Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности центры гидратации диметоксиметана и паровой конверсии метанола/формальдегида. При этом в качестве активного компонента паровой конверсии метанола используются медьсодержащие системы на основе оксида меди, нанесенные на оксид алюминия - активный компонент гидратации диметоксиметана. Предлагаемый катализатор обладает высокой каталитической активностью, селективностью и стабильностью в отношении паровой конверсии диметоксиметана. Изобретение также относится к способу получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды с использованием данного катализатора. 2 н. и 6 з.п. ф-лы, 4 табл., 12 пр.

 

Изобретение относится к реакции паровой конверсии диметоксиметана (ДММ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться для питания топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах.

Задачей, на решение которой направлено настоящее изобретение, является разработка новой каталитической системы, обладающей высокой каталитической активностью, селективностью и стабильностью в отношении паровой конверсии ДММ, а также разработка процесса получения из ДММ газовой смеси, обогащенной по водороду, с использованием этой каталитической системы.

Задача решается разработкой бифункционального катализатора паровой конверсии ДММ, содержащего кислотные центры для гидратации ДММ в метанол и формальдегид, а также медьсодержащего центра для паровой конверсии метанола и формальдегида. Предлагаемые катализаторы представляет собой нанесенный оксид меди на оксиды алюминия, при этом кислотные центры оксида алюминия катализируют реакцию гидратации ДММ в метанол и формальдегид, а медьсодержащий центр отвечает за паровую конверсию образовавшего метанола и формальдегида в водородсодержащий газ. Использование их в паровой конверсии ДММ позволяет получать водородсодержащий газ с низким содержанием оксида углерода при соотношении водяной пар/ДММ, равным стехиометрическому (H2O/ДММ=4), что имеет важное технологическое значение.

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии ДММ с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике. Например, в качестве топлива для питания топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах. В настоящее время топливные элементы рассматриваются как альтернативный и экологически чистый источник электрической энергии.

Основным топливом для питания топливных элементов является водород или обогащенная по водороду газовая смесь, которая может быть получена посредством паровой конверсии природного газа, бензина (ископаемые топлива), спиртов и эфиров.

Несмотря на развитую инфраструктуру и относительно низкую цену ископаемых топлив, их использование имеет такие недостатки, как высокая температура конверсии (выше 600°C для природного газа и выше 800°C для бензина), а также большое количество оксида углерода в получаемом водородсодержащем газе. В отличие от ископаемых топлив, синтетические топлива, такие как метанол, диметиловый эфир (ДМЭ) и ДММ, могут легко и селективно конвертироваться в водородсодержащий газ при относительно низкой температуре (200-350°C). Важно отметить, что ДММ является коррозионно-инертным и нетоксичным соединением по сравнению с метанолом. В отличие от ДМЭ, при нормальных условиях ДММ представляет собой жидкость, следовательно, легко хранится и транспортируется. Указанные факты позволяют рассматривать ДММ как перспективное сырье для получения водорода для питания топливных элементов.

Наиболее эффективным способом получения водорода из ДММ является его паровая каталитическая конверсия. Таким образом, процесс паровой конверсии ДММ с целью получения водорода для питания топливного элемента является серьезной альтернативой процессу паровой конверсии метанола и ДМЭ.

Известно, что реакция паровой конверсии ДММ может протекать последовательно по схеме через гидратацию ДММ в метанол и формальдегид (1) и паровую конверсию образовавшего метанола (2) и формальдегида (3) в водородсодержащий газ:

C H 3 O C H 2 O C H 3 + H 2 O = 2 C H 3 O H + C H 2 O                      ( 1 )

C H 3 O H + H 2 O = C O 2 + 3 H 2                                               ( 2 )

C H 2 O + H 2 O = C O 2 + 2 H 2                                                  ( 3 )

Суммарная реакция:

C H 3 O C H 2 O C H 3 + 4 H 2 O = 8 H 2 + 3 C O 2                             ( 4 )

Следовательно, паровая конверсия ДММ, так же как и паровая конверсия ДМЭ, может быть осуществлена на катализаторах, содержащих кислотные и медьсодержащие центры.

Из анализа литературы известно, что реакция паровой конверсии ДММ осуществляется на механической смеси катализаторов гидратации ДММ и паровой конверсии метанола/формальдегида. Известны следующие системы, представляющие собой механическую смесь катализатора гидратации ДММ и медьсодержащего катализатора паровой конверсии. В работе Y. Fu, J. Shen, Production of hydrogen by catalytic reforming of dimethoxymethane over bifunctional catalysts. Journal of Catalysis, vol.248 (2007) p.101-110 использовали механическую смесь различных кислотных катализаторов (оксиды алюминия, цеолиты, углеродные нановолокна) и медьсодержащие катализаторы конверсии метанола (CuZnAlOx). В работе Q. Sun, A. Auroux, J. Shen, Journal of Catalysis 244 (2006) 1-9 использовали механическую смесь оксида ниобия Nb2O5 и медьсодержащего катализатора (CuZnAlOx). Недостатком использования катализатора, представляющего механическую смесь, является его расслоение катализаторов гидратации ДММ и паровой конверсии метанола под воздействием вибрации и, как следствие, падение активности катализатора. Последнее обстоятельство существенно снижает возможность использования механически смешанных катализаторов в топливных процессорах. От вышеупомянутых недостатков лишены бифункциональные катализаторы, которые содержат на поверхности оба, кислотные центры для гидратации ДММ и медьсодержащие центры для паровой конверсии метанола.

Задачей, на решение которой направлено настоящее изобретение, является разработка новой бифункциональной каталитической системы, обладающей высокой каталитической активностью, селективностью и стабильностью в отношении паровой конверсии ДММ, а также разработка процесса получения из ДММ газовой смеси, обогащенной по водороду, с использованием этой каталитической системы.

Задача решается разработкой катализатора для получения обогащенной по водороду газовой смеси взаимодействием ДММ и паров воды, представляющего собой бифункциональный катализатор, содержащий кислотные центры для гидратации ДММ и медьсодержащие центры для паровой конверсии метанола/формальдегида. Предлагаемые бифункциональные катализаторы представляют собой нанесенный оксид меди на оксид алюминия, при этом кислотные центры оксида алюминия катализируют реакцию гидратации ДММ в метанол и формальдегид, а медьсодержащий центр отвечает за паровую конверсию образовавшего метанола и формальдегида в водородсодержащий газ.

Предлагаемый катализатор для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана ДММ и паров воды представляет собой бифункциональный катализатор, содержащий на поверхности центры гидратации диметоксиметана ДММ и паровой конверсии метанола/формальдегида, и характеризуется тем, что в качестве активного компонента паровой конверсии метанола используются медьсодержащие системы на основе оксида меди, нанесенные на оксид алюминия - активный компонент гидратации диметоксиметана ДММ.

В состав катализатора паровой конверсии диметоксиметана входит оксид меди в количестве до 20 мас.%, остальное - оксид алюминия Al2O3.

В состав катализатора паровой конверсии диметоксиметана входят медно-цериевые оксиды в количестве до 30 мас.%, остальное - оксид алюминия Al2O3. Медно-цериевые оксиды, активные в паровой конверсии метанола, применяют с весовым соотношением Cu:Ce=1:1-4:1.

В состав катализатора паровой конверсии диметоксиметана входят медно-цинковые оксиды в количестве до 30 мас.%, остальное - оксид алюминия Al2O3. Медно-цинковые оксиды, активные в паровой конверсии метанола, применяют с весовым соотношением Cu:Zn=1:1-4:1.

Задача также решается разработкой способа получения обогащенной по водороду газовой смеси взаимодействием ДММ и водяного пара в присутствии бифункционального катализатора, представляющего собой нанесенный оксид меди на оксид алюминия. Реакцию осуществляют при 200-400°C, атмосферном давлении и мольном соотношении вода/диметоксиметан H2O/ДММ 2-10.

Отличительным признаком предлагаемой каталитической системы является то, что активные компоненты гидратации ДММ и паровой конверсии находятся на поверхности одного носителя и, таким образом, обеспечивают бифункциональность катализатора.

Бифункциональные катализаторы CuO-CeO2/γAl2O3 готовят пропиткой гранул γ-Al2O3 (SБЭТ=200 м2/г, объем пор 0.7 см3/г, суммарная концентрация льюисовских и бренстедовских поверхностных кислотных центров 600 мкмоль/г) раствором азотнокислых солей меди и церия, взятых в заданном соотношении. Полученные образцы сушат на воздухе и затем в течение 2 ч прокаливают при температуре 450°C.

Были получены образцы катализаторов CuO-CeO2/γ-Al2O3 с содержанием оксида меди до 20 мас.% и массовым отношением Cu:Ce=1:1-4:1.

Отличительным признаком предлагаемого способа получения обогащенной по водороду газовой смеси путем взаимодействия диметоксиметана и водяного пара является использование вышеописанного бифункционального катализатора.

Сущность изобретение иллюстрируется следующими примерами.

Пример 1. Паровую конверсию диметоксиметана осуществляют в установке проточного типа в кварцевом реакторе с внутренним диаметром 4 мм на навеске катализатора 0,5 мл при соотношении H2O:ДММ=5:1, времени контакта 10000 ч-1, температуре 200°C и давлении 1 атм. Состав оксидного катализатора составляет, мас.%: оксид меди - 10, остальное - оксид алюминия. Полученные результаты приведены в таблице 1.

Пример 2. Аналогично примеру 1, но реакцию проводят при температуре 250°C, результаты приведены в таблице 1.

Пример 3. Аналогично примеру 1, но реакцию проводят при температуре 300°C, результаты приведены в таблице 1.

Пример 4. Аналогично примеру 1, но состав оксидного катализатора составляет, мас.%: оксид меди - 10, оксид церия - 5, остальное - оксид алюминия. Полученные результаты приведены в таблице 2.

Пример 5. Аналогично примеру 4, но реакцию проводят при температуре 250°C, результаты приведены в таблице 2.

Пример 6. Аналогично примеру 4, но реакцию проводят при температуре 300°C, результаты приведены в таблице 2.

Пример 7. Аналогично примеру 1, но состав оксидного катализатора составляет, мас.%: оксид меди - 10, оксид цинка - 5, остальное - оксид алюминия. Полученные результаты приведены в таблице 3.

Пример 8. Аналогично примеру 7, но реакцию проводят при температуре 250°C, результаты приведены в таблице 3.

Пример 9. Аналогично примеру 7, но реакцию проводят при температуре 300°C, результаты приведены в таблице 3.

Пример 10. Аналогично примеру 1, но содержание оксида меди составляет 20%, результаты приведены в таблице 4.

Пример 11. Аналогично примеру 10, но реакцию проводят при температуре 250°C, результаты приведены в таблице 4.

Пример 12. Аналогично примеру 10, но реакцию проводят при температуре 300°C, результаты приведены в таблице 4.

1. Катализатор для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана ДММ и паров воды, представляющий собой бифункциональный катализатор, содержащий на поверхности центры гидратации диметоксиметана ДММ и паровой конверсии метанола/формальдегида, отличающийся тем, что в качестве активного компонента паровой конверсии метанола используются медьсодержащие системы на основе оксида меди, нанесенные на оксид алюминия - активный компонент гидратации диметоксиметана ДММ.

2. Катализатор по п.1, отличающийся тем, что в состав катализатора паровой конверсии диметоксиметана входит оксид меди в количестве до 20 мас.%, остальное - оксид алюминия Al2O3.

3. Катализатор по п.1, отличающийся тем, что в состав катализатора паровой конверсии диметоксиметана входят медно-цериевые оксиды в количестве до 30 мас.%, остальное - оксид алюминия Al2O3.

4. Катализатор по п.1, отличающийся тем, что в состав катализатора паровой конверсии диметоксиметана входят медно-цинковые оксиды в количестве до 30 мас.%, остальное - оксид алюминия Al2O3.

5. Катализатор по п.3, отличающийся тем, что медно-цериевые оксиды, активные в паровой конверсии метанола, применяют с весовым соотношением Cu:Ce=1:1-4:1.

6. Катализатор по п.4, отличающийся тем, что медно-цинковые оксиды, активные в паровой конверсии метанола, применяют с весовым соотношением Cu:Zn=1:1-4:1.

7. Способ получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана ДММ и паров воды в присутствии бифункционального катализатора, содержащего на поверхности центры гидратации диметоксиметана ДММ и паровой конверсии метанола/формальдегида, отличающийся тем, что используют катализатор по любому из пп.1-6.

8. Способ по п.7, отличающийся тем, что реакцию осуществляют при температуре 200-400°C, атмосферном давлении и мольном отношении H2O/ДММ=2-10.



 

Похожие патенты:
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом.
Изобретение относится к катализаторам, используемым для получения водорода или синтез-газа для химического производства в процессах парциального окисления, парового реформинга и автотермического реформинга углеводородного сырья.

Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода.

Изобретение относится к химической и автомобильной промышленности и может быть использовано при получении топлива для топливных ячеек и транспортных средств. Сначала получают гидрогенизированное ароматическое соединение в присутствии катализатора гидрогенизации; затем отделяют полученное соединение от реакционной смеси и очищают его.
Изобретение относится к способу эксплуатации электростанции IGCC с интегрированным устройством для отделения CO2. При этом способе технологический газ с содержанием Н2 и СO2 разделяют посредством адсорбции с переменным давлением (PSA) на технически чистый водород и фракцию с высоким содержанием CO2, причем фракция с высоким содержанием СО2 выделяется в результате снижения давления в виде отходящего газа установки PSA.

Изобретение может быть использовано при утилизации перфторуглеродных текучих сред и холодильных агентов. Способ обработки и/или разложения текучих сред органических галоидов включает осуществление в первом реакторе реакции одного или нескольких органических галоидов, безводного водорода и безводного диоксида углерода для получения моноксида углерода и одного или нескольких безводных галоидов водорода.

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н2 и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.

Изобретение относится к способу и устройству для производства железа прямым восстановлением. Устройство содержит установку риформинга с внутренним нагревом для осуществления риформинга природного газа добавлением пара и кислорода к природному газу и частичным сжиганием природного газа для производства газа-восстановителя, содержащего водород и монооксид углерода, для производства железа прямым восстановлением, печь производства железа прямым восстановлением для производства железа прямым восстановлением из сырья, содержащего оксид железа, с использованием газа-восстановителя, устройство удаления диоксида углерода для удаления диоксида углерода из отходящего газа, получаемого в печи производства железа прямым восстановлением с получением газа, из которого удален диоксид углерода, рециркуляционную линию отходящего газа для рециркуляции газа, из которого удален диоксид углерода, в печь производства железа прямым восстановлением в качестве газа-восстановителя, теплообменник для увеличения температуры газа, из которого удален диоксид углерода, до диапазона от 400 до 700 ºС отходящим газом, получаемым в печи производства железа прямым восстановлением, перед рециркуляцией газа, из которого удален диоксид углерода, в качестве газа-восстановителя для производства железа прямым восстановлением.

Изобретение относится к технологии переработки углеводородов, к способам и устройствам для переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты.

Изобретение может быть использовано в химической промышленности и энергетике. Устройство (1) для получения водорода, установленное в энергоблоке, включает увлажнитель (2), который снабжен технологической средой, содержащей окись углерода, предназначенный для смешивания технологической среды с паром.

Изобретение относится к способу повышения степени превращения и селективности при получении сложного эфира α-гидроксикарбоновой кислоты из амида α-гидроксикарбоновой кислоты и алифатического спирта, в котором амид α-гидроксикарбоновой кислоты и алифатический спирт подвергают газофазной реакции в присутствии катализатора на основе диоксида циркония при температуре реакции от 150 до 270°C.
Изобретение относится к производству гетерогенных катализаторов для жидкофазного окисления сернистых соединений, а именно к катализатору окисления сернистых соединений на полимерном носителе из полиэтилена низкого давления (ПЭНД) или полипропилена.

Изобретение относится к способу получения фенилэтинил производных ароматических соединений. Способ характеризуется тем, что включает нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение 3 часов, после охлаждения реакционной массы ее выливают в 100 мл холодной воды при перемешивании, экстрагируют этилацетатом, затем очищают на колонке с силикагелем, элюируя смесью растворителей этилацетат : гексан в соотношении 1:6, далее отгоняют растворитель, получая чистые продукты.

Изобретение относится к способу селективного гидрирования ацетилена в этилен, который включает: контактирование потока сырья, содержащего этилен и ацетилен, с катализатором в условиях реакции, в результате чего образуется отходящий поток с пониженным количеством ацетилена, причем катализатор представляет собой слоистый катализатор, имеющий внутреннее ядро, содержащее инертный материал; внешний слой, связанный с внутренним ядром, причем внешний слой содержит оксид металла; который содержит первый металл, осажденный на внешний слой, где первый металл представляет собой металлы из групп 8-10 таблицы IUPAC; и второй металл, осажденный на внешний слой, где второй металл представляет собой металлы из групп 11 и 14 таблицы IUPAC; и катализатор имеет коэффициент доступности (КД) между 3 и 500, или коэффициент объема пор (КОП) между 0 и 1, или как коэффициент КД между 3 и 500, так и коэффициент КОП между 0 и 1.

Изобретение относится к области катализа. Описан способ получения фотокатализатора, состоящий из осаждения прекурсора катализатора на основе оксида титана из сульфатного раствора титана, смешения полученного осадка с органическим соединением, сушки и последующего обжига.
Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы.
Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель или его комбинацию с медью, катализатор содержит никель или никель и медь в количестве не менее 40 мас.%, молибден в восстановленной форме, или фосфор в виде фосфидов, или их комбинацию в количестве не более 20 мас.% и стабилизирующую добавку диоксид кремния SiO2.
Изобретение относится к способу селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое. .

Изобретение относится к способу удаления примесей из сырьевой текучей среды, включающей, в основном, углеводород. .
Изобретение относится к нефтехимическому синтезу, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-тринитробензанилида (ТНБА) с получением ароматических полиаминосоединений, нашедших широкое применение как промежуточные продукты в производстве красителей, термостойких полимеров, синтезе высокопрочных волокон и т.д.
Наверх