Пульсатор



Пульсатор
Пульсатор
Пульсатор
Пульсатор
Пульсатор

 


Владельцы патента RU 2533600:

Российская Федерация в лице Министерства промышленности и торговли РФ (МИНПРОМТОРГ РОССИИ) (RU)

Изобретение относится к области энергетического машиностроения, в частности к методам промывки контурных систем атомных паропроизводящих установок. Пульсатор содержит корпус с герметичными камерами пульсаций 1, в которых соосно им смонтированы вращающиеся от двигателя валы 2 с неподвижно установленными на них дисками. Корпус выполнен из 4-х сообщающихся и в плане симметрично расположенных на взаимно перпендикулярных осях вертикально установленных цилиндрических камер пульсаций 1. Камеры 1 соединены попарно двумя параллельными верхними патрубками и перпендикулярно им - двумя параллельными нижними патрубками. Диски установлены под углом к валам 2 в их средней части таким образом, чтобы их верхний край находился ниже верхнего патрубка, а нижний край - выше нижнего патрубка. По диагоналям корпуса с внешней стороны каждой камеры установлены на половине их высоты наружные патрубки 8. Изобретение направлено на повышение эффективности промывки изделий. 3 з.п. ф-лы, 5 ил.

 

Изобретение относится к области энергетического машиностроения, в частности к методам промывки контурных систем атомных паропроизводящих установок (АППУ), и может быть использовано при промывке трубопроводов и систем гидравлики различных транспортных объектов, а также при ремонте энергетических и транспортных систем.

Ресурс и эксплуатационная надежность оборудования систем различного назначения зависит от чистоты внутренних полостей, тщательной очисткой которых можно предотвратить преждевременное изнашивание ответственных элементов и увеличить продолжительность их безотказной работы. Именно поэтому, требования к чистоте внутренних полостей и трактов являются обязательными практически для всех систем и энергоустановок, включая атомные. Эти требования изложены в соответствующих нормативных документах.

Современные методы промывки можно разделить на проточные и интенсивные. Продолжительность промывки систем проточным методом достаточно велика, а примерная трудоемкость промывки трубопроводных магистралей гидросистем может составлять до 40% от общих затрат времени на изготовление и сборку всего агрегата. Мощность электропривода прямоточного промывочного стенда в судостроении может достигать более 100 кВт, поэтому затраты на электроэнергию в масштабах судостроительного завода весьма значительны.

Указанные недостатки метода прямоточной промывки можно значительно уменьшить, используя метод интенсивной промывки. Для интенсивной промывки в прямоточные промывочные стенды включают устройства интенсификации промывки трубопроводов и систем.

Известно несколько методов интенсивной промывки трубопроводов и систем. Из этих методов наибольшее практическое распространение получили промывка методом пульсирующего потока и промывка методом изменения направления движения моющей среды.

Пульсирующий поток моющей среды возникает от работы пульсатора, который подключается к прямоточному стенду промывки непосредственно в тракт или параллельно тракту. При работе пульсатора возникает поток с пульсирующим расходом и давлением моющей среды.

Измененное направление потока моющей среды создается с помощью системы переключателей, устанавливаемых непосредственно в тракте прямоточного промывочного стенда, при этом для изменения направления потока необходимо выключать электропривод стенда для избежания гидроудара.

Известен гидропульсатор по а.с. №520460, обеспечивающий пульсирующий поток моющей среды (рабочей жидкости), содержащий цилиндрический корпус с радиально расположенными впускными и выпускными рабочими окнами и сообщающееся с ними распределительное окно, выполненное на наружной цилиндрической поверхности золотника, вращающегося внутри корпуса. Распределительное окно золотника выполнено профилированным в соответствии с формой заданного импульса моющей среды, а в корпусе в зоне выпускного рабочего окна размещено устройство для изменения формы этого рабочего окна, выполненное, например в виде набора профилированных пластин, фиксируемых в положениях, определяемых требуемой для данного импульса формой окна.

Недостатками данного пульсатора являются:

- моющая среда при работе пульсатора движется только в одном направлении, поэтому возможно скопление застойных зон грязи в промываемых полостях, и, как следствие, необходимо дополнительное время для их промывки;

- заданная форма импульса давления моющей среды определена профилем распределительного окна во вращающемся золотнике и набором профильных пластин в зоне выпускного рабочего окна корпуса, поэтому пульсатор не имеет возможности регулирования импульса давления в широком диапазоне без остановки самого процесса промывки полостей.

Известно устройство, изменяющее направление движения потока моющей жидкости в промываемом изделии и промывочном стенде с помощью системы клапанов, соединенных в гидравлический мост (Ж. «Судостроение». №6. 2011 г. (ноябрь-декабрь), с.56).

Недостатком данного устройства являются:

- при промывке полостей с использованием этого устройства не возникает импульса изменения давления моющей среды, что замедляет отрыв частиц от отмываемых поверхностей;

- перед переключением направления движения моющей жидкости для исключения явления гидроудара необходимо останавливать процесс промывки.

Наиболее близким по технической сущности и достигаемому результату является пульсатор по А.с. №335015, принятый за прототип.

Этот пульсатор содержит корпус, включающий последовательно расположенные, сообщающиеся камеру высокого давления и камеру пульсаций, проходящий через камеры вал, установленный на валу в камере высокого давления вращающийся диск с окнами и размещенный между вращающимся диском и камерой пульсаций неподвижный диск с окнами, идентичными окнам вращающегося диска и расположенными на том же расстоянии от оси вала, что и окна вращающегося диска. Окна каждого из дисков имеют различный размер и расположены на неподвижном диске по радиусу, в порядке увеличения или уменьшения их размера, а на вращающемся диске - по спирали, в порядке, обеспечивающем при вращении диска совмещение его окон с окнами одинакового размера неподвижного диска.

Однако прототип обладает следующими недостатками:

- при работе пульсатора моющая среда движется только в одном направлении, поэтому возможно скопление застойных зон грязи в промываемых полостях, поэтому необходимо дополнительное время для их промывки;

- заданная форма импульса давления моющей среды определена количеством и диаметрами отверстий окон, которые расположены на вращающемся и неподвижном дисках, поэтому пульсатор не имеет возможности регулирования импульса давления в широком диапазоне без остановки самого процесса промывки и замены вращающегося и неподвижного дисков с другим количеством и диаметрами отверстий.

Задачей предлагаемого изобретения является разработка высокопроизводительного, надежного и сравнительно недорогого пульсатора с возможностью регулирования периодических импульсов давления промывочной воды в широком диапазоне при одновременном изменении направления потока за один оборот вала привода пульсатора только в полости промываемого изделия, без изменения направления потока прямоточного промывочного стенда.

Основной технический результат, благодаря которому обеспечивается выполнение поставленной задачи, заключается в повышении эффективности промывки изделий за счет:

- совмещения двух методов промывки изделий - создания периодических импульсов давления и изменения направления потока моющей среды;

- регулирования импульса давления промывочной жидкости в широком диапазоне без остановки привода прямоточного промывочного стенда.

Получение указанного технического результата обеспечивается за счет того, что пульсатор выполнен в виде корпуса с герметичными камерами пульсаций, в которых соосно им смонтированы вращающиеся от двигателя валы с неподвижно установленными на них дисками. Кроме того, корпус выполнен из 4-х сообщающихся и в плане симметрично расположенных на взаимно перпендикулярных осях вертикально установленных цилиндрических камер пульсаций, соединенных попарно двумя параллельными верхними патрубками и перпендикулярно им - двумя параллельными нижними патрубками. Диски установлены под углом к валам таким образом, чтобы их верхний край находился ниже верхнего патрубка, а нижний край - выше нижнего патрубка, а зазор между внутренней стенкой камеры и наружной кромкой диска должен быть не более 2 мм, причем диски вращаются синхронно и в одну сторону со скоростью не более 1 об/мин, кроме того, по диагоналям корпуса с внешней стороны каждой камеры установлены на половине их высоты наружные патрубки.

В частном случае у пульсатора на концах наружных патрубков установлены фланцы.

В другом частном случае валы с дисками вращаются от общего привода, например, мотор-редуктора через систему зубчатых передач.

В третьем частном случае профили дисков камер пульсаций выполнены в виде зет-образной формы.

Сущность изобретения поясняется следующими графическими фигурами:

Фиг.1 Общий вид пульсатора.

Фиг.2 Сечение A-A, поперечный разрез пульсатора по верхним патрубкам.

Фиг.3 Сечение B-B (повернуто на 90°), продольный разрез камеры пульсаций.

Фиг.4 Схема работы пульсатора и его подключение к промывочному стенду и промываемому изделию. Максимальный поток моющей жидкости в промываемом изделии в направлении A.

Фиг.5 Схема работы пульсатора и его подключение к промывочному стенду и промываемому изделию. Поток моющей жидкости в промываемом изделии отсутствует.

Пульсатор состоит из следующих составных частей.

Пульсатор выполнен в виде корпуса (Фиг.1), который состоит из четырех камер пульсаций 1. Каждая камера пульсаций имеет вращающийся вал 2 с диском 3, по одному верхнему 5 и по одному нижнему отверстию 7, через которые камеры попарно соединяются друг с другом верхними 4 и нижними 6 патрубками для внутреннего гидравлического соединения четырех камер пульсаций. Для внешнего гидравлического соединения наружные патрубки 8 оснащены фланцами 9 и через фланцевые соединения 10 соединены с промываемым изделием 11 и промывочным стендом 12 (Фиг.4, 5).

Камера пульсаций 1 выполнена в виде обечайки и двух крышек - верхней 13 и нижней 14. В верхней крышке 13 и нижней крышке 14 имеются подшипниковые узлы и уплотнения, предназначенные для вращения в них валов 2, а также для герметизации зазоров поверхностей вращения в подшипниковых узлах.

В средней части вращающегося вала 2 под углом к нему закреплен диск 3, причем верхний и нижний края каждого диска могут быть изогнуты и иметь боковой профиль зет-образной формы. Зазор между внутренней стенкой обечайки каждой камеры пульсаций 1 и наружной кромкой вращающихся дисков 3 должен быть не менее 2 мм.

Пульсатор оснащен необходимой системой автоматики, коммутационным обеспечением и контрольно-измерительными приборами (КИП), все органы управления выведены на пульт управления (не показаны).

Пульсатор работает следующим образом.

Перед началом работы пульсатор подключается к промывочному стенду 12, состоящему из насоса, бака расходного и промывочной камеры, и к промываемому изделию 11 по схеме, изображенной на Фиг.4, 5. Четыре наружных патрубка 8 через фланцевые соединения 10 подключают к промываемому изделию 11 и промывочному стенду 12 по следующей схеме: пульсатор - промывочный стенд 12, пульсатор - промываемое изделие 11; пульсатор - промывочный стенд 12; пульсатор - промываемое изделие 11. Затем заполняют промывочной водой всю систему, состоящую из пульсатора, промывочного стенда и промываемого изделия.

После этого оператор с помощью системы автоматики (СА) управления работой пульсатора включает один из запрограммированных режимов промывки. Режим промывки - это определенное сочетание последовательных пусков-остановов, а также изменений числа оборотов мотор-редуктора, что приводит к изменению давления и направления потока промывочной воды в промываемом изделии 11 через заданные промежутки времени. При этом максимальная скорость оборотов валов с дисками, полученная расчетным путем, не должна быть более 1 об/мин во избежание возникновения гидроудара.

Мотор-редуктор, управляемый СА, вращает ведущий вал с ведущей шестерней. От ведущего вала через зубчатое зацепление вращение передается одновременно четырем ведомым шестерням, закрепленным на валах 2, что приводит к вращению всех четырех вращающихся дисков 3 с одинаковой частотой вращения. Вращаясь внутри каждой камеры пульсаций 1, диск 3 (Фиг.4) подходит к проходному сечению наружного патрубка 8 поочередно то верхней, то нижней полкой, тем самым происходит гидравлическое соединение наружного патрубка 8 то с нижним патрубком 6, то с верхним патрубком 4 каждой камеры пульсаций 1 и соответствующее изменение потока (Фиг.4, 5). Синхронное вращение дисков 3 во всех четырех камерах пульсаций 1 приводит к запрограммированному реверсу потока воды в промываемом изделии 11.

Схема потоков промывочной воды при различных положениях дисков 3 изложена на фиг.4, 5. Данная схема потоков отображает максимальную подачу промывочной воды и направление потока в промываемом изделии 1 в направлении A, а при повороте вращающихся дисков 3 на 180° в камерах пульсаций 1 (Фиг.4 относительно Фиг.5) происходит максимальная подача воды в противоположном A направлении.

При вращении дисков 3 непрерывно изменяются проходные сечения потоков промывочной воды в патрубках 4, 6, 8 и, следовательно, происходит непрерывное изменение давления, а через каждые 0,5 оборота дисков 9 происходит изменение направления потока промывочной воды в промываемом изделии 11, патрубках 4, 6, 8 и камерах пульсаций 1 (Фиг.4, 5).

При вращении дисков происходит одновременное и периодическое перекрытие потока моющей жидкости, поступающей из промывочного стенда и промываемого изделия, в верхнее или нижнее отверстия каждой камеры пульсации, чем обеспечивается изменение направления потока моющей жидкости только в промываемом изделии.

Зазор между внутренней стенкой каждой камеры пульсаций и наружной кромкой вращающихся дисков должен быть не менее 2 мм, чтобы при изменении направления потока моющей жидкости создавался режим неполного гидроудара и таким образом отсутствовали условия для разрушения промываемого изделия.

В качестве привода вращающегося вала 2 может быть использован мотор-редуктор, состоящий из асинхронного электродвигателя, собранного вместе с двухступенчатым коническим редуктором. Электродвигатель оборудован датчиком числа оборотов и оснащен преобразователем частоты для возможности регулировки числа оборотов. Управление мотор-редуктором осуществляется с помощью системы управления по специально разработанной программе. Мотор-редуктор через ведущий вал с ведущей шестерней и зубчатое зацепление связан с ведомыми шестернями камер пульсаций 1, одновременно вращающими валы 2 всех четырех камер пульсаций 1.

Предлагаемое изобретение обеспечивает создание надежного, сравнительно недорогого пульсатора с возможностью подключения к системам прямоточного промывочного стенда и промываемого изделия, обеспечивающего значительное сокращение времени промывки изделия и экономию электроэнергии, за счет регулирования импульса промывочной воды в широком диапазоне без остановки привода прямоточного промывочного стенда, а также совмещения двух методов промывки изделий - создания периодических импульсов давления и изменения направления потока промывочной воды.

1. Пульсатор, содержащий корпус с герметичными камерами пульсаций, в которых соосно им смонтированы вращающиеся от двигателя валы с неподвижно установленными на них дисками, отличающийся тем, что корпус выполнен из 4-х сообщающихся и в плане симметрично расположенных на взаимно перпендикулярных осях вертикально установленных цилиндрических камер пульсаций, соединенных попарно двумя параллельными верхними патрубками и перпендикулярно им - двумя параллельными нижними патрубками, диски установлены под углом к валам в их средней части таким образом, чтобы их верхний край находился ниже верхнего патрубка, а нижний край - выше нижнего патрубка, а зазор между внутренней стенкой камеры и наружной кромкой диска должен быть не более 2 мм, при этом диски вращаются синхронно и в одну сторону со скоростью не более 1 об/мин, кроме того, по диагоналям корпуса с внешней стороны каждой камеры установлены на половине их высоты наружные патрубки.

2. Пульсатор по п.1, отличающийся тем, что на концах наружных патрубков установлены фланцы.

3. Пульсатор по п.1, отличающийся тем, что валы с дисками вращаются от общего привода, например, мотор-редуктора через систему зубчатых передач.

4. Пульсатор по п.1, отличающийся тем, что профиль дисков выполнен в виде зет-образной формы.



 

Похожие патенты:

Группа изобретений относится к гидродинамическим системам и может быть использована в областях промышленности, применяющих пульсирующий режим течения жидкости. В способ генерирования колебаний жидкостного потока жидкость из напорной магистрали (11) предварительно разделяют на два потока снаружи вихревой камеры (1), внутри нее их закручивают с помощью каналов с разными скоростями в противоположных направлениях и при этом разделяют с помощью перегородки (4) со сквозным каналом (5).

Группа изобретений относится к гидродинамическим системам, в которых создаются колебания расхода и давления жидкости. Жидкость из напорной магистрали (5) разделяют на два потока - основной и дополнительный.

Изобретение относится к вибрационной технике и может быть использовано в машиностроительной, строительной, химической и др. .

Изобретение относится к средствам автоматизации производственных процессов в различных отраслях промышленности - к распределительным элементам гидравлических ударных устройств (ГУУ) для управления потоком рабочей жидкости между участками и агрегатами гидравлической системы.

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. .

Изобретение относится к области объемных гидравлических приводов, а именно к автоколебательным гидравлическим приводам поступательного движения, - и может быть использовано в вибрационных машинах и механизмах всевозможного назначения для преобразования энергии постоянного потока рабочей жидкости в энергию механических колебаний, в частности, в качестве привода гидромультипликаторов давления двойного действия, привода диафрагменных (мембранных) насосов для добычи битума (высоковязких нефтей) из глубоких скважин и т.п.

Изобретение относится к устройствам для создания импульсного режима нагружения исполнительных органов технологических машин и может быть использовано в машиностроении, химической, бумагоделательной промышленностях, а также в отделочном производстве текстильной промышленности для интенсификации процесса механического обезвоживания текстильного материала.

Изобретение относится к струйной технике и может быть использовано в химической, пищевой, металлургической отрасли народного хозяйства, а также в сельском хозяйстве.

Изобретение относится к области приборостроения и может быть использовано для создания приборов измерения параметров текучей среды. .

Изобретение относится к устройствам для создания вибраций в потоке текучей среды и может быть использовано в химической, горной и других отраслях промышленности при обработке однофазных или многофазных сред с целью их перемешивания и диспергирования фаз.

Изобретение относится к технологиям приготовления эмульсий и суспензий на основе многокомпонентных смесей разнородных по своей природе веществ, в частности минерального и растительного происхождения, для использования в качестве топлив смесевого типа, а также в других областях, где требуются гомогенные композиции различных материалов текучей консистенции. Технический результат достигается тем, что в предлагаемом способе обработку производят в циркулирующем потоке путем гидродинамического и ультразвукового кавитационного воздействия в циклически повторяющейся последовательности, состоящей из двух фаз, при этом в фазе гидродинамического воздействия производят механическую деструкцию жидких и(или) твердых частиц компонентов до размеров, не превышающих величину прядка 1 мм, а в фазе ультразвукового воздействия осуществляют ультрадисперсную деструкцию жидких и(или) твердых частиц компонентов, произведенных в ходе первой фазы деструкции, при этом частоту акустического ультразвукового поля fT изменяют в зависимости от температуры обрабатываемой многокомпонентной среды в соответствии с выражением: fT=fN/(1+αΔT), где fN - резонансная частота ультразвукового излучателя при нормальной температуре TN=25°C, ΔT - разность между фактическими значениями температуры и TN, α - коэффициент теплового расширения материала, из которого изготовлен ультразвуковой излучатель, а циклическую двухфазную последовательность обработки многокомпонентной среды продолжают до тех пор, пока в ней остается более 5% взвешенных твердых или/и жидких частиц размером более 25 мкм. В изобретении описывается также установка для осуществления указанного способа. 2 н.п. ф-лы, 1 ил., 1 табл.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. Представлен способ генерирования волнового поля на забое нагнетающей скважины и настройки струйного резонатора Гельмгольца на поддержание постоянной частоты колебаний давления в потоке жидкости, нагнетаемой в пласт, при изменении пластового давления. Способ заключается в автоматическом регулировании площади проходного сечения выходного отверстия в соответствии с изменением пластового давления. Это необходимо для поддержания постоянной скорости струи на срезе сопла, определяющей частоту генерации, для обеспечения стабильно высокого коэффициента усиления. Новым является установка в выходном отверстии струйного резонатора Гельмгольца (СРГ) подвижного конического золотника с гидроприводом, обеспечивающим автоматическое перемещение золотника при изменении перепада давления на устройстве. Техническим результатом является повышение эффективности поддержания постоянной частоты тона отверстия. 2 н. и 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначена для повышения нефтеотдачи продуктивных пластов. Способ генерирования волнового поля на забое нагнетательной скважины с автоматической настройкой резонансного режима генерации заключается в формировании колебаний давления в потоке жидкости, закачиваемой в продуктивный пласт по насосно-компрессорным трубам (НКТ), путем ее прокачивания через струйный резонатор Гельмгольца (СРГ). При этом поддерживают в соответствии скорость струи на срезе питающего сопла и объем СРГ. Причем поддерживают в соответствии скорость струи на срезе питающего сопла и объем СРГ за счет перемещения его заднего, в направлении по потоку, днища, обеспечивая увеличение объема СРГ при уменьшении скорости струи и уменьшение объема СРГ при увеличении скорости струи. Устройство для осуществления способа состоит из СРГ, установленного внутри НКТ, и представляет собой полую цилиндрическую камеру с плоскими днищами. В переднем днище камеры размещают сопло питания, а в заднем днище выполняют выходное отверстие с острыми кромками. При этом заднее днище выполнено подвижным, а внутри НКТ, за СРГ, установлен неподвижно гидроцилиндр с подпружиненным поршнем, соединенным штоком с подвижным задним днищем. Причем полость внутри гидроцилиндра перед поршнем, в направлении по потоку, соединена с внутренним объемом НКТ, а полость за поршнем сообщена с затрубным пространством. Техническим результатом является повышение эффективности поддержания стабильно высокой интенсивности волнового поля на забое. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. Способ генерирования волнового поля на забое нагнетательной скважины с автоматической настройкой постоянной частоты генерации заключается в формировании колебаний давления в потоке жидкости, закачиваемой в продуктивный пласт по насосно-компрессорной трубе (НКТ) путем ее прокачивания через струйный резонатор Гельмгольца (СРГ). При этом поддерживают в соответствии скорость струи на срезе входного сопла и расстояние между входным соплом и втулкой с выходным отверстием. Причем поддерживают в соответствии скорость струи на срезе входного сопла и расстояние между входным соплом и втулкой с выходным отверстием за счет перемещения втулки с выходным отверстием, обеспечивая увеличение этого расстояния при увеличении скорости струи и уменьшение этого расстояния при уменьшении скорости струи. Устройство для осуществления способа состоит из СРГ, установленного внутри НКТ и представляющего собой полую цилиндрическую камеру с плоскими днищами, в переднем днище которой размещают входное сопло, а в заднем днище размещают втулку с выходным отверстием. Втулка с выходным отверстием выполнена подвижной, а внутри НКТ, за СРГ, установлен неподвижно гидроцилиндр с подпружиненным поршнем, соединенным штоком с подвижной втулкой с выходным отверстием. Причем полость внутри гидроцилиндра перед поршнем, в направлении по потоку, сообщена с затрубным пространством, а полость за поршнем соединена с внутренним объемом НКТ. Техническим результатом является повышение эффективности стабильной частоты генерации колебаний давления на забое скважины. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к области гидрогазодинамики и может быть использовано в устройствах, использующих в своей работе явление гидравлического удара, а также для интенсификации теплообмена в теплоэнергетических установках. Ударный узел включает корпус с двумя каналами входа рабочей среды, каждый из которых соединен с одним каналом выхода рабочей среды через установленные в них ударные клапаны, закрепленные на штоках. Между каждым ударным клапаном и корпусом установлена возвратная пружина. В канале выхода рабочей среды установлен регулировочный винт, выведенный на внешнюю сторону корпуса. В канале выхода рабочей среды установлены два сильфона, соединенные через штоки с ударными клапанами. Сильфоны гидравлически сообщены между собой через f-образный патрубок, свободный конец которого выведен за пределы корпуса и заглушен поршнем, соединенным с регулировочным винтом. Жесткости возвратных пружин выполнены различными. Изобретение направлено на повышение надежности работы устройства и упрощение его конструкции при снижении материалоемкости, эргономичной реализации механизма регулирования частоты и амплитуды хода ударных клапанов. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначена для повышения нефтеотдачи продуктивных пластов. Способ возбуждения волнового поля на забое нагнетательной скважины заключается в том, что плоскую стесненную струю жидкости подают непрерывно из щелевого сопла на носик клина. При этом формируют область первичной генерации вихревых структур в зоне за кромкой соплового среза. Обеспечивают периодический срыв кольцевых вихревых структур с кромки соплового среза, их перемещение со струей и соударение с носиком клина. Генерируют возмущения давления при деформации и разрушении вихревых структур на носике клина. Осуществляют распространение периодических возмущений давления от носика клина во все стороны в виде упругих волн и их хаотическое отражение от окружающих стенок. Создают накачку энергией кратных вихревых структур за счет энергии упругих колебаний, достигающих область первичной генерации. Отклоняют струю жидкости на носике клина в один из двух расходящихся выпускных каналов. Разделяют струю на входе перед выпускным каналом и направляют струю частично в боковую камеру, сопряженную с кромкой сопла и выпускным каналом. Повышают в камере давление за счет поршневого эффекта подаваемой струи и отталкивают струю в противоположный выходной канал, созданным с двух ее сторон перепадом давления. Обеспечивают периодическое переключение направления струи жидкости между выпускными каналами. Выталкивают жидкость попеременно из расходящихся каналов в общий перфорированный выходной коллектор. Возбуждают поле упругих колебаний на забое нагнетающей скважины. При этом фокусируют упругие волны, отраженные от стенок каждой камеры, на сопряженной с ней кромке соплового среза. Техническим результатом является повышение эффективности преобразования кинетической энергии струи в колебательную энергию волнового поля. 2 н.п. ф-лы, 1 ил.

Изобретения относятся к технологии гидравлических испытаний электрогидромеханических систем и могут быть использованы для дегазации рабочей жидкости в технических устройствах, использующих в своих конструктивных решениях проточные гидробаки открытого типа. Способ предусматривает дегазацию рабочей жидкости на сетке в проточном гидробаке, придание сетке низкочастотной поперечной вибрации, а на входе сетки методом барботажа создают газожидкостной слой с высокочастотным пульсирующим давлением низкой интенсивности. Проточный гидробак открытого типа (1) содержит крышку (2), разделительные перегородки (3,4), сетку (5), патрубки слива (6) и забора (15) рабочей жидкости, сливную (7), промежуточную (18), заборную (14) полости и предусматривает установку сетки (5) на упругих опорах (8). Внизу сетки (5) со стороны выхода потока в полость (18) установлен пневматический динамический вибратор (9) с модулированной фазой колебания газа, выходное сопло (10) которого установлено на сетке (5). Изобретения обеспечивают повышение эффективности дегазации жидкости, интенсификацию процесса дегазации, что позволяет улучшить и расширить показатели качества электрогидромеханических систем и их агрегатов. 2 н.п. ф-лы, 1 ил.

Узел предназначен для создания импульсного режима движения жидкости. Узел содержит корпус с двумя входными и выходным отверстиями, входные отверстия расположены оппозитно и выполнены соосно вдоль центрирующего штока, установленного в цилиндрическом корпусе с жестко закрепленными на его торцах ударными клапанами, расположенными над входными отверстиями, при этом центрирующий шток выполнен с тремя степенями свободы относительно корпуса, а в конструкцию дополнительно введены две направляющие втулки с седлом под ударный клапан, два стопорных кольца, две возвратные пружины и две конические пружины, причем каждый ударный клапан вставлен в направляющую втулку с седлом, установленным со стороны входных отверстий корпуса, закреплен с торца центрирующего штока и расположен между возвратной пружиной, закрепленной в направляющей втулке при помощи стопорного кольца, и конической пружиной, установленной во входном отверстии корпуса. Технический результат - надежность и устойчивость его работы. 1 ил.

Группа изобретений относится к гидродинамическим системам. В способе генерирования колебаний жидкостного потока жидкость из магистрали (6) разделяют на потоки, подают в каналы закрутки (4) и (5) и закручивают в вихревой камере (2) в противоположных направлениях. При этом ближе к каналам (4) и (5) в плоскости сечений камеры (2) давление на оси вращения жидкости минимальное, а в зоне активного смешения противоположных закрученных потоков - максимальное. Закрученный поток из каналов (4), обладая высокой тангенциальной составляющей скорости, стравливается с минимальным расходом через выходное сопло (3). Давление в камере (2) резко возрастает и воздействует на перегородку (11). В результате упругого взаимодействия с объемом среды, заполнившей полость для упругости через перегородку (11), обратный импульс давления снижает интенсивность вращения противоположно закрученных потоков. Тангенциальная скорость падает, противоположно закрученные потоки останавливаются, и резко растет расход жидкости через сопло (3). Изобретение направлено на увеличение мощности генерирования колебаний за счет снижения гидравлических потерь и увеличения массы взаимодействующих потоков, а также снижение габаритов, упрощение конструкции и расширение условий применения. 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к генератору волны сжатия среды и поршневой системы генератора и может быть использовано для инициирования химических или физических реакций в среде в камере, повышения температуры, давления энергии или плотности среды. Генератор волны сжатия содержит подвижный поршень с направляющей, внутри которой может двигаться или скользить тяга управления поршня и преобразователь, связанный со средой. Во время соударения поршня с преобразователем, тяга управления скользит в направляющей, что позволяет снизить напряжение в тяге. Генератор содержит демпфер, чтобы тормозить тягу управления, независимо от поршня. Соударение поршня с преобразователем передает часть кинетической энергии поршня в среду, за счет чего в среде создаются волны сжатия. Система привода поршня может быть использована для создания точного и управляемого перемещения поршня. 2 н. и 16 з.п. ф-лы, 4 ил.
Наверх