Способ получения синтез-газа

Изобретение относится к области нефтехимии и может быть использовано для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Метансодержащее сырьё подвергают окислительной конверсии при температуре 650-1100°C в лифт-реакторе. В качестве окислителя используют микросферический или дроблёный катализатор на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам. Восстановленный катализатор регенерируют путем его окисления в регенераторе и снова направляют в реактор снизу вверх в потоке метансодержащего сырья, который работает в режиме сквозного потока и времени пребывания сырья в зоне реакции 0,1-10 с. Выходящий из реактора восстановленный катализатор отделяют от продукта - синтез-газа - и направляют в регенератор. Регенерацию катализатора проводят в псевдоожиженном, или форсированном псевдоожиженном, или полусквозном потоке путем окисления кислородсодержащим агентом. Полученный синтез-газ имеет отношение Н2/СО в пределах 7,5-2,5. Повышается удельный съём продукта, обеспечивается возможность использования углеводородного сырья, содержащего диоксид углерода, при снижении опасности взрыва и возгорания, низких энергозатратах. 4 з.п. ф-лы, 3 табл., 13 пр.

 

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, смеси водорода и монооксида углерода, который известен как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша.

Известен способ получения синтез-газа путем парциального окисления метана кислородом. Реакцию проводят при температуре 800-900°C. Получаемый синтез-газ состоит из водорода и монооксида углерода с мольным соотношением H2/CO, близким к 2 (Арутюнов B.C., Крылов О.В. Окислительные превращения метана. М.: Наука, 1998).

Недостатком указанного способа является высокая стоимость получения кислорода, а также взрывоопасность процесса вследствие образования смесей метана с кислородом.

Известен способ получения синтез-газа, описанный в патенте US 2665199 A, опубл. 05.01.1954, кл. C01B 3/30, C01B 3/44, согласно которому синтез-газ получают из газообразных углеводородов в присутствии твердых частиц оксида металла, находящихся в псевдоожиженном состоянии, в установке, состоящей из реактора и регенератора. В реакторе протекает окисление углеводородов кислородом, содержащимся в твердых частицах, в регенераторе происходит окисление твердых частиц. Реакция окисления углеводородов проводится в псевдоожиженном слое, имеющем следующие недостатки:

- неравномерность времени пребывания сырья в зоне реакции, в результате некоторая часть сырья подвергается чрезмерному превращению до образования сажи, а другая часть - не достигает полной конверсии;

- среднее фиктивное время пребывания сырья в зоне реакции недостаточно малое, чтобы обеспечить максимально высокую селективность процесса.

Наиболее близким по технической сущности к предлагаемому является способ получения синтез-газа, описанный в патенте US 6833013 В1, опубл. 21.12.2004, кл. C01B 3/32, согласно которому синтез-газ получают путем парциального окисления легких углеводородов кислородом, содержащимся в твердых частицах, содержащих оксид металла и подвергающихся окислительно-восстановительным циклам. Легкие углеводороды окисляются в реакторе при температуре 800-1100°C и давлении 0,5-5 МПа, твердые частицы окисляются в регенераторе при температуре 750-1050°C.

Это позволяет предотвратить возможность взрыва и воспламенения за счет отсутствия в реакционной зоне газообразных окислителей и использовать для протекания эндотермической реакции парциального окисления метана тепловую энергию катализатора, поступающего из регенератора, в котором протекает экзотермическая реакция окисления металлических компонентов катализатора, что снижает энергозатраты и в конечном счете стоимость процесса. Полученный синтез-газ содержит 60,2% H2 и 30,6% CO, т.е., отношение H2/CO в нем составляет 1,97, что хорошо подходит для нужд промышленности.

Однако недостатком описанного способа является проведение реакции окисления углеводородов и регенерации твердых частиц в псевдоожиженном слое, в результате чего обеспечивается весьма низкий удельный съем продукта, а именно 335 литров синтез-газа с килограмма катализатора в час, что оказывает отрицательное влияние на производительность реактора. Удельным съемом называется количество продукта, полученное при осуществлении процесса на катализаторе определенной массы за единицу времени [Мельников Е.Я. Справочник азотчика. /М.: Химия, 1967, 492 с.]. Удельный съем продукта в наиболее близком аналоге был рассчитан, исходя из количества катализатора в реакторе - 1400 г и выхода продукта - 516 л/ч.

Высокое давление процесса приводит к увеличению капитальных затрат и существенно повышает требования к уровню техники безопасности.

В регенераторе получают побочный продукт - газ, содержащий 95,4% мол. азота и 4,6% мол. кислорода. Азот такой чистоты не соответствует требованиям, предъявляемым к техническому азоту, и выбрасывается в атмосферу. Его применение без дополнительной очистки невозможно.

Задача изобретения заключается в увеличении удельного съема продукта при сохранении преимуществ наиболее близкого аналога - исключении образования взрывоопасных смесей и низких энергозатратах с возможностью получения синтез-газа с отношением H2/CO в пределах 1,5-2,5. Другой результат изобретения - повышение чистоты получаемого азота для обеспечения его применения как технического азота без последующей очистки. Кроме того, при осуществлении данного способа возможно использовать в качестве метансодержащего газа сырье, содержащее диоксид углерода.

Решение поставленной задачи достигается тем, что предложен способ получения синтез-газа, включающий окислительную конверсию метансодержащего сырья при температуре более 650°C в реакторе с использованием в качестве окислителя микросферического или дробленного катализатора на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам, и регенерацию восстановленного путем его окисления в регенераторе, из которого регенерированный катализатор поступает в реактор, причем окислительную конверсию проводят в лифт-реакторе, через который катализатор непрерывно проходит снизу вверх в потоке метансодержащего сырья при работе реактора в режиме сквозного потока и времени пребывания сырья в зоне реакции 0,1-10 с, затем выходящий из реактора восстановленный катализатор отделяют от продукта - синтез-газа - и направляют в регенератор.

Окислительную конверсию предпочтительно проводят при температуре 650-1100°C, наиболее предпочтительно - 850°C.

Регенерацию катализатора предпочтительно проводят в псевдоожиженном, или форсированном псевдоожиженном, или полусквозном потоке путем окисления кислородсодержащим агентом.

В качестве кислородсодержащего агента предпочтительно используют кислород или воздух.

Принято считать, что псевдоожиженный слой присутствует при скоростях газового потока до 0,8 м/с. При скоростях газа 0,8-1,5 м/с система характеризуется состоянием форсированного псевдоожиженного слоя. Системы, в которых перемещение твердых частиц осуществляется при скоростях газа, достигающих 1,5-3,0 м/с, называются полусквозным потоком. Скорости газового потока выше 3-4 м/с соответствуют перемещению твердых частиц в потоке газа в режиме сквозного потока [Хаджиев С.Н. Крекинг нефтяных фракций на цеолитсодержащих катализаторах. / М.: Химия, 1982. - 280 с.].

Реакторы, работающие в двух последних режимах, называют сквознопоточными (лифт-реакторы).

Процесс является непрерывным, и его проводят в двух пространственно разделенных аппаратах: реакторе и регенераторе. В такой системе «реактор-регенератор» катализатор по мере разрушения выводят из системы в виде пыли и заменяют свежим. Регулируя время пребывания сырья в зоне реакции в пределах 0,1-10 с, поддерживают режим сквозного потока, не допуская перехода в режим полусквозного потока.

Полученный синтез-газ и восстановленный катализатор выводят из реактора и поток отработанного (восстановленного) катализатора отделяют от потока целевого продукта. Поток восстановленного катализатора по транспортной линии подают в блок регенерации, где происходит окисление катализатора в псевдоожиженном слое, который поддерживается потоком кислородсодержащего агента (воздух, кислород). Затем катализатор отделяют от газов регенерации и по транспортным линиям, снова подают в реактор конверсии, как описано выше.

Газы регенерации представляют собой технический азот, который можно применять без последующей очистки. Он соответствует требованиям ГОСТ 9293-74 «Азот газообразный и жидкий», согласно которым технический азот содержит от 99,0% об. азота и до 1,0% об. кислорода.

Процесс является непрерывным и состоит из следующих стадий:

- конверсия углеводородного сырья в синтез-газ (с восстановлением катализатора до металлического состояния);

- регенерация катализатора (с окислением его металлических компонентов).

Стадии окисления и восстановления катализатора проходят параллельно и непрерывно.

Таким образом, осуществляется непрерывная циркуляция катализатора и обеспечивается перенос кислорода из зоны регенерации в зону реакции, а также сводятся материальный и тепловой балансы.

Достигаемый технический результат заключается:

- в повышении удельного съема продукта;

- в возможности использования углеводородного сырья, содержащего значительное количество диоксида углерода - до 30%;

- в снижении опасности взрыва и возгорания, низких энергозатратах, получении синтез-газа с отношением H2/CO в пределах 1,5-2,5;

- в возможности получения побочного продукта - технического азота (содержание азота в котором составляет не менее 99,0% об.).

Нижеследующие примеры иллюстрируют и поясняют предлагаемое техническое решение, но никоим образом не ограничивают его.

Пример 1.

В нижнюю часть лифт-реактора подают метан, который контактирует с микросферическим катализатором, поступающим из регенератора. Катализатор состоит из оксидов никеля и кобальта, нанесенных на оксид алюминия. Катализатор, подхваченный восходящим потоком метана, движется по реактору снизу вверх, при этом происходит окислений метана кислородом, содержащимся в катализаторе, в монооксид углерода и водород по реакции

CH4+[O]→CO+2H2

Метан подают с такой скоростью, чтобы поддерживать время пребывания сырья в лифт-реакторе 2,1 с. Температуру в зоне реакции держат 850°C. Пары продуктов отделяют от катализатора, катализатор направляют в регенератор. В регенераторе катализатор подвергают окислению воздухом. Температуру в зоне регенерации держат 600°C. Окисленный катализатор из регенератора вновь направляют в нижнюю часть реактора.

Конверсия сырья - отношение количества превращенного сырья к исходному, выраженное в %

X - конверсия сырья, масс.%

mf - масса сырья, кг

mp - масса углеводородов в продуктах, кг

Удельный съем синтез-газа - количество синтез-газа, полученное с одного килограмма катализатора в час

P - удельный съем синтез-газа, л/(кг кат.·ч)

Vsg - объем синтез-газа, полученный за время τ, л

mcat - масса катализатора, находящегося в реакторе, кг

τ - время, с

Мольное отношение H2/CO - отношение количества водорода к количеству монооксида углерода в продуктах реакции

Показатели процесса приведены в таблице 1.

Как видно из таблицы, существенно возрастает удельный съем синтез-газа при высоком значении конверсии сырья и одновременном получении технического азота чистотой 99,1% об.

Пример 2.

Опыт проводят как в примере 1, но процесс проводят в присутствии катализатора, содержащего оксид железа, нанесенный на оксид алюминия, при температуре в зоне реакции равной 750°C.

Конверсия сырья согласно примеру составляет 60,3%.

Удельный съем синтез-газа согласно примеру составляет 4600 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 3.

Опыт проводят как в примере 1, но температуру в зоне реакции поддерживают равной 950°C.

Конверсия сырья согласно примеру составляет 99,4%.

Удельный съем синтез-газа согласно примеру составляет 7700 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 4.

Опыт проводят как в примере 1, но температуру в зоне реакции поддерживают равной 1000°C.

Конверсия сырья согласно примеру составляет 99,6%.

Удельный съем синтез-газа согласно примеру составляет 7700 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 5.

Опыт проводят как в примере 1, но процесс проводят в присутствии катализатора, содержащего оксид кобальта, нанесенный на оксид алюминия при температуре в зоне регенерации равной 800°C.

Конверсия сырья согласно примеру составляет 95,1%.

Удельный съем синтез-газа согласно примеру составляет 7300 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 6.

Опыт проводят как в примере 5, но процесс проводят при температуре в зоне регенерации равной 1100°C.

Конверсия сырья согласно примеру составляет 95,1%.

Удельный съем синтез-газа согласно примеру составляет 7300 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 7.

Опыт проводят как в примере 1, но процесс проводят в присутствии катализатора, содержащего оксид никеля, нанесенный на оксид алюминия, при времени пребывания сырья в зоне реакции равном 0,1 с и температуре в реакторе 1100°C.

Конверсия сырья согласно примеру составляет 20,4%.

Удельный съем синтез-газа согласно примеру составляет 40400 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 8.

Опыт проводят как в примере 7 при времени пребывания сырья в зоне реакции равном 5,0 с и температуре в реакторе 850°C.

Конверсия сырья согласно примеру составляет 99,4%.

Удельный съем синтез-газа согласно примеру составляет 2900 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 9.

Опыт проводят как в примере 8, при времени пребывания сырья в зоне реакции равном 10,0 с.

Конверсия сырья согласно примеру составляет 99,2%.

Удельный съем синтез-газа согласно примеру составляет 1500 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 10.

Опыт проводят как в примере 1, но в качестве метансодержащего сырья в лифт-реактор подают газовую смесь, состоящую из метана и этана с концентрацией последнего 20 об.%, а катализатор содержит оксид марганца, нанесенный на оксид алюминия.

Конверсия сырья согласно примеру составляет 92,3%.

Удельный съем синтез-газа согласно примеру составляет 8000 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 11.

Опыт проводят как в примере 1, но в качестве метансодержащего газа в лифт-реактор подают газовую смесь, состоящую из метана и диоксида углерода с концентрацией последнего 10 об.%, а катализатор содержит оксид меди, нанесенный на оксид алюминия.

Конверсия сырья согласно примеру составляет 91,6%.

Удельный съем синтез-газа согласно примеру составляет 7250 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Пример 12.

Опыт проводят как в примере 11, но в качестве метансодержащего газа в лифт-реактор подают газовую смесь, состоящую из метана и диоксида углерода с концентрацией последнего 30 об.%.

Пример 13.

Опыт проводят как в примере 1, но в качестве метансодержащего газа в реактор подают газовую смесь, состав которой приведен в таблице 2. Состав этой смеси соответствует усредненному составу попутных нефтяных газов (ПНГ) России и СНГ. Попутные газы - газообразные углеводороды, сопровождающие сырую нефть, в условиях пластового давления, растворенные в нефти и выделяющиеся в процессе ее добычи. Попутные газы содержат 30-80% метана, 10-26% этана, 7-22% пропана, 4-7% бутана и изобутана, 1-3% н-пентана и высших н-алканов. Также в этих газах содержатся сероводород, диоксид углерода, азот, инертные газы, меркаптаны. Средний газовый фактор нефтяных месторождений России - 95-112 куб. м/т (количество попутных газов в куб. м., приходящееся на 1 т. добытой нефти). Для расчета усредненного состава модельной смеси (концентраций метана, этана, пропана и бутана) использовали данные состава попутных нефтяных газов некоторых нефтяных месторождений РФ и СНГ (таблица 3) [Лапидус А.Л., Голубева И.А., Жагфаров Ф.Г. Газохимия. М.: ЦентрЛитНефтеГаз, 2008].

Концентрацию каждого компонента в составе модельной, смеси рассчитывали

cсрi=100·Σ(cij·pj)/Σ(Σ(cij·pj)i),

где cij - концентрация i-го компонента в j-м месторождении

pj - 7-е месторождение

Катализатор состоит из оксидов никеля и кобальта, нанесенных на оксид алюминия.

Конверсия сырья согласно примеру составляет 97,6%.

Удельный съем синтез-газа согласно примеру составляет 10000 л/(кг кат.·ч).

Показатели процесса приведены в таблице 1.

Мольное соотношение H2/CO в получаемом синтез-газе составляет 2,1.

Концентрация азота в газе регенерации составляет 99,1 об.

Как видно из таблицы 1, уменьшение времени пребывания сырья в зоне реакции ниже определенной величины (2 с) приводит к увеличению съема продукта, но снижению степени конверсии, что в свою очередь потребует разделения непрореагировавшего сырья от продуктов реакции. Увеличение времени пребывания сырья в зоне реакции свыше 10 с связано с уменьшением скорости потока, что может привести к переходу реактора из сквознопоточного режима в полусквознопоточный и, соответственно, снижению съема продукта.

При снижении температуры реакции до 750°C падает степень конверсии и съем продукта, а также чистота получаемого азота.

Таким образом, предложен способ получения синтез-газа, позволяющий в оптимальных условиях при высоких значениях конверсии метансодержащего сырья увеличить удельный съем синтез-газа в 20-30 раз по сравнению с прототипом при соотношении H2/CO в пределах 1,5-2,5, исключении опасности взрыва и возгорания и низких энергозатратах и одновременно получить побочный продукт - азот технической чистоты.

Таблица 1
Условия и результаты
№ пр. Сырье Катализатор Температура в реакторе, °C Температура в регенераторе, °C Время пребывания сырья в зоне реакции, с Удельный съемный синтез-газа, л/(кг кат.·ч) Конверсия сырья, масс. H2/CO, моль/моль Концентрация N2 в продуктах регенерации, % об.
1 CH4 NiO+Co3O4+Al2O3 850 600 2,1 7300 95,1 2,1 99,1
2 CH4 Fe3O4+Al2O3 750 600 2,3 4600 60,3 2,2 99,0
3 CH4 NiO+Co3O4+Al2O3 950 600 1,9 7700 99,4 2,2 99,3
4 CH4 NiO+Co3O4+Al2O3 1000 600 1,8 7700 99,6 2,2 99,1
5 CH4 Co3O4+Al2O3 850 800 2,1 7300 95,1 2,1 99,1
6 CH4 Co3O4+Al2O3 850 1100 2,1 7300 95,1 2,1 99,2
7 CH4 NiO+Al2O3 1100 600 0,1 40400 20,4 2,2 99,1
8 CH4 NiO+Al2O3 850 600 5,0 2900 99,4 2,2 99,2
9 CH4 NiO+Al2O3 850 600 10,0 1500 99,2 2,2 99,3
10 CH4+20%C2H6 MnО2+Al2O3 850 600 2,1 8000 92,3 1,8 99,0
11 CH4+10%CO2 CuO+Al2O3 850 600 2,1 7250 91,6 1,8 99,0
12 CH4+30%CO2 CuO+Al2O3 850 600 2,2 6215 91,6 1,4 99,0
13 ПНГ* NiO+Co3O4+Al2O3 850 600 2,1 10000 97,6 1,7 99,1
*Состав этой смеси соответствует усредненному составу попутных нефтяных газов (ПНГ), представленному табл.2.
Таблица 2
Усредненный состав попутных нефтяных газов (ПНГ)
Компонент газовой смеси CH4 C2H6 C3H8 C4H10
Концентрация, об.% 70 12 12 6
Таблица 3
Состав нефтяных попутных газов некоторых нефтяных месторождений России и СНГ
Месторождение Запасы нефти, млн.т Компонент, % об.
CH4 C2H6 C3H8 C4H10
Самотлорское, Зап. Сибирь 3200 82,88 4,23 6,48 3,54
Варьеганское 66 77,25 6,95 9,42 4,25
Правдинское 1800 58,40 11,65 14,53 9,20
Южно-Балыкское 200 68,16 9,43 15,98 4,50
Ромашкинское, Татарстан 2700 43,41 20,38 16,23 6,39
Кулешовское, Самарск. обл. 60 39,91 23,32 17,72 5,78
Коробковское, Волг. обл. 90 76,25 8,13 8,96 3,54
Яринское Перм. 80 23,90 24,90 23,10 13,90
Каменноложское Перм. 80 28,90 25,90 20,30 9,30
Гнединцевское, Украина 38 5,50 27,39 38,35 12,82
Узень, Казахстан 1100 83,53 8,73 3,98 1,92
Жетыбай, Казахстан 330 78,06 8,49 6,32 3,46
Речицкое, Белоруссия 114 51,60 15,74 16,11 9,15

1. Способ получения синтез-газа, включающий окислительную конверсию метансодержащего сырья при температуре более 650°C в реакторе с использованием в качестве окислителя микросферического или дробленного катализатора на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам, и регенерацию восстановленного катализатора путем его окисления в регенераторе, из которого регенерированный катализатор поступает в реактор, отличающийся тем, что окислительную конверсию проводят в лифт-реакторе, через который катализатор непрерывно проходит снизу вверх в потоке метансодержащего сырья, при работе реактора в режиме сквозного потока и времени пребывания сырья в зоне реакции 0,1-10 с, затем выходящий из реактора восстановленный катализатор отделяют от продукта - синтез-газа - и направляют в регенератор.

2. Способ по п.1, отличающийся тем, что окислительную конверсию проводят при температуре 650-1100°C.

3. Способ по п.2, отличающийся тем, что окислительную конверсию проводят при температуре 850°C.

4. Способ по одному из пп.1-3, отличающийся тем, что регенерацию катализатора проводят в псевдоожиженном, или форсированном псевдоожиженном, или полусквозном потоке путем окисления кислородсодержащим агентом.

5. Способ по п.4, отличающийся тем, что в качестве кислородсодержащего агента используют кислород или воздух.



 

Похожие патенты:

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды.
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом.
Изобретение относится к катализаторам, используемым для получения водорода или синтез-газа для химического производства в процессах парциального окисления, парового реформинга и автотермического реформинга углеводородного сырья.

Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода.

Изобретение относится к химической и автомобильной промышленности и может быть использовано при получении топлива для топливных ячеек и транспортных средств. Сначала получают гидрогенизированное ароматическое соединение в присутствии катализатора гидрогенизации; затем отделяют полученное соединение от реакционной смеси и очищают его.
Изобретение относится к способу эксплуатации электростанции IGCC с интегрированным устройством для отделения CO2. При этом способе технологический газ с содержанием Н2 и СO2 разделяют посредством адсорбции с переменным давлением (PSA) на технически чистый водород и фракцию с высоким содержанием CO2, причем фракция с высоким содержанием СО2 выделяется в результате снижения давления в виде отходящего газа установки PSA.

Изобретение может быть использовано при утилизации перфторуглеродных текучих сред и холодильных агентов. Способ обработки и/или разложения текучих сред органических галоидов включает осуществление в первом реакторе реакции одного или нескольких органических галоидов, безводного водорода и безводного диоксида углерода для получения моноксида углерода и одного или нескольких безводных галоидов водорода.

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н2 и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.

Изобретение относится к способу и устройству для производства железа прямым восстановлением. Устройство содержит установку риформинга с внутренним нагревом для осуществления риформинга природного газа добавлением пара и кислорода к природному газу и частичным сжиганием природного газа для производства газа-восстановителя, содержащего водород и монооксид углерода, для производства железа прямым восстановлением, печь производства железа прямым восстановлением для производства железа прямым восстановлением из сырья, содержащего оксид железа, с использованием газа-восстановителя, устройство удаления диоксида углерода для удаления диоксида углерода из отходящего газа, получаемого в печи производства железа прямым восстановлением с получением газа, из которого удален диоксид углерода, рециркуляционную линию отходящего газа для рециркуляции газа, из которого удален диоксид углерода, в печь производства железа прямым восстановлением в качестве газа-восстановителя, теплообменник для увеличения температуры газа, из которого удален диоксид углерода, до диапазона от 400 до 700 ºС отходящим газом, получаемым в печи производства железа прямым восстановлением, перед рециркуляцией газа, из которого удален диоксид углерода, в качестве газа-восстановителя для производства железа прямым восстановлением.

Изобретение относится к технологии переработки углеводородов, к способам и устройствам для переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты.

Изобретение относится к регенерированному катализатору гидрообработки, восстановленному из катализатора гидрообработки для очистки нефтяной фракции. При этом данный катализатор гидрообработки получен посредством закрепления молибдена и по меньшей мере одного компонента, выбранного из металлов групп 8-10 Периодической таблицы, на неорганическом носителе, содержащем оксид алюминия, в котором содержание остаточного углерода находится в интервале от 0,15 масс.% до 3,0 масс.%, интенсивность пика молибденсодержащего сложного оксида металлов по отношению к интенсивности основного пика находится в интервале от 0,60 до 1,10 в рентгеновском дифракционном спектре (Х-Ray), и либо интенсивность пика связи Mo-S, производной от пика остаточной серы, по отношению к интенсивности основного пика находится в интервале от 0,10 до 0,60 на кривой радиального распределения, полученной из спектра протяженной тонкой структуры рентгеновского поглощения при анализе тонкой структуры рентгеновского поглощения, либо доля MoO3 находится в интервале от 77% до 99% в спектре структуры вблизи края рентгеновского поглощения (X-ray), полученном при анализе тонкой структуры рентгеновского поглощения.

Изобретение относится к способам регенерации катализаторов. Первый из предлагаемых способов регенерации характеризуется тем, что отработанный катализатор из реактора вводится в первый регенератор с псевдоожиженным слоем, где он входит в контакт с потоком кислородсодержащего газа и, произвольно, с водяным паром, чтобы осуществить реакцию горения кокса при условиях регенерации, включающих диапазон температур от 550°C до 750°C, среднее время пребывания катализатора в пределах от 0,5 мин до 6 мин при отношении пара к потоку кислородсодержащего газа по весу в пределах от 0 до 0,1.

Предложен способ приготовления регенерированного катализатора гидроочистки путем регенерации отработанного катализатора гидроочистки в заданном интервале температур, где заданным интервалом температур является интервал температур от Т1 - 30°С или более до Т2 + 30°С или менее, которые определены путем проведения дифференциального термического анализа отработанного катализатора гидроочистки, преобразования дифференциальной теплоты в интервале измерения температуры от 100°С или более до 600°С или менее в разность электродвижущей силы, двукратного дифференцирования преобразованного значения по температуре для того, чтобы получить наименьшее экстремальное значение и второе наименьшее экстремальное значение, и представления температуры, соответствующей экстремальному значению на стороне более низких температур, как Т1, и температуры, соответствующей экстремальному значению на стороне более высоких температур, как Т2.
Изобретение относится к способу каталитического пиролиза хлористого метила в процессе получения низших олефинов C2-C4, преимущественно этилена и пропилена, в присутствии силикоалюмофосфатного катализатора типа SAPO.

Изобретение относится к области катализа. Описан способ регенерирования одной или более частиц кобальтсодержащего катализатора Фишера-Тропша in situ в реакторной трубе, включающий стадии: (i) окисление частицы (частиц) катализатора при температуре от 20 до 400°C; (ii) обработку частицы (частиц) катализатора в течение более 5 мин растворителем; (iii) сушку частицы (частиц) катализатора; и (iv) необязательно восстановление катализатора водородом или каким-либо водородсодержащим газом.

Изобретение относится к области катализа. Описаны способы активации хромового катализатора, включающие повышение температуры хромового катализатора в, по меньшей мере, билинейном изменении, содержащем повышение температуры хромового катализатора с первой скоростью в течение первого периода времени до первой температуры на первом участке изменения билинейного изменения; и повышение температуры хромового катализатора со второй скоростью в течение второго периода времени от указанной первой температуры до второй температуры на втором участке изменения билинейного изменения, который непосредственно следует за первым участком изменения, при этом первая скорость больше, чем вторая скорость, и причем первый период предшествует второму периоду; причем первая температура находится в диапазоне от примерно 650°C до примерно 750°C, а вторая температура находится в диапазоне от примерно 750°C до примерно 850°C.

Изобретение относится к получению олефиновых углеводородов C3-C5 дегидрированием соответствующих парафиновых углеводородов или их смесей и катализатору для его осуществления.
Изобретение относится к области катализа. Описан способ регенерации использованной каталитической смеси, содержащей (i) катализатор изомеризации, содержащий оксид магния, и (ii) катализатор метатезиса, содержащий неорганический носитель и по меньшей мере один компонент из оксида молибдена и оксида вольфрама, включающий: (a) удаление кокса из использованной каталитической смеси в присутствии кислородсодержащего газа, с получением каталитической смеси без кокса; и (b) контактирование каталитической смеси без кокса с паром при температуре в интервале от 100 до 300°C с получением регенерированной каталитической смеси.
Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов.
Изобретение относится к способу дегидрирования алканов, по которому смесь, содержащую углеводороды, в частности алканы, которая может содержать водяной пар, подают непрерывно через слой катализатора при обычных условиях дегидрирования.
Изобретение относится к способу фторирования, который содержит: стадию активации, содержащую контактирование катализатора фторирования с потоком газа, содержащего окислитель, в течение, по меньшей мере, одного часа; и по меньшей мере, одну реакционную стадию, содержащую взаимодействие хлорированного соединения с фторидом водорода в газовой фазе в присутствии катализатора фторирования с тем, чтобы получить фторированное соединение. При этом поток газа, содержащий окислитель, не содержит фторид водорода. Способ позволяет добиваться увеличенной степени конверсии и/или селективности и является эффективным в течение длительного периода времени. 19 з.п. ф-лы, 2 табл., 7 пр.
Наверх