизирующей зоны соответственно

σθ=25,0 градусов

Затем стабилизирующая зона была добавлена в исходный профиль толщины линзы. Итоговая максимальная толщина линзы составила 0,38 мм. Графическое изображение этого профиля показано на Фиг.4. Стабилизирующие зоны симметричны относительно горизонтальной и вертикальной оси с наклоном, который равномерно уменьшается в направлении от наивысшей точки утолщения линзы.

Таблица 2A
Исходные параметры для модели глаза
Слезная пленка Вязкость водного слоя 8,30E-04 [Па.с]
Вязкость муцинового слоя 1,50E-03 [Па.с]
Толщина муцинового слоя 3,50E-07 [м]
Толщина предлинзовой слезной пленки 5,00E-06 [м]
Толщина подлинзовой слезной пленки 5,00E-06 [м]
Геометрия глаза Радиус роговицы 7,95E-03 [м]
Радиус склеры 1,15E-02 [м]
Видимый радиус роговицы 5,82E-03 [м]
Файл (геометрия глаза) [мм]
Свойства линзы Радиус базовой кривизны линзы 8,50E-03 [м]
Радиус перехода линзы 5,50E-03 [м]
Файл (геометрия задней поверхности линзы) [мм]
Край угла контакта -5,00 [градус]
Край контактной поверхности линзы 2,40E-05 2]
Плотность материала линзы 1000 [кг/м3]
Модуль Юнга 280000 [Н/м2]
Коэффициент Пуассона 0,48 [-]
Файл (нормальный профиль толщины линзы) [мм]
Геометрия век и свойства моргания Боковое перемещение нижнего века 4,00E-03 [м]
Боковое перемещение верхнего века 3,50E-03 [м]
Время полного перемещения вниз верхнего века 0,082 [с]
Время моргания 0,258 [с]
Промежуток времени между морганиями 3 [с]
Давление века 200 [N/м2]
Положение нижнего века в начале моргания 6,35E-03 [м]
Положение верхнего века в начале моргания 4,70E-03 [м]
Ширина полосы, на которой оказывается давление края верхнего века 5,00E-04 [м]
Угол верхнего века в начале моргания -4,47 [градус]
Угол нижнего века в начале моргания -2,07 [градус]
Скорость движения глаза 2 ---
Направление взгляда Направление движения глаза (выбор заранее определенного переходного направления взгляда) 0 ---
Амплитуда движения взгляда 20 [градус]
Частота движения взгляда 2,78 [Гц]
Исходное положение Исходный угол вращения линзы 0,00 [градус]
Исходная децентрация относительно оси X 0,00 [м]
Исходная децентрация относительно оси Y 0,00 [м]
Гравитационное ускорение Гравитационное ускорение 9,80 [м/с2]
Параметры моделирования Количество моделируемых циклов 5 ---
Количество временных шагов в [0, период закрытого глаза при моргании] (если <0, то используется указанный временной шаг) -400 ---
Указанный временной шаг 0,005 [секунда]
Дискретизация линзы в радиальном направлении 20 ---
Дискретизация линзы в круговом направлении 90 ---
Таблица 2B
Исходные параметры для модели глаза
Скорость движения глаза
1 Скорость движения века в постоянном эксперименте
2 Скорость движения века в согласующем эксперименте по изучению скорости движения век человека
Направление движения глаза (выбор заранее определенного переходного направления взгляда)
0 Направление взгляда не изменено
1 Горизонтальное движение
2 Вертикальное движение
3 Круговое движение (против часовой стрелки)
4 Круговое движение (по часовой стрелке)
5 Постоянное горизонтальное направление взгляда
6 Постоянное вертикальное направление взгляда

Характеристики вращения и центрации контактной линзы были определены при помощи описанной выше модели глаза с исходными параметрами, которые были приведены в Таблице 2. Вращение линзы неуклонно снижается от 45 градусов до менее чем 10 градусов по мере того, как моделированное количество морганий варьируется от 0 до 20. Во время морганий 1-20 центрация остается относительно стабильной при значениях от приблизительно 0,06 мм до чуть более 0,08 мм. Итоговое значение оценочной функции определяется уравнением 1, при применении которого к линзе известного уровня техники было получено значение 1,414 при WR=WC=1,0. Этот пример показывает ротацию, центрацию и стабильность, достигнутые при конструировании линзы с этими параметрами, которая удерживает свое положение на глазу при помощи вдавлений или возвышений на периферии ее передней поверхности.

Пример 2

Новая стабилизирующая зона была разработана при помощи модели глаза, описанного выше метода оптимизации и приведенной в Примере 1 исходной конструкции линзы. Оценочная функция была определена при помощи:

- Площади под кривой сопротивления вращению.

- Площади под кривой сопротивления центрации.

- Для ротации и центрации весовые коэффициенты были одинаковыми, WR=WC=1,0.

Значения, по которым была построена исходная стабилизирующая зона:

- Z0=0,25 мм

- r0=5,75 мм

- σR=0,50 мм

- θ0=180 градусов и 0 градусов для левой и правой стабилизирующей зоны соответственно

- σθ=25,0 градусов.

Затем стабилизирующая зона была добавлена в исходный профиль толщины линзы.

Стабилизирующая зона подверглась вращению вокруг наибольшего утолщения линзы до тех пор, пока характеристики эффективности линзы не показали существенное улучшение по сравнению с исходной конструкцией. Вращение было осуществлено за счет трансформации исходных координат (вращения вокруг наибольшего утолщения линзы) стабилизирующей зоны

( x , y ) = [ C o s ( α ) S i n ( α ) S i n ( α ) C o s ( α ) ] ( x 0 , y 0 )

где (x0, y0) были начальными координатами, (x, y) были новыми координатами, и угол α был углом вращения.

Конструкция с улучшенной стабилизацией была получена в том случае, когда итоговая ориентация стабилизирующей зоны составила 10,0 градусов от вертикали и ее верхняя часть была направлена к центру линзы, как показано на Фиг.5. Кроме того, стабилизирующие зоны были несимметричны относительно горизонтальной оси. В этом случае большая часть наибольшей протяженности каждой стабилизирующей зоны находилась над горизонтальной осью. Итоговое значение оценочной функции составило 0,58. По оценочной функции усовершенствование составило порядка 59%. Вращение линзы резко снизилось в сравнении с исходной стабилизированной конструкцией линзы. В начале при 4 моргании было отмечено вращение линзы менее чем на 30 градусов, и после 12 моргания вращение прекратилось в сравнении с вращением на 40-25 градусов линзы исходной конструкции при одинаковом количестве морганий. Центрация усовершенствованной конструкции линзы составила менее 0,04 мм при 1 моргании и далее составила менее 0,03 мм в сравнении с центрацией от 0,06 мм до более чем 0,08 мм линзы исходной конструкции при одинаковом количестве циклов морганий. Этот пример показывает улучшение вращения, центрации и стабильности в сравнении с линзой из Примера 1.

Пример 3

Новая стабилизирующая зона была разработана при помощи модели глаза, описанного выше метода оптимизации и приведенной в Примере 1 исходной конструкции линзы. Оценочная функция была определена при помощи:

- Площади под кривой сопротивления вращению.

- Площади под кривой сопротивления центрации.

- Для ротации и центрации весовые коэффициенты были одинаковыми, WR=WC=1,0.

Значения, по которым была построена исходная стабилизирующая зона:

- Z0=0,25 мм

- r0=5,75 мм

- σR=0,50 мм

- θ0 = 180 градусов и 0 градусов для левой и правой стабилизирующей зоны соответственно

- σθ=25,0 градусов.

Затем стабилизирующая зона была добавлена в исходный профиль толщины линзы.

Конструкция с улучшенной стабилизацией была получена в том случае, когда итоговая ориентация стабилизирующей зоны определялась положением ее наибольшего утолщения, смещенного под углом к меридиану 0-180 градусов от геометрического центра линзы, как показано на Фиг.6. Стабилизирующие зоны больше не были симметричны относительно горизонтальной оси, и скорость изменения наклона этих зон отличалась в направлении от меридиана 0-180 градусов. Итоговое значение оценочной функции составило 0,64. По оценочной функции усовершенствование составило порядка 55%. Вращение линзы резко снизилось в сравнении с исходной стабилизированной конструкцией линзы. В начале при 4 моргании было отмечено вращение линзы менее чем на 30 градусов, при 10 моргании было отмечено вращение линзы на приблизительно 10 градусов, и при 16 моргании и далее вращение прекратилось в сравнении с вращением на 40-30-15 градусов линзы исходной конструкции при одинаковом количестве морганий. Центрация составила менее 0,06 мм при 1 моргании и менее 0,04 мм при 4 моргании. После этого она резко снизилась и составила менее 0,02 мм после 8 морганий и 0 после 16 моргания в сравнении с более 0,06 мм, более 0,07 мм и более чем 0,08 мм для исходной конструкции линзы за одинаковое количество циклов морганий. Этот пример показывает улучшение ротации, центрации и стабильности данной линзы в сравнении с линзой из Примера 1.

Пример 4

Новая стабилизирующая зона была разработана при помощи модели глаза, описанного выше метода оптимизации и приведенной в Примере 1 исходной конструкции линзы. Оценочная функция была определена при помощи:

- Площадь под кривой сопротивления вращению.

- Площадь под кривой сопротивления центрации.

- Весовой коэффициент ротации WR=0,84, весовой коэффициент для центрации WC=1,14.

Значения, по которым была построена исходная стабилизирующая зона:

- Z0=0,25 мм

- r0=5,75 мм

- σR=0,50 мм

- θ0=1,954

- σθ=0,14.

Затем стабилизирующая зона была добавлена в исходный профиль толщины линзы. Стабилизирующая зона была скорректирована для изменения наклона вокруг наибольшего утолщения линзы. Наибольшее утолщение линзы осталось на меридиане 0-180 градусов, как показано на Фиг.7. Стабилизирующие зоны были асимметричны относительно горизонтальной оси, и скорость изменения наклона этих зон отличалась в направлении от наивысшей точки утолщения линзы. В данном случае это подчеркивается намного более постепенным снижением наклона к нижней части линзы. Изменения угла наклона были получены при помощи логарифмически нормального распределения Гаусса для описания углового изменения толщины линзы. Итоговое значение оценочной функции составило 0,86. По оценочной функции усовершенствование составило порядка 30%. Вращение линзы снизилось умеренно в сравнении с исходной стабилизированной конструкцией линзы. В начале при 6 моргании было отмечено вращение линзы менее чем на 30 градусов, при 12 моргании было отмечено вращение линзы на приблизительно 10 градусов, и при 16 моргании и далее вращение прекратилось в сравнении с вращением на 38-30-15 градусов линзы исходной конструкции при одинаковом количестве морганий. Центрация составила менее 0,08 мм при 1 моргании и менее 0,07 мм при 4 моргании. После этого она резко снизилась и составила менее 0,05 мм после 8 морганий и 0,04 после 16 моргания в сравнении с 0,06 мм, более чем 0,07 мм и 0,08 мм для исходной конструкции линзы за одинаковое количество циклов морганий. Этот пример показывает улучшение вращения, центрации и стабильности в сравнении с линзой из Примера 1.

Рисунок 8 суммирует данные о скорости вращения линзы против ее ориентации на глазу для примеров 1, 2, 3 и 4. Исходная конструкция, которая была описана в примере 1, имела среднюю скорость вращения около -0,55°/секунду в 45°-0° диапазоне смещения, в то время как конструкции, приведенные в примерах 2, 3 и 4, имели среднюю скорость вращения около -0,70°/секунду в том же диапазоне смещения. Конструкции из примеров 2 и 4 имели большую скорость вращения при смещении менее 15°. Обе конструкции были более адекватны в качестве конструкций линз, которые должны занимать одно определенное положение на глазу, таких как мягкие контактные линзы, разработанные для коррекции аберрации высокой степени. Для этих конструкций могут понадобиться различные методы их одевания, требующие наличия специальных проверочных меток на передней поверхности линзы для облегчения ее одевания пациентом. Поскольку линза на глазу должна быть ориентирована конкретным образом в связи с асимметрией стабилизирующих зон и наличием отметок на ее передней поверхности, ориентация линзы во время ее одевания должна быть очень близка к ее итоговой ориентации на глазу в положении покоя. Высокая скорость вращения линзы при небольшом смещении при одевании может обеспечивать быструю и полную коррекцию зрения. Эти конструкции также имеют лучшую эффективность центрации в сравнении с конструкцией из примера 3. Центрация линзы становится стабильной после меньшего количества морганий.

1. Контактная линза, имеющая
оптическую зону линзы,
периферическую зону, окружающую оптическую зону линзы, и
стабилизирующие зоны, расположенные в периферической зоне линзы, причем стабилизирующие зоны несимметричны относительно горизонтальной оси, ориентация стабилизирующих зон составляет 10,0 градусов от вертикали, и большая часть каждой стабилизирующей зоны находится над горизонтальной осью.

2. Контактная линза, имеющая
оптическую зону линзы,
периферическую зону, окружающую оптическую зону линзы, и
стабилизирующие зоны, расположенные в периферической зоне линзы, причем наибольшее утолщение линзы расположено на меридиане 0-180 градусов, стабилизирующие зоны несимметричны относительно горизонтальной оси, и скорость изменения наклона этих зон отличается в направлении от наивысшей точки утолщения линзы.



 

Похожие патенты:

Офтальмологическая линза свободной формы содержит первый участок оптической зоны, содержащий множество вокселов полимеризованного способного к поперечной сшивке материала, содержащего фотопоглощающий компонент.

Офтальмологическая линза для замедления развития близорукости содержит центральную оптическую зону, периферийную зону, окружающую оптическую зону, и краевую зону, окружающую периферийную зону.

Способ стабилизации контактных линз содержит обеспечение конструкции линзы с набором параметров стабилизационной зоны и создание конструкции контактной линзы с улучшенной стабилизацией, основанной на характеристике параметров конструкции линзы в виде математических построений, моделирование конструкции линзы при помощи модели, в которой достигается баланс моментов количества движения и эффекты вращения модели, эффекты вязкого трения и содержание энергии упругой деформации, и выбор конструкции на основе результатов этого моделирования.

Изобретение относится к сополимерам полисилоксана с одной или двумя гидрофильными концевыми полимерными цепочками и их использованию для получения контактных линз.

Группа изобретений относится к области медицины. Система представляет собой линзу и серию линз, где линза имеет: центральную оптическую зону с распределением оптической силы, обеспечивающим аддидацию (ADD), изменяющуюся от максимального значения, составляющего от 0 до 2,4 дптр, до минимального значения, составляющего от 0 до 0,2 дптр; периферийную оптическую зону, имеющую распределение оптической силы, обеспечивающее отрицательную сферическую аберрацию между внутренним полудиаметром 2 мм и внешним полудиаметром 3 мм; переходную зону, расположенную между центральной и периферийной оптическими зонами, примыкающую к ним и обеспечивающую переход между ними.

Изобретение относится к области офтальмологии и направлено на создание подбора мультифокальных контактных линз, которые обеспечивают подбор линз при меньших временных затратах и большей степени успешности подбора по сравнению со стандартными способами, что обеспечивается за счет того, что способ подбора мультифокальных контактных линз согласно изобретению включает следующие этапы: а) оценка потенциальной успешности подбора мультифокальных линз для конкретного пациента, содержащая вычисление индекса удовлетворения привычными средствами коррекции зрения пациента; б) определение ведущего и ведомого глаза пациента; в) измерение явной рефракции для каждого глаза пациента; г) определение требуемой дополнительной оптической силы для пациента; д) подбор мультифокальной контактной линзы для каждого из ведущего глаза и ведомого глаза пациента; е) оценка зрительных потребностей пациента в зависимости от образа жизни и уточнение подбора линз, выполненного на этапе д), для ведущего глаза, для ведомого глаза или для обоих глаз по результатам такой оценки.

Изобретение относится к области медицины. Система содержит запитываемую энергией офтальмологическую линзу с источником энергии, при этом линза адаптирована для ношения таким образом, что веко представляет собой одно или более из: экрана на пути от источника внешнего освещения до указанной линзы и средства, создаваемого механическим контактом, давления на линзу; электрически соединенное с источником энергии активирующее устройство, способное детектировать сигнал, исходящий от внешнего по отношению к линзе источника энергии; и электрически соединенный с источником энергии компонент, для получения энергии от источника энергии на основе детектирования внешнего сигнала активирующим устройством.

Изобретение относится к области офтальмологии и направлено на получение линз, имеющих по меньшей мере одну простую поверхность, которые по оптическим характеристикам эквивалентны линзам, имеющим две сложные поверхности, что обеспечивается за счет того, что получают конструкцию линзы, содержащую сложные переднюю и заднюю поверхности, определяют оптические характеристики конструкции линзы, указанной на предыдущем этапе, получают конструкцию второй линзы, содержащую по меньшей мере одну простую поверхность, и повторно определяют конструкцию второй линзы таким образом, чтобы элевационные параметры такой линзы обеспечивали ее оптическими характеристиками, полученными на предыдущих этапах, и при этом по меньшей мере одна поверхность указанной линзы является простой поверхностью, а последний этап является итерационным процессом.

Изобретение относится к области офтальмологии и направлено на изготовление силиконовых гидрогелевых контактных линз, край которых определяется не соприкосновением формующих поверхностей, а пространственным ограничением излучения, что позволяет использовать форму многократно для изготовления высококачественных контактных линз с хорошей воспроизводимостью, что обеспечивается за счет того, что способ согласно изобретению включает стадии: предоставление формы для изготовления мягкой контактной линзы, где форма включает первую половину формы, образующую первую формующую поверхность, формирующую переднюю поверхность контактной линзы, и вторую половину формы, образующую вторую формующую поверхность, формирующую заднюю поверхность контактной линзы, где указанные первая и вторая половины формы устроены так, что соединяются друг с другом, так что между указанными первой и второй формующими поверхностями образуется полость, введение в полость смеси мономеров образующих линзу материалов, где смесь мономеров включает по меньшей мере один гидрофильный виниловый мономер амидного типа, по меньшей мере один включающий силоксан (мет)акриламидный мономер, по меньшей мере один полисилоксановый виниловый мономер или макромер и от примерно 0,05 до примерно 1,5 мас.% фотоинициатора, где образующий линзу материал характеризуется способностью отверждаться УФ-излучением, обладающим интенсивностью УФ-излучения, равной примерно 4,1 мВт/см2, примерно за 100 с; и облучение с помощью пространственно ограниченного актиничного излучения образующего линзу материала в форме в течение примерно 120 с или менее, чтобы сшить образующий линзу материал с образованием силиконовой гидрогелевой контактной линзы, где изготовленная контактная линза включает переднюю поверхность, сформированную первой формующей поверхностью, противолежащую заднюю поверхность, сформированную второй формующей поверхностью, и край линзы, сформированный в соответствии с пространственным ограничением актиничного излучения.

Изобретение относится к области офтальмологии, а именно к торическим контактным линзам для коррекции астигматизма, в которых коррекция обеспечивается структурой задней поверхности линз.

Контактная линза включает оптическую зону, периферическую зону, окружающую оптическую зону и, по меньшей мере, одну первую и одну вторую динамические жидкостные зоны между передней и задней поверхностями в периферической зоне. Первая динамическая зона образована из деформируемого материала и содержит один из терапевтических, питательных и фармакологических агентов для доставки в глаз пациента через одно или более отверстий. Первая динамическая жидкостная зона взаимодействует с веками таким образом, что движения век вызывают перемещение, по меньшей мере, одного терапевтического, питательного или фармацевтического агента. Вторая жидкостная динамическая зона по существу окружает первую динамическую жидкостную зону и содержит деформируемый материал. Вторая динамическая жидкостная зона имеет такую конфигурацию, чтобы сжимать первую динамическую жидкостную зону при давлении век во время моргания, что заставляет терапевтический, питательный или фармакологический агент выходить из первой динамической жидкостной зоны на поверхность глаза. Технический результат - обеспечение доставки терапевтических, питательных или фармакологических препаратов в глаз. 7 н. и 40 з.п. ф-лы, 18 ил.

Офтальмологическое устройство содержит контактную линзу, имеющую изогнутые заднюю и переднюю поверхности, оптическую зону и периферическую зону. По меньшей мере один структурный элемент на задней изогнутой поверхности в периферической зоне основан на системе итерированных функций со случайным компонентом. Способ получения офтальмологического устройства включает получение контактной линзы, построение по меньшей мере одного структурного элемента и включение его в заднюю изогнутую поверхность в периферической зоне контактной линзы. Структурный элемент основан на фрактальной геометрии, и его получают с использованием системы итерированных функций, где каждая функция в системе действует на множество и используется в сжатом отображении. Технический результат - улучшение слезообмена или обновления слезной пленки между задней поверхностью контактной линзы и роговицей. 2 н. и 6 з.п. ф-лы, 3 ил., 1 табл.

Виртуальную модель глаза конструируют при изготовлении контактных линз. Модель содержит отображение механических сил, воздействующих на роговицу и веки, геометрию контактной линзы, геометрию глаза и век, и взаимодействие глаза с контактной линзой, моделирует моргание век и рассчитывает моменты движения, действующие на контактную линзу, рассчитывает изменение положения контактной линзы во время и в промежутках между морганиями и модифицирует геометрию контактной линзы для оптимизации посадки контактной линзы на глазу на основе вращения и позиционирования контактной линзы на глазу виртуальной модели глаза. Технический результат - упрощение конструирования контактных линз за счет учета сил, воздействующих на глаз и линзу. 2 н. и 1 з.п. ф-лы, 10 ил., 1 табл.

Линза содержит оптический фильтр, выполненный с возможностью фильтрации света с длиной волны меньше чем 450 нм, первую дифракционную структуру, выполненную с возможностью создания фокуса для видимого света в первом диапазоне длин волн выше 550 нм и снижения продольной хроматической аберрации до меньше чем одной диоптрии, для входящего видимого света в первом диапазоне длин волн; вторую дифракционную структуру, находящуюся с внешней стороны первой дифракционной структуры в радиальном направлении и выполненную с возможностью создания фокуса для видимого света во втором диапазоне длин волн между 450 нм и 550 нм и снижения продольной хроматической аберрации для входящего видимого света во втором диапазоне длин волн до меньше чем одной диоптрии при допущении продольной хроматической аберрации в первом диапазоне длин волн в количестве, большем по сравнению с первой дифракционной структурой. Технический результат - уменьшение хроматических аберраций. 4 н. и 24 з.п. ф-лы, 7 ил.

Серия линз для коррекции периферической дефокусировки глаза содержит несколько мягких контактных линз. Каждая из мягких контактных линз серии имеет величину оптической силы в центральной зоне, общую для всех линз серии. Каждая из мягких контактных линз серии имеет одну величину перепада оптической силы, выбранную из ряда различных значений перепада оптической силы для линз серии. В способе коррекции периферической дефокусировки глаза выбирают первую мягкую контактную линзу из указанной серии линз и размещают ее на глазу; осуществляют оценку качества зрения глаза, показывающую наличие гиперкоррекции или недокоррекции в периферической области сетчатки; осуществляют замену первой линзы альтернативной линзой из серии мягких контактных линз, имеющей более высокое значение перепада оптической силы, если оценка показала недокоррекцию при размещении на глазу первой линзы, или более низкое значение перепада оптической силы, если оценка показала гиперкоррекцию при размещении на глазу первой линзы. Технический результат - снижение риска гипер- или недокоррекции дефокусировки в периферической области сетчатки конкретного глаза, обеспечение замедления развития миопии. 2 н. и 6 з.п. ф-лы, 7 ил.

Способ изготовления контактной линзы включает дозирование материала оптического качества в матрицу передней кривизны контактной линзы; помещение матрицы задней кривизны на поверхность материала и соединение матриц передней и задней кривизны с образованием матрицы контактной линзы и отверждение материала путем варьирования интенсивности отверждающего света вдоль профиля матрицы контактной линзы таким образом, чтобы центральная часть контактной линзы стала более жесткой, чем ее периферийная часть. Второй вариант способа включает нанесение первого ингибитора реакции на поверхность матрицы передней кривизны контактной линзы; дозирование материала оптического качества в матрицу передней кривизны; нанесение второго ингибитора реакции на поверхность матрицы задней кривизны; помещение матрицы задней кривизны на поверхность материала оптического качества и совмещение ее с матрицей передней кривизны с образованием матрицы контактной линзы. Первый и второй ингибиторы реакции должны иметь различие в составе и концентрации. В матрице контактной линзы осуществляют отверждение материала с образованием заранее определенного профиля напряжения. Технический результат - уменьшение требований к стабилизации линзы. 5 ил.

Изобретение относится к соединениям, которые описываются формулой I. В общей формуле I: Z обозначает двухвалентный радикал формулы (1а): в которой R3a, R3b, R3c и R1z обозначают водород; X обозначает одновалентный радикал формулы VI в которой R1 и R2 независимо обозначают С1-С4-алкильную группу, необязательно замещенную фенилом; А обозначает гидроксигруппу или ди-С1-С4-алкиламиногруппу; В обозначает 6-членный гетероцикл с двумя атомами азота в качестве гетероатомов; L1 обозначает фрагмент -C(O)L3C(О)-, где L3 обозначает линейный или разветвленный С1-С4-алкиленовый радикал, или В обозначает ковалентную связь и L1 обозначает фрагмент -C(O)L3C(O)-O-(СН2)р-O-, где p обозначает целое число, равное от 1 до 5; или X обозначает дифенилфосфиноксидную группу, L1 обозначает фрагмент -C(O)L3C(O)-O-(CH2)p-Ph-, где Ph замещен двумя C1-C4-алкильными группами, где p обозначает целое число, равное от 1 до 5; Y обозначает одновалентный радикал -O-C(O)-C(R14)=CH2, где R14 обозначает С1-С4-алкильную группу; и L2 обозначает мостик -(СН2)2-. Изобретение также относится к офтальмологической линзе, содержащей полимер на основе соединений изобретения. Технический результат: получены новые соединения, которые могут примененяться для изготовления поглощающих УФ-излучение офтальмологических линз. 3 н. и 2 з.п. ф-лы, 1 табл., 8 ил., 5 пр.

Линза содержит оптическую часть, имеющую область центрального зрения и периферийную область и простирающуюся от центра линзы наружу до внешней периферии, и несущую часть, соединяющуюся с внешней периферией оптической части через переходную зону и простирающуюся от внешней периферии оптической части наружу до своей внешней периферии. Линза имеет распределение оптической силы, обеспечивающее осевую и внеосевую миопическую дефокусировку для уменьшения или смещения осевой и внеосевой дефокусировки, создаваемой оптической системой глаза пациента, носящего линзы. Осевая и внеосевая дефокусировка создается благодаря увеличению положительной оптической силы для световых лучей, проходящих через область центрального зрения и периферийную область оптической части. Распределение оптической силы описывается составной математической функцией, включающей по меньшей мере первую и вторую функции ошибок. Технический результат - предотвращение или замедление развития миопии без ощутимого ухудшения центрального зрения пациента. 3 н. и 17 з.п. ф-лы, 4 ил.

Контактная линза содержит оптическую зону, периферическую зону, окружающую оптическую зону, переднюю поверхность, заднюю поверхность, содержащую на ней элементы для смещения. Элементы для смещения представляют собой углубления. Углубления разнесены друг от друга так, что центры углублений разнесены на между 300-400 микрон. Углубления имеют глубину между 20-30 микрон и диаметр между 100 и 300 микрон. Технический результат - улучшение возможности смещения линзы. 6 з.п. ф-лы, 4 ил.

Смещаемая пресбиопическая контактная линза содержит оптическую зону, линзовую часть, окружающую оптическую зону, конусную часть, окружающую линзовую часть снаружи до края контактной линзы и псевдотрункацию, асимметричную относительно вертикального меридиана. Место, где оптическая зона граничит с линзовой частью, представляет собой оптико-линзовую границу. Место, где линзовая часть граничит с конусной частью, представляет собой линзовую границу краев конуса. Конструкция поверхности линзы получена при помощи уравнения: T3=T1+(T2-T1)*(Sin ((Р3-Р1)/(Р2-Р1) *90))n , где P1 - расстояние от центра линзы до оптико-линзовой границы, Т1 - толщина оптической линзовой границы, Р2 - расстояние от центра линзы до линзовой границы краев конуса, Т2 - толщина линзовой границы, Р3 - произвольная точка в контактной линзе, расположенная между Р1 и Р2 и включая их, а Т3 - толщина, определяемая в точке Р3. Технический результат - облегчение смещения линзы за счет ее опоры на нижнее веко и повышение комфорта при ношении. 5 з.п. ф-лы, 7 ил.
Наверх