Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа



Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа
Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа
Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа
Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа

 


Владельцы патента RU 2533329:

Закрытое акционерное общество "Электронные и механические измерительные системы" (RU)

Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа относится к измерительной технике, в частности к поверочным установкам на критических соплах, и предназначено для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков различных типов. Установка содержит эталонные измерители расхода - критические сопла 1, каждое из которых снабжено запорным клапаном 2, насос 3, ресивер 4 (форкамеру), систему 5 контроля и управления, содержащую блок 6 управления запорными клапанами 2, блок 7 формирования набора критических сопел по заданному значению расхода поверочной среды. Технический результат - снижение погрешности измерения объемного расхода поверочной среды (в качестве поверочной среды обычно используют воздух) до величины δ c 2 δ , где δс - относительная погрешность сопла. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к измерительной технике, в частности к поверочным установкам на критических соплах, и предназначено для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков различных типов.

Известна установка, содержащая эталонные измерители расхода, включающие в себя эталонный счетчик и/или набор эталонных критических сопел, воспроизводящих соответствующие эталонные расходы, приборы для измерения давления, перепада давления, времени поверки и систему автоматизации для сбора и обработки измерительной информации, включающую в себя персональный компьютер.

(См. патент РФ на полезную модель №79998 по кл. МПК G01F 25/00, заявл. 04.09.2008 г., опубл. 20.01.2009 г. «Установка для поверки промышленных счетчиков газа»).

Однако известная установка содержит эталонные измерители расхода, которые, как вариант, представляют собой эталонные счетчики, которые усложняют установку, повышают ее стоимость, при этом установка характеризуется недостаточно высокой точностью, что ограничивает ее применение, а при варианте использования в качестве эталонных измерителей критических сопел относительная погрешность установки составляет 0,3%, что опять-таки характеризует установку как недостаточно точную.

Наиболее близкой по технической сущности и достигаемому эффекту к заявляемой установке для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа и выбранной в качестве наиболее близкого аналога является установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков, содержащая эталонные измерители расхода - критические сопла, каждое из которых снабжено запорным клапаном, насос, ресивер, систему контроля и управления, содержащую блок управления запорными клапанами.

См. сайт:

http://www.gorgaz.ru/upg/index.php?PHPSESSID=97kkcr49j3jgvlm0293dln3n92

Недостатком известной установки является то, что выбор сопел произволен, т.к. базируется только на величинах расхода, обеспечиваемых каждым из них и не гарантирует снижение суммарной относительной погрешности.

Правила метрологии требуют, чтобы погрешность измерения средства поверки была меньше поверяемого средства не менее чем в 3 раза, то есть для поверки современных расходомеров-счетчиков газа существующие поверочные установки на базе эталонных критических сопел не пригодны.

Задачей предлагаемого изобретения является создание установки для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа с улучшенными метрологическими характеристиками и эксплуатационными качествами.

Техническим результатом, позволяющим решить эту задачу, является снижение погрешности измерения объемного расхода поверочной среды (в качестве поверочной среды обычно используют воздух) до величины δ c 2 δ ,

где δс - относительная погрешность сопла,

за счет одновременного параллельного включения набора сопел таких, что выполняются условия получения объемного расхода поверочной среды, определяемого по формуле:

Σ k Ψ ( q k ) 2 ( Σ k Ψ q k ) 2 1 2                                ( 1 )

где Ψ - набор сопел, в количестве М штук, сформированный установкой для создания заданного значения расхода;

k - порядковый номер сопла в общем множестве сопел Ω в количестве N штук, входящих в установку (Ψ⊆Ω, М≤N);

qк - расход через сопло с номером k.

Таким образом, наибольший расход, воспроизводимый установкой может достигать величины

Q н = i = 1 N q i

Выполнение условия (1) приводит к снижению погрешности воспроизведения расхода не менее чем в √2 раз.

Кроме того, задачей предлагаемого изобретения является расширение арсенала технических средств, обеспечивающих поверку и калибровку счетчиков, расходомеров и расходомеров-счетчиков газа, следовательно, дополнительный технический результат заключается в реализации этого назначения.

Известен эффект снижения погрешности измерения при выполнении измерения несколькими средствами измерения одновременно. Относительная погрешность воспроизведения расхода при использовании одного сопла равна величине δс, которая определяется при их градуировке на государственном первичном эталоне единицы объемного и массового расходов газа ГЭТ 118-06 по ГОСТу Р 8.618-2006, с применением в качестве поверочной среды воздуха с доверительной вероятностью 0,95. При использовании набора сопел производительностью qk каждое, и таких, что Σqk=S (где S - заданное значение расхода), погрешность воспроизведения расхода составляет

δ Σ = δ c Σ j = 1 B ( q j ) 2 ( Σ j = 1 B q j ) 2 ,

где В - количество сопел в наборе.

Поставленная задача достигается тем, что в установке для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа, содержащей эталонные измерители расхода - критические сопла, каждое из которых снабжено запорным клапаном, насос, ресивер, систему контроля и управления, содержащую блок управления запорными клапанами, согласно изобретению в систему контроля и управления дополнительно введен блок формирования набора критических сопел по заданному значению расхода поверочной среды, таких, что выполняется условие (1).

Блок формирования набора сопел может быть выполнен в виде программного модуля.

Проведенные исследования по патентным и научно-техническим источникам информации свидетельствуют о том, что предлагаемая установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа не известна и не следует явным образом из изученного уровня техники, т.е. соответствует критерию «новизна» и «изобретательский уровень».

Предлагаемая установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа может быть изготовлена на любом предприятии, специализирующемся в данной отрасли т.к. для этого требуются известные материалы и стандартное оборудование, широко выпускаемое отечественной и зарубежной промышленностью.

Таким образом, заявляемая установка соответствует критерию «промышленная применимость».

Введение в систему контроля и управления блока формирования набора критических сопел по заданному значению расхода поверочной среды позволяет обеспечить автоматическое оптимальное формирование набора сопел, что приводит:

1) к снижению относительной погрешности измерения объемного расхода поверочной среды в √2 раз и более и тем самым улучшает метрологические характеристики установки,

2) исключению человека из процесса формирования набора сопел и тем самым устранить возможные ошибки, обусловленные человеческим фактором, что повышает эксплуатационные качества установки.

Выполнение блока формирования набора сопел в виде программного модуля позволяет отказаться от аппаратной реализации этого блока, что дополнительно улучшает эксплуатационные качества установки.

Таким образом, совокупность существенных признаков предлагаемой установки для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа позволяет достичь заявленного технического результата, а именно снижение погрешности измерения объемного расхода поверочной среды до величины δ c 2 δ за счет одновременного параллельного включения набора сопел таких, что выполняется условие (1), что приводит к снижению относительной погрешности воспроизведения расхода не менее чем в √2 раз и позволяет решить поставленную задачу: создание установки с улучшенными метрологическими характеристиками, с повышенными эксплуатационными качествами.

Предлагаемое изобретение поясняется фигурами:

Фиг.1 - структурная схема заявляемой установки;

фиг.2 - алгоритм формирования набора сопел.

Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа содержит эталонные измерители расхода - критические сопла 1, каждое из которых снабжено запорным клапаном 2, насос 3, ресивер 4 (форкамеру), систему 5 контроля и управления, содержащую блок 6 управления запорными клапанами 2, блок 7 формирования набора критических сопел по заданному значению расхода поверочной среды.

Принцип действия установки основан на постоянстве эталонного расхода поверочной среды через критические сопла при обеспечении критического течения потока. Это позволяет производить сравнение результатов измерений объемного (массового) расхода или объема (массы) поверочной среды, воспроизводимой с помощью установки, и поверяемым средством измерения: счетчиком, расходомером, расходомером-счетчиком, включенными последовательно в измерительные магистрали. Критический режим течения поверочной среды через сопла обеспечивают с помощью поддержания перепада давлений на соплах не ниже критического с помощью насоса 3. Необходимое значение расхода обеспечивают включением в работу определенного количества и номенклатуры критических сопел 1 с известными расходами.

Система 5 контроля и управления реализована на программируемом вычислительном устройстве (например, персональном компьютере) с программным обеспечением, позволяющим вводить идентификационные и метрологические данные поверяемого средства измерения, для проведения поверки, регистрировать измеряемые параметры, проводить необходимые вычисления, вести архив данных о поверенных средствах измерения: счетчиках, расходомерах, расходомерах-счетчиках и включает в себя:

- блок 6 управления запорными клапанами, который обеспечивает заданный расход через критические сопла 1;

- блок 7 формирования набора критических сопел 1 по заданному значению расхода поверочной среды.

С помощью программного обеспечения установка осуществляет расчет объемного (массового) расхода, объема (массы) поверочной среды, прошедших через поверяемое средство измерения, перерасчет к стандартным условиям в соответствии с ГОСТ Р 8.740-2011 и определение погрешности поверяемого счетчика, расходомера, расходомера-счетчика (средства измерения). При работе в автоматическом режиме оператор задает данные поверяемого средства 8, измерения и поверочные точки по расходу. Система 5 автоматически выводит установку на заданные режимы, выполняет необходимые измерения, проводит математическую обработку, отображает результаты на мониторе оператора в числовом виде и позволяет печатать отчетные документы. Блок 7 формирования набора критических сопел по заданному значению расхода поверочной среды работает по программе, которая основана на использовании математического выражения Σ k Ψ ( q k ) 2 ( Σ k Ψ q k ) 2 1 2 .

Установка работает следующим образом.

Оператор установки задает системе управления требуемое значение расхода S. По заданному значению расхода система 5 контроля и управления с помощью блока 7 формирует набор сопел Ψ, обеспечивающий выполнение условия (1). Работа блока 7 происходит по алгоритму, изображенному на фиг.2. Алгоритм приводит к выполнению условия (1), когда последовательности значений эталонных расходов сопел представляют собой:

1. Числа Фибоначчи (исключая 0): q1=1, q2=1, qi=qi-1+qi-2 (i=3,4,5,…) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …)

и S≥4.

По окончании процесса формирования набора Ф критических сопел 1 система 5 контроля и управления открывает клапаны 2 критических сопел 1, входящих в набор. Далее система 5 контроля и управления включает насос 3, который создает критический перепад давления поверочной среды на соплах 1, вследствие чего расход через каждое сопло становится равным эталонному значению расхода данного сопла, а суммарный расход через набор сопел становится равным заданному оператором. Заданный расход поверочной среды протекает через поверяемый прибор 8, что обеспечивает проведение операции по его поверке. При работе установки измеряемая среда проходит последовательно через поверяемый прибор 8, ресивер 4, критические сопла 1 и насос 3.

Алгоритм формирования набора сопел.

Имеем исходный набор сопел Ω, включающий в себя N сопел, каждому из которых присвоен порядковый номер (индекс) i (i=1…N) в порядке возрастания производительности сопел, то есть значения производительности сопел представляют собой неубывающую последовательность. Величина N (общее количество сопел в Ω) является произвольной и выбирается конструктором установки. Таким образом, общая производительность установки может достигать величины

Q н = i = 1 N q i

Задачей блока является формирование нового множества (набора) сопел Ψ общим количеством М (Ψ⊆Ω, М≤N) по заданному значению производительности установки S (S≤Qн), включающего в себя сопла с номерами k из исходного множества Ω и такого, чтобы выполнялись следующие условия:

Σ k Ψ ( q k ) 2 ( Σ k Ψ q k ) 2 1 2                                ( 1 )

S = F = k Ψ q k ( 2 )

где S - заданное значение расхода,

F - фактическое значение расхода, воспроизводимое установкой,

k - номер сопла в исходном множестве Ω.

Блок-схема алгоритма приведена на фиг.2.

Предложенный алгоритм функционирует при условии, когда последовательности значений эталонных расходов сопел представляют собой:

3. Числа Фибоначчи (исключая 0): q1=1, q2=1, qi=qi-1+qi-2 (i=3,4,5,…) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …)

Примеры формирования набора сопел:

1. Из последовательности чисел Фибоначчи:

Пусть заданное значение расхода S=46

Старт

i=1, D=0, F=0

q1=1

F=F+q1=0+1=1

D=S-F=46-1=45

D≠0? НЕТ

D<0? НЕТ

i=1+1=2

F=F+q2=1+1=2

D=S-F=46-2=44

D≠0? НЕТ

D<0? НЕТ

i=2+1=3

F=F+q3=2+2=4

D=S-F=46-4=42

D#0? НЕТ

D<0? НЕТ

i=3+1=4

F=F+q4=4+3=7

D=S-F=46-7=39

D≠0? НЕТ

D<0? НЕТ

i=4+1=5

F=F+q5=7+5=12

D=S-F=46-12=34

D≠0? НЕТ

D<0? НЕТ

i=5+1=6

F=F+q6=12+8=20

D=S-F=46-20=26

D≠0? НЕТ

D<0? НЕТ

i=6+1=7

F=F+q7=20+13=33

D=S-F=46-33=13

D≠0? НЕТ

D<0? НЕТ

i=7+1=8

F=F+q8=33+21=54

D=S-F=46-54=-8

D≠0? ДА

i=i-1=8-1=7

q7<|D|? НЕТ

i=i-1=7-1=6

q7<|D|? Да

Удалить сопло с индексом 6 из набора

F=F-q6=54-8=46

D=S-F=46-46=0

стоп

Таким образом, имеем следующий набор сопел Ψ: 1, 2, 3, 4, 5, 7, 8 с расходами 1, 1, 2, 3, 5, 13, 21

1. S=1+1+2+3+5+13+21=46 - условие (2) выполнено

2. Σ k Ψ ( q k ) 2 ( Σ k Ψ q k ) 2 = Σ k Ψ ( q k ) 2 S 2 = Σ k Ψ 1 2 + 1 2 + 2 2 + 3 2 + 5 2 + 13 2 + 21 2 46 2 = 650 2116 0,3072 1 2 - условие (1) выполнено

Условие (2) начинает выполняться при S≥4.

1. Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа, содержащая эталонные измерители расхода - критические сопла, каждое из которых снабжено запорным клапаном, насос, ресивер (форкамеру), систему контроля и управления, содержащую блок управления запорными клапанами, отличающаяся тем, что в систему контроля и управления дополнительно введен блок формирования набора критических сопел по заданному значению расхода поверочной среды.

2. Установка по п.1, отличающая тем, что блок формирования набора сопел выполнен в виде программного модуля.



 

Похожие патенты:

Изобретение относится к нефтяной отрасли, может быть использовано для проверки мультифазных расходомеров в условиях эксплуатации нефтяных скважин. Технический результат направлен на повышение точности определения калибровочных коэффициентов мультифазного расходомера и обеспечение возможности оперативного контроля и корректировки его показаний в условиях эксплуатации нефтяных скважин.

Изобретение относится к приборостроению, в частности к устройствам, передающим давление жидкости или газа, и может быть использовано в метрологических целях для калибровки или поверки средств измерения и контроля давления.

Изобретение относится к области расходомеров. Более конкретно, изобретение описывает прувер расходомера, способ поверки расходомера и компьютер прувера расходомера.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания.

Изобретение относится к контрольно-измерительной технике и может быть использовано для калибровки расходомеров многофазного потока без предварительной сепарации, например при измерении дебита нефтяных скважин.

Изобретение относится к области техники, связанной с количественными оценками расхода жидкости произвольной плотности. Способ экспресс-оценки мощности притока жидкости в резервуар включает непрерывное прямое измерение давления в одной точке ниже уровня находящейся в резервуаре жидкости, предварительное определение плотности этой жидкости по гидростатической формуле через значения измеренного давления и уровня жидкости, определение на основе измеренного давления и плотности жидкости текущего значения высоты переменного уровня жидкости.

Изобретение относится к устройствам для испытания или калибровки многофазных расходомеров учета продукции нефтяных скважин. Устройство воспроизведения расходов газожидкостных потоков содержит емкости 1, 2 и 3 для сжиженного газа, нефти и воды, линии 4, 5 воспроизведения расходов, сепарационную емкость 6, размещенную в пространстве над емкостью предварительной подготовки жидких компонентов 7, содержащей смеситель 8 в виде системы 9 циркуляции затопленных струй, и сообщенную с активным соплом 12 двухфазного струйного аппарата 13, газовая полость 14 сепарационной емкости 6 соединена с его пассивным соплом 17, а приемная полость 18 через испытуемый 19 и контрольный 20 многофазные расходомеры сообщена с его камерой смешения 21.

Группа изобретений относится к области измерительной техники и может быть использована для метрологической аттестации уровнемеров. Технический результат: возможность проведения метрологической аттестации двух датчиков уровня одновременно с погрешностью не более ±0,1 мм по всей длине уровнемера в непрерывном режиме с минимальным шагом 1 мм и длине уровнемера до 4000 мм.

Изобретение относится к области приборостроения, а именно к способам поверки электромагнитных расходомеров. Способ поверки электромагнитных расходомеров включает подачу напряжения на вход измерительного устройства, входящего в состав расходомера, выделенного на сопротивлении, включенном последовательно с катушками возбуждения первичного преобразования расхода и сформированного симметричным резисторным делителем напряжения.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. .

Изобретение относится к области измерительной техники и может быть использовано при градуировке и поверке расходомеров газа (сверхкритических расходомеров и расходомеров переменного перепада), применяемых в промышленных и лабораторных установках. Способ градуировки и поверки расходомеров газа, основанный на пропускании через расходомер газа в газоприемный сосуд (ГПС) и определении этой массы газа, согласно изобретению сначала компенсируют основную массу ГПС путем погружения в емкость с весокомпенсирующей жидкостью понтонов, связанных через коромысло с ГПС, затем определяют величину остатка его массы, после чего задают необходимый для поверяемого расходомера режим истечения газа через него и заполняют этим газом ГПС определенный промежуток времени τ, при этом учитывают переходные процессы начала и конца заполнения, затем взвешивают заполненный ГПС, определяют массу газа Mгаз и массовый расход по соответствующей формуле, рассчитывают коэффициент расхода и число Рейнольдса для полученного расхода. Предлагаемый способ реализуется в устройстве для градуировки и поверки расходомеров газа, которое согласно изобретению снабженное емкостью с весокомпенсирующей жидкостью, в которую погружены понтоны, связанные с ГПС, системой уравновешивания ГПС, критическими шайбами, расположенными на линии заполнения ГПС и на линии дренажа, информационно-измерительной системой сбора и обработки данных, включающей датчики температуры и давления, связанные с ПЭВМ. Технический результат - повышение точности измерения расхода газа и значительное увеличение диапазона градуировки расходомера газа. 2 н.п. ф-лы, 1 табл., 2 ил.

Представленное устройство для определения положения вытеснителя в калибровочном устройстве для расходомера, а также способ его использования и система, содержащая данное устройство, относятся к измерительной технике, а именно, к устройствам для калибровки аппаратуры для измерения расхода жидкости. Согласно одному варианту реализации калибровочное устройство для расходомера содержит проточную трубу, вытеснитель и анализатор сигналов. Вытеснитель выполнен с возможностью перемещения в проточном канале проточной трубы. Магнитная мишень расположена на вытеснителе. По меньшей мере один индуктивный преобразователь расположен на проточной трубе и выполнен с возможностью обнаружения магнитной мишени при перемещении вытеснителя в проточной трубе. Анализатор сигналов выполнен с возможностью обнаружения максимального наклона нарастающего и падающего фронтов сигнала, сгенерированного преобразователем, чувствительным к магнитной мишени, перемещающейся мимо преобразователя. Анализатор сигналов дополнительно выполнен с возможностью определения скорости перемещения вытеснителя на основании обнаруженного максимального наклона. Технический результат заключается в повышении точности калибровочного устройства благодаря более точному определению положения вытеснителя. 3 н. и 25 з.п. ф-лы, 6 ил.

Использование: для определения времени задержки ультразвуковых расходомеров. Изобретение ваключает систему и способ калибровки ультразвукового расходомера. В одном примере реализации способ включает размещение устройства для циркуляции текучей среды в расходомере. Текучая среда циркулирует в расходомере путем приведения в действие устройства для циркуляции текучей среды. Время прохождения акустического сигнала в расходомере измеряют во время циркуляции. На основании результатов измерения определяют часть времени прохождения акустического сигнала, вызванную задержкой, созданной компонентами расходомера. Технический результат: обеспечение возможности повышения точности измерений ультразвуковых расходомеров. 3 н. и 20 з.п. ф-лы, 6 ил.

Изобретение предназначено для калибровки скважинных приборов, применяемых для контроля над разработкой газовых месторождений и эксплуатацией подземных хранилищ газа. В установке для калибровки газовых расходомеров магистраль выполнена U-образной формы, в нижней части которой расположен регулируемый компрессор, соединенный изогнутыми трубопроводами через сменные уплотняемые переходные муфты со сменными вертикальными участками магистрали, предназначенными для установки калибруемых скважинных расходомеров, которые через сменные герметичные соединительные муфты соединены с вертикальными участками испытательных камер восходящего и нисходящего потоков, на верхних торцах которых предусмотрены элементы крепления для ирисового клапана и эталонного анемометра, между вертикальными участками магистрали, установлен пульт управления с преобразователем частоты и компьютером, причем один из выходов пульта управления соединен с герметичным разъемом для подключения калибруемого скважинного расходомера. Техническим результатом изобретения является упрощение конструкции, расширение диапазона калибровки, повышение производительности калибровочных работ, возможность проведения калибровки всех модификаций скважинных газовых расходомеров, как на восходящем потоке, так и на нисходящем потоке газа. 2 ил.

Изобретение относится к области приборостроения, в частности к генераторам переменного расхода, предназначенным для формирования импульсного давления и/или расхода рабочей среды при исследовании метрологических характеристик средств измерений давления и расхода жидкости, и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений. Устройство генерации колебаний содержит ротор 1, соединенный с помощью редуктора 11, муфты 10 с валом двигателя 12, управляемого блоком управления 13, статор 2, жестко закрепленный с корпусом 9 устройства. Ротор 1 является съемным и имеет два выходных окна 3, расположенных на разных уровнях. Статор 2 представляет собой цилиндр с входным окном, связанным с входным трубопроводом 6, и двумя выходными окнами 4, связанными с выходными трубопроводами 7 и 8. С целью снижения влияния гидравлического удара при воспроизведении импульсов генерируемого потока в роторе 1 имеются дополнительные окна 5, которые обеспечивают зазор между ротором 1 и статором 2 при совмещении выходных окон 3 ротора 1 с выходными окнами 4 статора 2 в начальный и конечный момент времени. Технический результат - снижение погрешностей измерения расхода и давления генерируемого потока жидкости. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области приборостроения, в частности к генераторам переменного расхода, предназначенным для формирования импульсного давления и/или расхода рабочей среды при исследовании метрологических характеристик средств измерений давления и расхода жидкости, и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений. Устройство генерации колебаний содержит ротор 1, соединенный с помощью редуктора 11, муфты 10 с валом двигателя 12, управляемым блоком управления 13, статор 2, жестко закрепленный с корпусом 9 устройства. Ротор 1 имеет два выходных окна 3, расположенных на разных уровнях. Статор 2 представляет собой цилиндр с входным окном, связанным с входным трубопроводом 6, и двумя выходными окнами 4, связанными с выходными трубопроводами 7 и 8. Для снижения гидравлического удара между внутренней поверхностью статора 2 и внешней поверхностью ротора 1 имеется зазор 5, площадь которого не превышает погрешности живого сечения потока. Технический результат - снижение погрешностей измерения расхода и давления генерируемого потока жидкости при воспроизведении импульсов генерируемого потока различных форм и амплитуд. 1 ил.

Предлагается способ поверки электромагнитного расходомера жидких металлов с помощью проливного расходомерного стенда, работающего на водопроводной воде при комнатной температуре. Электромагнитный расходомер для жидких металлов имеет трубу с электродами, индуктор низкочастотного магнитного поля и электронный преобразователь. Расходомер не имеет изоляционного покрытия канала, а электроды приварены к внешней стороне трубы. Предлагаемый способ состоит в следующем. Производится предварительная, т.е. предпроливная подготовка расходомера жидкого металла к поверке на водяном расходомерном стенде. Предварительная подготовка состоит в том, что в канал вставляется электроизоляционная футеровка с электродами, которая защищает индуцированное электрическое поле в измеряемой среде от шунтирующего действия металлической стенки канала. Футеровка может быть выполнена из резины. Кроме того, вход электронного преобразователя подключается к электродам, установленным на футеровке канала, а не к электродам расходомера, приваренным к внешней стенке трубы. Расходомер поверяется на водяном проливном расходомерном стенде таким же образом, как поверяется расходомер общепромышленного назначения. На мерный участок трубы водяного проливного расходомерного стенда устанавливается поверяемый расходомер со вставленной в него футеровкой. Через канал расходомера пропускается нормированный поток водопроводной воды при комнатной температуре. По результатам поверки расходомера на водяном расходомерном стенде определяется коэффициент преобразования расходомера по формуле где α - показания электронного преобразователя, Q - объемный расход водопроводной воды. После испытаний расходомера на водяном расходомерном стенде производится послепроливная подготовка расходомера. Из расходомера изымается футеровка, вход электронного преобразователя подключается к электродам, приваренным к наружной поверхности трубы расходомера, а в электронном преобразователе программными методами производится корректировка коэффициента преобразования посредством введения поправок, учитывающих различие условий поверки расходомера на воде и жидком металле. При этом коэффициент преобразования расходомера на жидком металле Km вычисляется по формуле Поправка kD учитывает изменение диаметра канала, вызванное введением электроизоляционной футеровки, а поправка kM учитывает шунтирующее действие проводящей стенкой канала при измерении жидкого металла. Поправка kD вычисляется по формуле где DF - диаметр канала с футеровкой, D1 - диаметр канала без футеровки при рабочей температуре жидкого металла. Поправка kM вычисляется по формуле где D2 - наружный диаметр трубы при рабочей температуре, σ и σt - проводимость жидкого металла и материала трубы при рабочей температуре. Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения расхода жидкого металла в трубах большого диаметра. 2 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано в составе автоматизированных систем учета при приеме нефти или НП на базах топлива, в частности на нефтебазах и АЭС. Способ автоматического контроля метрологических характеристик средств измерения (СИ) массы нефти или жидких нефтепродуктов (НП) на базах посредством сравнения результатов измерений массы принимаемых нефти или НП при входном контроле в транспортировочной емкости (цистерне), на потоке в приемном коллекторе при сливе и в приемном резервуаре, по результатам измерений массы до и после приема нефти или НП, с документальной массой нефти или НП и, при выявлении отклонений, последующего сравнения результатов измерений с оценкой измеряемой массы нефти или НП, полученной на основе мажоритарного выбора результатов измерений, имеющих наименьшее значение абсолютной разности. Технический результат - повышение достоверности измерения массы нефти. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройству и способу для поверки (калибровки) расходомера, объемного счетчика, массового счетчика. Устройство содержит калиброванный участок трубопровода, поршень-вытеснитель, движущийся в калиброванном участке под действием потока измеряемой среды, детекторы начального и конечного положений поршня-вытеснителя в калиброванном участке трубопровода, вторичный прибор, осуществляющий накопление и математическую обработку измерительной информации, поступающей от поверяемого (калибруемого) расходомера, объемного счетчика, массового счетчика в виде последовательностей импульсов, ограниченных во времени моментами срабатывания детекторов начального и конечного положений поршня-вытеснителя в калиброванном участке трубопровода. В устройство введены дополнительные детекторы начального и конечного положений поршня-вытеснителя и дополнительные измерительные каналы вторичного прибора, осуществляющего накопление и математическую обработку импульсных последовательностей от преобразователя расхода, ограниченных во времени моментами срабатывания детекторов начального и конечного положений поршня-вытеснителя. Суммарное число детекторов начального и конечного положений поршня-вытеснителя составляет не менее пяти. Технический результат - сокращение времени работы устройства в процессе измерений и повышение точности результатов измерений. 2 н. и 4 з.п. ф-лы, 6 ил.

Предоставляется вибрационный расходомер (5, 300). Вибрационный расходомер (5, 300) включает в себя сборку (10, 310) расходомера, включающую в себя, по меньшей мере, два вибрационных датчика (170L и 170R, 303 и 305), которые создают, по меньшей мере, два вибрационных сигнала, и измерительную электронику (20, 320), которая принимает, по меньшей мере, два вибрационных сигнала, создает новую временную разность (Δt), используя многократные измерения временной разности, полученные для текущего материала, и определяет, находится ли новая временная разность (Δt) в пределах заданных границ старой временной разности (Δt0). Причем измерительная электроника (20, 320) сконфигурирована для определения, стабильны ли по существу измерения временной разности. Технический результат - повышение точности за счет исключения некорректного обнуления измерителя. 2 н. и 16 з.п. ф-лы, 3 ил.
Наверх