Способ получения нетканого нанокомпозиционного материала на основе полиамида-6

Изобретение относится к способу получения нетканого нанокомпозиционного материала, который может быть использован в сфере фильтрации и медицинских целях. Способ получения нетканого материала заключается в том, что в экструдере смешивают исходные компоненты и в реакционной зоне экструдера проводят каталитический синтез полиамида-6. Затем методом электроформования из расплава полиамида-6 получают волокна. Исходная смесь содержит монтмориллонит и ε-капролактам в качестве исходного мономера. Изобретение позволяет уменьшить энергетические затраты на получение нанокомпозиционного материала, уменьшить количество технологических стадий и позволяет регулировать структуру готового материала. 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к созданию полимерных нетканых микроволокнистых материалов, которые могут использоваться в сфере фильтрации и медицинских целях.

В последние 15-20 лет стало актуальным получение и использование нанокомпозиционных материалов, состоящих из полимера с добавлением некоторого количества силикатного нанонаполнителя. Введение небольшого количества эксфолиированного нанонаполнителя, в частности монтмориллонита, позволяет улучшить свойства исходного полимера. Эксфолиированные слоисто-силикатные наночастицы обладают комплексом уникальных физико-химических свойств и считаются идеальным наполнителем для полимеров.

Существует ряд способов получения подобных нанокомпозиционных материалов. Так, в патенте US 4739007 был впервые предложен способ получения нанокомпозиционного материала на основе полиамида и слоисто-силикатного наполнителя, в частности монтмориллонита, который позволял получить композиционный материал с высокой механической прочностью и отличными высокотемпературными характеристиками. В патенте US 6906127 предложены интеркаляты, эксфолиаты и их концентраты, образованные с низкомолекулярным полимером, а также найлоновые интеркаляты, полученные полимеризацией in situ путем полимеризации с раскрытием цикла. В патенте US 4894411 предложен способ получения композиционного материала, состоящего из полиамидсодержащей смолы, диспрегированного в ней слоисто-силикатного наполнителя и вещества, такого как полиамин, которое контролирует кристаллическую структуру или молекулярную структуру смолы, полимеризацией in situ. Полученный композиционный материал обладает улучшенной механической прочностью, ударной вязкостью и высокой прозрачностью. Однако получение нетканого материала из подобных композитов остается за рамками данных патентов и требует дополнительных этапов, значительно удлиняя технологический процесс и увеличивая число стадий на пути от мономера до готового изделия.

Одним из наиболее распространенных способов получения нетканых волокнистых материалов является электроформование. Процесс электроформования можно осуществлять как из раствора, так и из расплава. Известен способ получения нетканого нанокомпозиционного материала электроформованием из раствора полиамида-6 в муравьиной кислоте (Y. Cai [et al.], Structures, thermal stability and properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning // Journal of Material Science. - 2008. - V.43. - P.6132-6138). Недостатком данного способа является сложность его реализации в промышленном масштабе - используемый растворитель токсичен, поэтому требуется сложная схема по его улавливанию.

Более перспективным методом получения волокнистых материалов является электроформование без использования растворителя - из расплавов полимеров. Метод был впервые предложен в 1981 году Ларрондо и Манлеем (L. Larrondo, R.St.J Manley // Journal of Polymer Science: Polymer Physics Edition. - 1981. - V. 19. - P.909-940), которые получили из расплавов чистого полиэтилена и полипропилена волокна диаметром 50-400 мкм.

Прототипом заявляемого изобретения является способ получения нетканого нанокомпозиционного материала из расплава полимеров, в т.ч. полиамида-6 (US 7083854). Недостатком прототипа является использование готового полиамида, что не позволяет получать нетканый материал из мономеров в одну стадию, а также накладывает ограничения на регулирование структуры материала ввиду невозможности изменять молекулярную массу полимера.

Технической задачей изобретения является создание способа получения нетканого нанокомпозиционного материала одностадийным непрерывным процессом электроформования из расплава.

Для этого предложен одностадийный способ получения нетканого материала методом электроформования из расплава на основе полиамида-6, при этом проводят каталитический синтез полиамида-6 в реакционной зоне экструдера, а в качестве исходного мономера используют ε-капролактам. Это позволяет избавиться от ряда стадий, таких как охлаждение, сушка, грануляция полимера после синтеза и его повторное плавление при формовании, что выгодно как с технологической, так и с экономической стороны, т.к. существенно уменьшается список необходимого оборудования, а также энергетические и временные затраты на получение нетканого материала.

Кроме того, в загрузочный лоток или в лоток на выходе из реакционной зоны экструдера вводят монтмориллонит в количестве 0,5-3% масс., по отношению к общей массе расплава.

За счет загрузки в экструдер мономера, активатора, катализатора и наполнителя (монтмориллонита), полимеризации с последующим электроформованием из синтезированного полимера нетканого материала удается сократить число технологических стадий, необходимых для получения волокон диаметра микронного ряда, составляющих основу нетканого нанокомпозиционного материала.

На фигуре показана схема процесса.

Для производства нетканого материала используется установка на базе экструдера с несколькими регулируемыми зонами нагрева (количество зон нагрева N может изменяться в пределах от 4 до 12). Мономер, активатор и катализатор через загрузочный лоток 1 подаются в экструдер 2, плавятся, в процессе продавливания расплава шнеком 3 происходит полимеризация. Монтмориллонит может загружаться как через загрузочный лоток 1 (вместе с мономером, активатором и катализатором), так и через загрузочный лоток 4 (который также может служить для дегазации получающегося полимера). Далее расплав продавливается сквозь фильеру 5 и, попадая в электрическое поле, создаваемое высоковольтным источником питания 6, образует микроволокнистый материал, попадающий на приемное устройство 7, выполненное в виде вращающегося цилиндрического барабана, что позволяет получать полотна нетканого материала большого размера. В качестве мономера используется ε-капролактам, активатора - натриевая соль капролактама (концентрация от 3 до 6% масс.), катализатора - гексаметилен-1,6-дикарбомоилкапролактам (концентрация от 2 до 4% масс.)

Температура в зонах экструдера определяется следующим образом:

• в зоне загрузки: T1=50°C,

• в зонах смешения: T2=…=Ti=95°C,

• в зонах синтеза температура возрастает от Ti+1=180°C на входе в зону синтеза до TN-1=240°C на выходе.

Время синтеза регулируется скоростью вращения шнека экструдера (200-650 об/мин).

Электроформование происходит при температуре TN=300-360°C. Расстояние между фильерой и приемным устройством может варьироваться в пределах 15-50 см. Напряжение формования регулируется в диапазоне 50-130 кВ. Диаметр отверстия фильеры составляет 0,5-1,0 мм. Также зона фильеры может обдуваться горячим воздухом.

Получаемый нанокомпозиционный материал состоит из микроволокон на основе полиамида-6 со средним диаметром от 5 до 50 мкм, содержащих 0,5-3% наночастиц монтмориллонита, и характеризуется поверхностной плотностью 5-100 мг/см2.

Заявляемый способ получения нетканого материала обладает новизной и существенными отличительными признаками от известных из уровня техники решений и может быть реализован в промышленности. Варьирование параметров технологического процесса обеспечивает получение материалов с заданными физико-механическими свойствами, что определяет их целевое использование.

Пример получения нетканого материала по заявленному способу (№1 в таблице).

Смесь, состоящую из капролактама, катализатора (гексаметилен-1,6-дикарбомоилкапролактам, концентрация 6% масс.), активатора (натриевая соль капролактама, концентрация 3% масс.) и монтмориллонита (концентрация 3% масс.) загружают в двухшнековый экструдер с 12 зонами нагрева, полимеризуют при скорости вращения шнеков 650 об/мин, при температуре в зоне загрузки T1=150°C, в зонах смешения Т2345=95°C, в зонах синтеза Т678=180°C, Т9=235°C, Т1011=95°C и выдавливают при температуре T12=350°C через фильеру с отверстием диаметром 1,0 мм. Расплав увлекается электрическим полем и, многократно утончаясь и расщепляясь, образует микроволокнистый нанокомпозиционный материал, который оседает на приемном барабане (прикладываемое напряжение - 130 кВ, расстояние между фильерой и барабаном 45 см), образуя полотно поверхностной плотностью 62,8 мг/см2 из волокон, имеющих среднюю толщину 22,4 мкм.

Остальные примеры (№2-5 в таблице) по принципу получения волокна аналогичны примеру 1, при этом меняются соотношение исходных компонентов и условия получения волокна.

Результаты приведены в таблице.

Получаемый материал состоит из микроволокон на основе полиамида-6 со средним диаметром от 5 до 50 мкм, содержащих 0,5-3% наночастиц монтмориллонита, и характеризуется поверхностной плотностью 5-100 мг/см2.

1. Способ получения нетканого нанокомпозиционного материала путем электроформования из расплава полиамида-6, содержащего наночастицы монтмориллонита, состоящий из смешения исходных компонентов, синтеза полимера и электроформования волокон из расплава полученного полимера, отличающийся тем, что каталитический синтез полиамида-6 проводят в реакционной зоне экструдера, а в качестве исходного мономера используют ε-капролактам.

2. Способ по п.1, отличающийся тем, что содержание наночастиц монтмориллонита составляет 0,5-3% масс.



 

Похожие патенты:
Изобретение относится к технологии производства химических волокон и касается способа получения высокопрочных высокомодульных арамидных нитей. Способ включает мокрое или сухо-мокрое формование раствора ароматического гетероциклического сополиамида пара-структуры в водно-амидную осадительную ванну с последующей пластификационной вытяжкой до 120%, промывкой, двухстадийной сушкой с кратковременным погружением нити между стадиями сушки в композицию с гидрофобизирующей кремнийорганической жидкостью с последующей термообработкой и термовытяжкой.

Изобретение относится к технологии получения филаментных нитей из пара-ароматического полиамида. Оптически анизотропный арамидный прядильный раствор фильтруют через фильтр с пропускными отверстиями внутри устройства прядильной фильеры и экструдируют внутри устройства прядильной фильеры через множество прядильных пластин и воздушный зазор с вытягиванием и сбором в водяной коагуляционной ванне.
Изобретение относится к технологии получения синтетических нитей с высокими хемостойкостью и гидрофобностью и низким коэффициентом трения. Способ заключается в формовании нитей из расплава полимера, нанесении авиважного препарата, ориентационном вытягивании и термофиксации.
Изобретение относится к технологии получения синтетических нитей с высокими хемостойкостью и гидрофобностью и низким коэффициентом трения и может быть использовано в химической промышленности.
Изобретение относится к технологии производства синтетических волокон, в частности, к производству множества высокопрочных, высокомодульных нитей из ароматического полиамида.
Изобретение относится к текстильной промышленности и касается найлонового штапельного волокна, подходящего для применения в устойчивых к абразивному истиранию высокопрочных найлоновых нитей.
Изобретение относится к текстильной промышленности и касается найлонового штапельного волокна с высокой несущей способностью и изготовленных из него смешанных найлоновых пряж и материалов.
Изобретение относится к окрашиваемому полностью ароматическому полиамидному волокну мета-типа, широко применяемого во многих отраслях промышленности и домашнего обихода.

Изобретение относится к текстильной промышленности и касается нити из ароматического полиамида и способа ее получения. Нить полностью из ароматического полиамида.

Изобретение относится к текстильной промышленности и касается нити из ароматического полиамида и способа ее изготовления. Нить полностью состоит из ароматического полиамида.

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей подложкой, причем в процессе роста КТ периодически переключают полярность внешнего напряжения с отрицательной на положительную и фиксируют единичный пик на туннельной ВАХ при определенном значении приложенного напряжения из диапазона значений от 1 до 5 В.

Изобретение может быть использовано в неорганической химии. Для получения наночастиц маггемита готовят водный раствор хлорида железа (III), добавляют к нему щелочь до рН 6,5-8, нагревают до 60-70°С, промывают до начала окрашивания промывных вод.

Изобретение относится к электронике. В способе формирования нанопроводов из коллоидного естественно-природного материала, основанном на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, формирование структур и/или элементов проводят в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×103 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.

Изобретение относится к области нанотехнологии и может быть использовано в автоматизированных транспортных системах передачи и позиционирования образца в вакууме и контролируемой газовой среде.

Изобретение относится к области микро- и наноэлеткроники, где используются кратковременные и комбинированные источники тока. В частности, изобретение может быть использовано в качестве накопителя энергии.

Изобретение относится к области нанотехнологий и, более узко, к способам сортировки нанообъектов, таких как полупроводниковые и металлические углеродные нанотрубки.
Изобретение относится к технологическим процессам, а именно к способам осуществления химических процессов, в частности к области общего и специального катализа, также к созданию новых материалов с особыми свойствами для осуществления этих процессов.

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO2-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом, представляющим собой графитовый стержень с просверленной по центру полостью, и распыление композитного электрода.

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении изделий из трехкомпонентного сплава на основе титана, содержащего алюминий в количестве 2-6 вес.% и ванадий или цирконий в количестве не более 4 вес.%.

Изобретение относится к изготовлению газовых сенсоров, предназначенных для детектирования различных газов. Предложен способ изготовления газового сенсора, в котором образуют гетероструктуру из различных материалов, в ней формируют газочувствительный слой, после чего ее закрепляют в корпусе сенсора, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников.
Изобретение относится к области металлургии и может быть использовано для производства ультрадисперсных порошков сплавов. Способ получения ультрадисперсных порошков сплавов с размерами частиц 5-200 нм и удельной поверхностью 80-170 м2/г включает подачу порошка исходной смеси основного и дополнительного металлов со средним размером частиц 100-150 мкм потоком инертного плазмообразующего газа в реактор газоразрядной плазмы, испарение исходной смеси основного и дополнительного металлов, охлаждение продуктов термического разложения охлаждающим инертным газом и конденсацию полученного ультрадисперсного порошка сплавов в водоохлаждаемой приемной камере. При охлаждении продуктов термического разложения обеспечивают их перемешивание в зоне охлаждения факела электромагнитным полем, создаваемым электромагнитным перемешивателем, расположенным с внешней стороны зоны охлаждения реактора. Получают ультрадисперсные наноразмерные порошки сплавов с равномерным распределением в них компонентов. 5 з.п. ф-лы, 6 пр.
Наверх