Способ электрофизической обработки сварных соединений металлических конструкций



Способ электрофизической обработки сварных соединений металлических конструкций
Способ электрофизической обработки сварных соединений металлических конструкций

 


Владельцы патента RU 2533403:

Открытое акционерное общество "Челябинский трубопрокатный завод" (RU)

Изобретение относится к области машиностроения и может быть использовано в различных отраслях промышленности для повышения надежности сварных соединений стальных конструкций и увеличения срока их службы. Способ включает пропускание знакопеременных импульсов электрического тока через шов и зону термического влияния. Пропускают импульсы тока в зоне остывания шва, в которой температура металла меньше температуры точки Кюри на 50-100 градусов по шкале Цельсия. При этом импульсы электрического тока пропускают перпендикулярно сварному шву. Длительность импульсов электрического тока составляет 1,5-2,5 секунды и паузы между импульсами 1-3 секунды. Изобретение позволяет снизить затраты энергии и рабочего времени при снятии остаточных сварных напряжений, в основном, электросварных прямошовных труб большого диаметра. 2 ил.

 

Изобретение относится к области машиностроения и может быть использовано в различных отраслях промышленности для повышения надежности сварных соединений стальных конструкций и увеличения срока их службы.

Известен способ повышения несущей способности деталей машин, при котором разогрев дефектных зон осуществляют импульсным током в течение 0,01-0,5 секунд (авторское свидетельство СССР № 1015561, Кл. B23P 6/04). За счет концентрации тока в области дефектов создается температурный градиент, обуславливающий термоупругие напряжения сжатия. При этом происходит локализация дефектов кристаллического строения, являющихся концентраторами напряжений.

Однако существующий способ снижения напряжений рассчитан на обработку областей металла, размеры которых несоизмеримо меньше поперечного сечения, через которое проходит ток. Решить вопрос снижения остаточных напряжений в сварных соединениях труб большого диаметра или других конструкций известным способом практически невозможно.

Известен способ снижения остаточных напряжений в сварных соединениях больших металлических конструкций, включающих электрофизическую обработку (ЭФО) участков с повышенными остаточными напряжениями путем пропускания пакета знакопеременных импульсов тока через эти участки, причем импульсы тока имеют форму равнобедренной трапеции и паузы между импульсами тока 4-6 секунд (декларационный патент на изобретение Украины №53559А, Кл. B23P 6/04, С21Д 1/8).

Недостатком известного способа является значительные затраты энергии и времени, необходимых для снижения остаточных напряжений.

Целью настоящего изобретения является уменьшение затрат энергии и сокращение рабочего времени, необходимых для снижения остаточных напряжений в сварных соединениях, особенно электросварных прямошовных труб большого диаметра.

Поставленная цель достигается тем, что в предлагаемом способе снижения остаточных напряжений в сварных соединениях, включающем ЭФО участков с повышенными остаточными напряжениями, в процессе выполнения сварки через нагретый электродуговой сваркой участок шва и зону термического влияния (ЗТВ) пропускают знакопеременные импульсы электрического тока длительностью (2,0±0,5) секунды и паузой между импульсами 1-3 секунды.

Другое отличие состоит в том, что импульсы электрического тока пропускают перпендикулярно сварному шву.

Третье отличие состоит в том, что импульсы тока пропускают в зоне остывания шва, где температура металла меньше температуры точки Кюри на 50-100 градусов по шкале Цельсия.

Каждый из перечисленных признаков отличается от признаков известных решений, применяемых для снижения остаточных напряжений, поэтому предлагаемое техническое решение соответствует критерию «существенные отличия».

Перечисленная совокупность существенных признаков предлагаемого способа снижения остаточных напряжений в сварных соединениях позволяет создать положительный эффект и поэтому обуславливает соответствие предлагаемого технического решения критерию «новизна».

Действительно, в результате пластических деформаций при остывании сварного шва возникают внутренние напряжения и остаточные деформации. Согласно принципу термодинамического равновесия система всегда стремится к состоянию с минимумом полной свободной энергии, поэтому внутренние напряжения и остаточные деформации стремятся к равновесному статическому состоянию. Любое нарушение приводит к перераспределению напряжений, которое вновь приводит систему к равновесному состоянию.

Начиная с кристаллизации в металлах возникают дефекты (дислокации) различных типов. Все воздействия при обработке металла (тепловые, механические, химические и др.) связаны с преобразованием его дислокационной структуры. Пластическая деформация металлов имеет термофлуктуационную природу и является результатом элементарных сдвигов в кристаллах при перемещении дислокации в плоскости скольжения, которое может застопориться на закрепляющих центрах (потенциальных или энергетических барьерах). Возрастание внутренних напряжений сопровождается увеличением плотности дислокации за счет их скопления на стопорах.

Способность металла к деформированию лимитируется исчерпанием пластичности в отдельных микрообъемах, где и происходит зарождение очагов разрушения. Дальнейшее деформирование металла без разрушения возможно только после термической обработки (отжиг). При температурах рекристаллизационного отжига термофлуктуации всегда превышают высоту энергетических барьеров в решетке и дислокации преодолевают стопоры. Микропластическая деформация осуществляется за счет потенциальной упругой энергии, накопленной в процессе предварительной пластической деформации металла, и происходит структурная перестройка релаксационного характера (уменьшение плотности дислокации и остаточных напряжений).

В отличие от термообработки при ЭФО происходит нетермическое преобразование дислокационной структуры за счет снижения высоты энергетических барьеров в результате взаимодействия электромагнитного поля электрического тока с электромагнитным полем реальной кристаллической решетки металла. Это взаимодействие происходит, прежде всего, на головных дислокациях неравновесных групп дислокации (в скоплениях), которые находятся накануне срыва со стопора, а импульс тока инициирует их разрядку. Происходит срыв дислокации со стопоров и плотность дислокации уменьшается (релаксация остаточных напряжений).

Если ЭФО выполняется при повышенной температуре металла, то преобразование дислокационной структуры будет происходить: а) термическое - за счет увеличения термофлуктуации при повышении температуры металла; б) нетермическое - за счет снижения высоты энергетических барьеров в решетке при воздействии электрического тока. Очевидно, что при повышении термофлуктуаций срыв дислокации со стопоров обеспечивается при меньшем снижении высоты энергетических барьеров, то есть при уменьшенной плотности тока ЭФО. Кристаллизация ферромагнитных металлов (с возникновением магнитных свойств) характеризуется температурой точки Кюри, выше которой магнитные свойства исчезают. Следовательно, при температуре остывающего металла, близкой к температуре точки Кюри, эффективность воздействия электрического тока будет выше, чем на металл при низкой температуре.

Предлагаемое изобретение, включающее ЭФО металла, кристаллизующегося при остывании сварного шва, позволяет снизить плотность электрического тока, необходимого для уменьшения плотности дислокации и создания равновесной структуры металла с целью уменьшения остаточных напряжений.

Экспериментальная проверка

Проверка способа снижения остаточных напряжений производилась путем экспериментальных исследований.

Проверка производилась путем сравнительной оценки формирующихся остаточных сварочных напряжений (ОСИ): а) без ЭФО; б) при ЭФО в процессе электродуговой сварки. Уровень формирующихся остаточных напряжений контролировался с помощью переносного прибора неразрушающего контроля ПКОН SMF (ТУ У 33.2-30976520-002:2008). Заданные параметры тока ЭФО обеспечивались при помощи установки DS10D (ТУ У 31.6-30976520-001-2001).

Исследования выполнялись на цилиндрической трубе внешним диаметром 270 мм, толщиной стенки 7 мм, длиной 1,2 м, материал - сталь 20. По длине трубы (вдоль оси) механическим способом был выполнен продольный разрез. Контроль уровня ОСН в ЗТВ выполнялся в 13 точках, равномерно распределенных по длине шва. Измерения выполнялись с помощью прибора ПКОН SMF в относительных единицах. За единицу принимался уровень ОСН, измеренный в сварном образце стали 20 после термообработки (калибровка прибора).

Сварной шов по длине условно разбивался на три участка:

участок шва 1 - точки контроля 0-4;

участок шва 2 - точки контроля 4-8;

участок шва 3 - точки контроля 8-13.

Электродуговая сварка продольного шва трубы выполнялась в направлении от точки 0 к точке 13, ток сварки 150-180 А (рисунок 1).

Сварка участка шва 1 выполнялась без ЭФО. Сварка участков шва 2 и 3 выполнялась при воздействии тока ЭФО. Ток ЭФО подводился с помощью специальной оснастки и пропускался поперек шва так, чтобы обрабатывалась зона шва и ЗТВ. Параметры тока ЭФО: амплитудное значение импульса тока 980 А, длительность импульса тока (2,0±0,5) с, длительность паузы между импульсами 1-3 с, полярность импульсов тока - знакочередующаяся. Повышение эффективности ЭФО достигалось за счет локального увеличения плотности тока в зоне шва и ЗТВ. Для этого при сварке участка шва 3 для повышения эффективности ЭФО точки подключения тока приближались к оси шва.

После остывания шва в точках контроля (1-13) производились измерения уровня ОСН в ЗТВ. Результаты представлены на рисунке 2.

Экспериментально установлено:

1. Снижение уровня остаточных напряжений на 50-60% получено при ЭФО импульсами электрического тока длительностью (2,0±0,5) секунды и паузой между импульсами 1-3 секунды.

2. Повышение эффективности ЭФО и наименьшее значение уровня остаточных напряжений получено при минимальных расстояниях до точки подвода тока, что подтверждает необходимость пропускать токи ЭФО перпендикулярно шву.

3. Наименьшее значение остаточных напряжений получено при ЭФО зоны остывания и кристаллизации металла сварного шва, где температура приблизительно на 50-100°C меньше температуры точки Кюри.

Использование предлагаемого способа снижения остаточных напряжений в сварных соединениях металлических конструкций, включающего ЭФО сварного шва и ЗТВ при остывании, обеспечивает по сравнению с существующими способами значительную экономию энергетических затрат и рабочего времени.

Предлагаемый способ снижения остаточных напряжений в сварных соединениях является эффективным методом повышения надежности сварных конструкций и увеличения срока их службы. Позволяет без послесварочной температурной обработки снизить уровень остаточных напряжений и улучшить механические свойства металла сварных соединений.

Предлагаемый способ наиболее эффективен для локальной обработки сварных швов крупногабаритных конструкций, что невозможно другими способами. Зона сварного соединения обрабатывается непосредственно в процессе электродуговой сварки металлических конструкций.

Способ электрофизической обработки сварных соединений металлических конструкций, включающий пропускание знакопеременных импульсов электрического тока через шов и зону термического влияния, отличающийся тем, что импульсы тока пропускают в зоне остывания шва, в которой температура металла меньше температуры точки Кюри на 50-100 градусов по шкале Цельсия, при этом импульсы электрического тока длительностью 1,5-2,5 секунды с паузами между импульсами 1-3 секунды пропускают перпендикулярно сварному шву.



 

Похожие патенты:

Изобретение относится к теплотехнике, в частности к устройству внепечной термообработки сварных изделий, и может быть использовано в разных отраслях промышленности для термообработки крупногабаритных сварных изделий в области сварочных швов без использования печного оборудования, а также для предварительного нагрева торцов изделий перед сваркой.

Изобретение относится к области термомеханической обработки сварных соединений, например сварных стыков рельсов, и может быть использовано на железнодорожном транспорте.

Изобретение может быть использовано при термической обработке сварных соединений, полученных линейной сваркой трением, в частности сварных соединений диска и лопаток, например дисков ротора в моноблоке с лопатками - блисков.
Изобретение относится к способу внепечной термообработки крупногабаритных сварных изделий в области сварочных швов. Способ осуществляют в камере нагрева, выполненной в форме сегмента, повторяющего форму поверхности нагреваемой части изделия, и ограниченной корпусом, коллекторами подачи газа и отбора дыма и нагреваемой поверхностью изделия.
Изобретение относится к способу лазерной сварки встык листов из стали с содержанием бора 1,3-3,6%, в частности листов из борсодержащей стали 04Х143Р1Ф-Ш, и может найти применение для изготовления сварных изделий и труб с повышенными требованиями к поглощению нейтронного излучения для объектов атомной энергетики.

Изобретение относится к области сварки, а именно к способам снятия остаточных напряжений, возникающих в сварных соединениях, в том числе и при сварке трубопроводов.

Изобретение относится к области металлургии, в частности к охлаждению зоны сварного соединения рельса непосредственно после сварки. .

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных труб различного назначения. .

Изобретение относится к области технологии сварки, а именно к способам снятия остаточных напряжений, возникающих в сварных соединениях в процессе сварки и, как следствие, снижению геометрических погрешностей формы корпусов.

Изобретение относится к области технологии сварки и служит для снятия остаточных напряжений, возникающих в сварных соединениях в процессе автоматической сварки. .

Изобретение относится к машиностроению и судостроению, поскольку в этой области чаще всего встречаются стыковые соединения с двухсторонним доступом. Технический результат изобретения - снижение затрат на дополнительный металл при сварке и повышение ее производительности.

Изобретение относится к системе для термической обработки с использованием струи плазмы и/или лазерного луча. Лазерная головка (22) и плазменная головка (21) выполнены с возможностью присоединения к одному хвостовику (20).

Изобретение относится к способу сварки трубопроводов без предварительного подогрева стыков. Способ включает в себя соединение 2-х и более цилиндрических металлических труб, трубных секций, трубных плетей сварным кольцевым стыком с применением дуговой сварки по всему периметру трубы.

Изобретение относится к способу и машине комбинированной дуговой сварки. Изобретение позволяет достигнуть предотвращение ухудшения ударной вязкости зоны термического влияния за счет поддержания плотности тока газоэлектрической сварки металлическим электродом и дуговой сварки под флюсом в пределах соответствующего диапазона во время сварки стального листа.

Изобретение может быть использовано при сварке деталей, в частности, из титановых или медных сплавов, сталей. Инструмент в виде вращающегося с высокой скоростью рабочего сердечника из высокопрочного материала погружают в свариваемые детали и перемещают его по всей длине соединения.

Изобретение относится к области машиностроения и судостроения и может быть применено при изготовлении сварных конструкций. Свариваемые детали располагают в горизонтальной плоскости.

Изобретение относится к области сварки, а именно к способам снятия остаточных напряжений, возникающих в сварных соединениях, в том числе и при сварке трубопроводов.

Изобретение относится к обработке металлов, в частности к технологии изготовления криволинейных сварных ребер жесткости для ответственных изделий судостроения и других отраслей промышленности.

Изобретение относится к легкой промышленности и может быть использовано для выпуска оборудования, предназначенного для резки изделий, которые имеют высокую механическую прочность. Устройство для абразивно-лазерной резки содержит несущий корпус с приводом, имеющим передаточный механизм, выполненный с возможностью вращения диска из абразивного материала. Корпус связан с лазерным устройством, выполненным с возможностью подачи лазерного луча в передающий световод. Выходная торцевая часть передающего световода ориентирована соосно с торцевыми частями рабочих световодов, расположенных на заданном расстоянии друг от друга. Внешняя торцевая часть рабочих световодов расположена на боковой образующей абразивного диска. Внутренняя торцевая часть рабочих световодов расположена на кольцевом выступе, сформированном на боковой части абразивного диска. Технический результат от использования устройства позволяет увеличить скорость резания или обработки металла изделия независимо от его прочностных характеристик. 4 ил.
Наверх