Система боковой подсветки жидкокристаллических дисплеев (варианты)



Система боковой подсветки жидкокристаллических дисплеев (варианты)
Система боковой подсветки жидкокристаллических дисплеев (варианты)
Система боковой подсветки жидкокристаллических дисплеев (варианты)
Система боковой подсветки жидкокристаллических дисплеев (варианты)
Система боковой подсветки жидкокристаллических дисплеев (варианты)
Система боковой подсветки жидкокристаллических дисплеев (варианты)

 

G02F1/13357 - Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции; нелинейная оптика (термометры с использованием изменения цвета или прозрачности G01K 11/12; с использованием изменения параметров флуоресценцией G01K 11/32; световоды G02B 6/00; оптические устройства или приспособления с использованием подвижных или деформируемых элементов для управления светом от независимого источника G02B 26/00; управление светом вообще G05D 25/00; системы визуальной сигнализации G08B 5/00; устройства для индикации меняющейся информации путем выбора или комбинации отдельных элементов G09F 9/00; схемы и устройства управления для приборов

Владельцы патента RU 2533741:

Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." (KR)

Изобретение относится к системам боковой подсветки. Система боковой подсветки содержит источник излучения в виде, по меньшей мере, одного светодиода; нижнее зеркало с зеркальным покрытием; верхнюю зеркально-диффузную пленку, расположенную выше нижнего зеркала и боковые зеркала, расположенные с четырех сторон и образующие совместно с нижним зеркалом и верхней зеркально-диффузионной пленкой воздушный волновод. Верхняя зеркально-диффузная пластина выполнена из материала с объемным диффузным рассеянием с нанесенным на ее нижнюю сторону зеркальным покрытием, снабженным рядом прозрачных или частично прозрачных областей. Технический результат - повышение яркости и равномерности освещения. 2 н. и 2 з.п. ф-лы, 6 ил.

 

Заявляемое изобретение относится к системам подсветки жидкокристаллических дисплеев, в частности к системам боковой подсветки, обеспечивающим повышенную яркость и равномерность освещения.

В настоящее время известны различные конструкции систем подсветки для ЖК дисплеев. Прежде всего, можно выделить два основных типа подсветки - прямая подсветка и боковая. При использовании прямой подсветки источники излучения располагаются под ЖК панелью и непосредственно подсвечивают дисплей. Равномерность подсветки достигается за счет использования различных оптических элементов, таких как широкоугольные линзы над источниками, позволяющие получить требуемую индикатрису излучения, различные оптические пленки и т.д. Системы с прямой подсветкой позволяют достичь высокой однородности освещения ЖК дисплея, но вместе с этим имеют серьезный недостаток - большую толщину системы. В связи с этим более перспективными являются системы с боковой подсветкой ЖК дисплеев. В подсветке данного типа источники излучения расположены сбоку от дисплея и излучение от них распространяется по волноводу под ЖК панелью, постепенно и равномерно подсвечивая дисплей. При этом в качестве волновода обычно используется пластина, называемая волноводной пластиной, выполненная из оптического материала, а для постепенного, равномерного вывода излучения из нее, на пластину наносятся различные выводящие элементы. Равномерность вывода достигается соответствующей геометрией и расположением выводящих элементов, а также геометрией волноводной пластины.

Все известные системы с боковой подсветкой являются достаточно эффективными, но при этом обладают рядом существенных недостатков, связанных с применением в них волноводной пластины.

К недостаткам систем с волноводной пластиной можно отнести такие как: сложность эффективного ввода излучения через торец волноводной пластины, причем сложность дополнительно возрастает при попытке уменьшения толщины системы подсветки, относительная хрупкость тонкой волноводной пластины, что также не позволяет существенно уменьшить ее толщину, а следовательно, и толщину всей системы. Также к недостаткам волноводной пластины относятся ее большой вес и стоимость.

В связи с этим в последнее время появились системы, основанные на боковой подсветке, но при этом не использующие волноводную пластину. В качестве волновода в таких системах используется воздушная среда, заключенная между зеркальными или частично зеркальными элементами. Такой волновод получил название воздушного волновода. Он позволяет избавиться от большинства недостатков, присущих схеме с волноводной пластиной, но в то же время создает иные проблемы, которые необходимо преодолеть.

Наиболее сложной является проблема равномерного вывода излучения из воздушного волновода. В известных системах подсветки жидкокристаллических дисплеев используют различные методы вывода излучения из волновода, такие как: нанесение рассеивающих точек на нижнюю или верхнюю часть волновода, использование специальных призматических, конических или линзовых структур, наклеенных на нижнюю или верхнюю часть волновода, нанесение штриховых структур на нижнюю или верхнюю часть волновода и так далее. Все эти методы основаны на принципе нарушения закона полного внутреннего отражения в месте контакта волновода и какой-либо нанесенной или приклеенной структуры, что позволяет вывести излучение из волновода. Однако в случае отказа от использования волноводной пластины эти методы не могут быть применены из-за отсутствия физического волновода. Вывод излучения может быть организован за счет введения в систему волновода оригинальной конструкции, выполненного в виде зеркальной верхней пленки с переменными показателями как отражения, так и пропускания по ее площади (см., например, патентную заявку США № US 2010/0238686) [1]. Показатели отражения и пропускания меняются вдоль длины и ширины пленки по мере удаления от источника излучения. Основной проблемой в системах подсветки является неоднородность яркости дисплея. Для решения этой проблемы показатели отражения и пропускания верхней пленки меняются по достаточно сложному закону (см. Фиг.1). Самым существенным недостатком данной схемы является необходимость непрерывного плавного изменения показателей отражения и пропускания для обеспечения равномерности подсветки. Практически возможно только изготовление пленки с зональным изменением показателей отражения и пропускания, что приводит к большой неравномерности в подсветке ЖК дисплея. Также вывод излучения может быть организован при помощи усовершенствованной коллимирующей системы и верхней, образующей волновод, пленки с перфорацией (см. патентную заявку США №2011/0032449) [2]. Пленка может быть перфорирована отверстиями различной формы и по различным законам распределения этих отверстий. Подразумевается, что при таком методе вывода коллимирующая система должна обеспечивать малую расходимость излучения на входе в воздушный волновод (не более 30 градусов), а перфорированная верхняя пленка позволит порционно выводить излучение из воздушного волновода на ЖК дисплей (см. Фиг.2). При этом излучение выводится под достаточно большими углами наклона по отношению к нормали дисплея. Такое освещение дисплея, который хорошо работает только при падении излучения под углами, близкими к нормали, является крайне неэффективным. Поэтому подобный способ вывода требует дополнительного перемешивания излучения, которое осуществляется в еще одном дополнительном волноводе, расположенном непосредственно над первым (см. Фиг.3). Описанная система может рассматриваться в качестве прототипа заявляемого изобретения. В качестве недостатков такой системы следует отметить, что система с двумя воздушными волноводами не может в полной мере обеспечить необходимой угловой индикатрисы выходящего из системы подсветки излучения из-за недостаточного рассеяния в воздушной среде верхнего волновода и, как следствие, недостаточного перемешивания различных угловых мод выходящего излучения. Кроме того, система, состоящая из большого числа элементов и включающая в себя коллиматор, является относительно дорогой и сложной в юстировке.

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке системы подсветки жидкокристаллических дисплеев на основе воздушного волновода, обеспечивающей высокую однородность подсветки жидкокристаллического экрана и необходимую угловую индикатрису излучения, выходящего из системы подсветки. При этом такая система должна быть применима для ЖК дисплеев с большой диагональю, но иметь уменьшенные габариты, повышенную надежность и простоту юстировки.

Технический результат достигается за счет разработки системы подсветки (в двух вариантах) жидкокристаллических дисплеев, обеспечивающей высокую равномерность, яркость и требуемую угловую индикатрису подсветки. При этом реализация системы подсветки предусматривает либо перемешивание излучения и вывод его из воздушного волновода только при помощи зеркально-диффузной пленки, либо использование дополнительной световодной пленки, которая позволяет значительно снизить требования к точности изготовления зеркально-диффузной пленки.

В Варианте 1 система подсветки ЖК дисплеев содержит:

- источник излучения в виде, по меньшей мере, одного светодиода;

- нижнее зеркало с зеркальным покрытием;

- верхнюю зеркально-диффузную пленку, расположенную над нижним зеркалом и выполненную в виде пластины, изготовленной из материала с объемным диффузным рассеянием, причем на нижнюю сторону пластины нанесено зеркальное покрытие, имеющее ряд прозрачных областей;

- боковые зеркала, расположенные с четырех сторон и образующие совместно с нижним зеркалом и верхней зеркально-диффузионной пленкой воздушный волновод.

В Варианте 2 система подсветки ЖК дисплеев содержит:

- источник излучения в виде, по меньшей мере, одного светодиода;

- нижнее зеркало с зеркальным покрытием;

- верхнюю зеркально-диффузную пленку, расположенную над нижним зеркалом и выполненную в виде пластины, изготовленной из материала с объемным диффузным рассеянием, причем на нижнюю сторону пластины нанесено зеркальное покрытие, имеющее ряд прозрачных областей;

- боковые зеркала, расположенные с четырех сторон и образующие совместно с нижним зеркалом и верхней зеркально-диффузионной пленкой воздушный волновод;

- световодную пленку, расположенную непосредственно над нижним зеркалом и выполненную с возможностью передачи части излучения от источников на противоположный конец воздушного волновода.

Следует отметить, что признак «прозрачный» в отношении областей зеркального покрытия должен пониматься как противопоставление признаку «непрозрачный», то есть включает в себя как абсолютную прозрачность, так и частичную прозрачность.

Для лучшего понимания сути изобретения далее приводятся примеры реализации изобретения со ссылками на графические материалы.

Фиг.1 - Система с переменным показателем отражения и пропускания, известная из уровня техники.

Фиг.2 - Система прототипа с коллимирующей системой, известная из уровня техники.

Фиг.3 - Система прототипа с коллимирующей системой и дополнительным волноводом, известная из уровня техники.

Фиг.4 - Система подсветки в заявляемом варианте 1.

Фиг.5 - Система подсветки в заявляемом варианте 2;

Фиг.6 - Конструкция световодной пленки для системы подсветки в заявляемом варианте 2.

Представленная на Фиг.4 схема заявляемой системы подсветки ЖК дисплеев в варианте 1 предусматривает, что излучение от светодиодных источников 11 распространяется в воздушном волноводе, образованном нижним зеркалом 13, боковыми зеркалами 14 и верхней зеркально-диффузной пленкой 12. Зеркально-диффузная пленка представляет собой тонкую пластину из оптического материала с диффузным рассеянием, используемую в качестве подложки, на нижнюю поверхность которой нанесено зеркальное покрытие 15, снабженное рядом прозрачных отверстий 16. Число прозрачных отверстий может варьироваться в конкретных конструкциях, но в любом случае предпочтительным является наличие нескольких (>1) отверстий, обеспечивающих выход множества пучков света. Таким образом, распространяясь в воздушном волноводе, излучение от источников по мере его распространения в волноводе порционно выводится через прозрачные области по всей площади волновода. Затем выведенное таким образом излучение, претерпевает дополнительное рассеяние в диффузном материале зеркально-диффузной пленки и после выхода из системы подсветки освещает жидкокристаллический дисплей (не показан на иллюстрациях). Подобная комбинация зеркального покрытия с рядом прозрачных областей и подложки из диффузного материала позволяет получить одновременно и хорошую однородность, и высокую яркость системы подсветки.

Представленная на Фиг.5 схема заявляемой системы подсветки ЖК дисплеев в варианте 2 предусматривает, что излучение от светодиодных источников 110 распространяется в воздушном волноводе, образованным нижним зеркалом 130, боковыми зеркалами 140 и верхней зеркально-диффузной пленкой 120. Зеркально-диффузная пленка представляет собой пластину из оптического материала с диффузным рассеянием, используемую в качестве подложки, на нижнюю поверхность которой нанесено зеркальное покрытие 150, содержащее ряд прозрачных областей 160. Часть излучения от источников в процессе распространения попадает на расположенную снизу световодную пластину 170. Эта пластина имеет приемную часть 171 (Фиг.6), выполненную в виде призматической структуры. Излучение, попадая в световодную пленку через приемную часть, далее распространяется в ней, как в волноводе, до противоположного конца пластины, на котором расположена выводящая часть 172. Выводящая часть 172 также выполнена в виде призматической структуры, через которую излучение выводится из световодной пластины. Такая световодная пластина позволяет эффективно перенести часть излучения от источников к противоположному концу воздушного волновода и значительно снижает требования к форме и расположению прозрачных областей на зеркально-диффузионной пленке. Таким образом, распространяясь в воздушном волноводе, излучение от источников по мере его распространения в волноводе порционно выводится через прозрачные области по всей площади волновода. Затем выведенное таким образом излучение претерпевает дополнительное рассеяние в диффузном материале зеркально-диффузной пленки и после выхода из системы подсветки освещает жидкокристаллический дисплей (не показан на иллюстрациях). Подобная комбинация зеркального покрытия с рядом прозрачных областей и подложки из диффузного материала позволяет получить одновременно и хорошую однородность, и высокую яркость системы подсветки.

Оба варианта, описанные в качестве примеров реализации заявляемого изобретения, могут найти применение в разработке конструкций устройств с ЖК дисплеями, отличающимися уменьшенной толщиной и высокой однородной яркостью подсветки.

1. Система боковой подсветки жидкокристаллических дисплеев, содержащая:
источник излучения в виде, по меньшей мере, одного светодиода,
нижнее зеркало с зеркальным покрытием,
верхнюю зеркально-диффузионную пластину и
боковые зеркала, расположенные с четырех сторон и образующие совместно с нижним зеркалом и верхней зеркально-диффузионной пластиной воздушный волновод,
при этом верхняя зеркально-диффузионная пластина выполнена из материала с объемным диффузным рассеянием с нанесенным на ее нижнюю сторону зеркальным покрытием, в котором имеется ряд прозрачных или частично прозрачных областей.

2. Система по п.1, в которой упомянутые прозрачные области в зеркальном покрытии упомянутой зеркально-диффузионной пластины выполнены в форме круглых отверстий.

3. Система боковой подсветки жидкокристаллических дисплеев, содержащая:
источник излучения в виде, по меньшей мере, одного светодиода,
нижнее зеркало с зеркальным покрытием,
верхнюю зеркально-диффузионную пластину,
боковые зеркала, расположенные с четырех сторон и образующие совместно с нижним зеркалом и верхней зеркально-диффузионной пластиной воздушный волновод; и
световодную пластину, расположенную непосредственно над нижним зеркалом,
при этом верхняя зеркально-диффузная пластина выполнена из материала с объемным диффузным рассеянием с нанесенным на ее нижнюю сторону зеркальным покрытием, в котором имеется ряд прозрачных или частично прозрачных областей,
световодная пластина состоит из приемной, волноводной и выводящей частей и выполнена с возможностью передачи части излучения от упомянутого источника излучения на противоположный конец воздушного волновода.

4. Система по п.1, в которой упомянутые прозрачные области в зеркальном покрытии упомянутой зеркально-диффузионной пластины выполнены в форме круглых отверстий.



 

Похожие патенты:

Объединенная система видения и отображения содержит формирующий отображаемое изображение слой; детектор изображения, выполненный с возможностью визуализации инфракрасного излучения в узком диапазоне углов относительно нормали к поверхности отображения и включающий в себя отражение от одного или более объектов на поверхности отображения или вблизи нее; излучатель системы видения, выполненный с возможностью излучения инфракрасного излучения для освещения объектов; пропускающий видимое и инфракрасное излучение световод, имеющий противолежащие верхнюю и/или нижнюю поверхности, выполненный с возможностью приема инфракрасного излучения от излучателя системы видения, проведения инфракрасного излучения посредством TIR от верхней и нижней поверхностей и проецирования инфракрасного излучения на объект за пределами узкого диапазона углов относительно нормали к поверхности отображения.

Система сканирования коллимированного света содержит оптический волновод, систему ввода света в первый конец оптического волновода и контроллер для управления местоположением вдоль первого конца оптического волновода.

Изобретение относится к области электротехники и оптики и касается способа получения инфракрасного излучения. Для получения инфракрасного излучения электрический сигнал подают на вход блока предыскажений.

Группа изобретений относится к области светотехники. Техническим результатом является предотвращение или исключение неравномерной яркости света, испущенного из светопроводящей пластины.

Изобретение относится к генераторам импульсного широкополосного электромагнитного излучения терагерцового диапазона частот. Многоэлементный генератор терагерцового излучения содержит исследуемый образец, фемтосекундный лазер, многоэлементный эмиттер, в котором элементарный эмиттер представляет собой слой кристаллического полупроводника с напыленной металлической маской, формирующей резкий градиент освещенности слоя кристаллического полупроводника лазерным излучением.

Изобретение относится к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения.

Изобретение относится к области светотехники. Техническим результатом является повышение качества отображения путем подавления неоднородности яркости и цвета на экране дисплея.

Изобретение относится к оптической технике. Устройство для модуляции монохроматического оптического излучения содержит оптически прозрачную среду, в которой установлены разделитель монохроматического оптического излучения на первый и второй каналы распространения, отражающий элемент во втором канале, участок когерентного суммирования для формирования модулированного монохроматического оптического излучения.

Изобретение относится к области светотехники. Техническим результатом является устранение неравномерной яркости.

Устройство отображения содержит систему (100) окружающего освещения для испускания окружающего света (106) на стену (107) позади устройства (104) отображения. Система окружающего освещения включает по меньшей мере один источник (101) света, расположенный в области внутри центральной части задней стороны устройства (104) отображения, и по меньшей мере один отражатель (102), расположенный на задней стороне устройства (104) отображения.

Изобретение относится к области генерации электромагнитного излучения в субтерагерцовом и терагерцовом диапазонах частот. Генератор субтерагерцового и терагерцового излучения включает источник лазерного излучения, электрическую цепь с источниками напряжения и импедансной нагрузкой, и оптически активный элемент. Оптический активный элемент оснащен дополнительным полевым транзистором, имеющим в подзатворной области слой полупроводника с коротким временем жизни фотовозбужденных носителей заряда, затвор из прозрачного или полупрозрачного материала, при этом электрическое смещение подается на сток и исток проводящего канала полевого транзистора. Технический результат заключается в увеличении выходной мощности. 2 ил.
Изобретение относится к оптической технике, а именно к способу изготовления тонированного изделия для прозрачных поверхностей с возможностью регулирования степени их светопропускания. Способ изготовления тонированного изделия, содержащего тонировочную пленку, включает соединение полимерных листов. В качестве полимерных листов используют два листа из прозрачного материала с нанесением на один из них в виде точек размером менее 30 мкм эластичного полимера, его полимеризацией, соединением с другим листом путем наложения с последующей герметизацией по контуру и введением через клапан в межпленочное пространство окрашенной оптически прозрачной рабочей жидкости для регулирования степени светопропускания путем ее ввода и вывода. При вводе рабочей жидкости показатель светопропускания уменьшается, а при выводе рабочей жидкости показатель светопропускания увеличивается. Технический результат - возможность регулирования степени светопропускания, а значит улучшение оптических характеристик поверхностей в зависимости от эксплуатационных условий. 1 з.п. ф-лы, 2 пр.

Изобретение относится к оптоэлектронике. Способ генерации электромагнитного излучения в терагерцовом диапазоне заключается во взаимодействии направленного возбуждающего излучения с активной средой образца и получении вторичного электромагнитного излучения. В качестве активной среды образца используют материал со свойствами топологического изолятора, при этом возбуждение осуществляют импульсным излучением с длительностью возбуждающих импульсов τ=10-12-10-14 с, энергией в импульсе Eимп=10-5-10-2 Дж и длиной волны λвозб=350-5000 нм, причем возбуждающее излучение направляют на плоскость образца с активной средой под углом α≠90°. В качестве активной среды может быть использована тонкая пленка или кристалл селенида висмута (Bi2Se3) или теллурида висмута (Bi2Te3). В качестве детектирующего элемента может быть использован теллурид цинка (ZnTe). Технический результат заключается в обеспечении возможности контроля и управления параметрами генерации при возбуждении материалов, обладающих свойствами топологического изолятора. 3 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области физики, в частности к методикам модуляции интенсивности электромагнитного излучения видимого и ближнего ИК диапазонов посредством приложения магнитного поля. Способ модуляции света включает в себя создание магнитоплазмонного кристалла на основе периодически наноструктурированной диэлектрической матрицы, с пространственным периодом d, последующее напыление на нее слоев ферромагнитных и благородных металлов, а также диэлектриков, освещение магнитоплазмонного кристалла светом и приложение магнитного поля. Модуляция интенсивности ТМ-поляризованного отраженного света осуществляется с помощью периодически наноструктурированной пленки ферромагнитного металла толщиной h=50-200 нм. В качестве источника света используется ТМ-поляризованное электромагнитное излучение, падающее на поверхность магнитоплазмонного кристалла под углом, соответствующим возбуждению поверхностных плазмон-поляритонов. При этом переменное магнитное поле прикладывается в геометрии экваториального магнитооптического эффекта Керра. Технический результат - уменьшение толщины магнитооптического модулятора. 4 ил.

Изобретение относится к печатной плате и к устройству, содержащему такую печатную плату. Технический результат - обеспечение повышения эффективности производства устройства, содержащего светодиодную цепь для обеспечения окружающего света для дисплея, улучшение конструктивных характеристик. Достигается тем, что печатная плата (1) удлиненного размера содержит светодиодную схему (2, 3). Части печатной платы (1) являются гибкими, по меньшей мере, в одном направлении. Предпочтительно печатная плата (1) может сгибаться по направлению длины и ширины и не требует отверстий для шурупов. Светодиодная схема (2, 3) может содержать светодиодные цепи (2) со светодиодами и другую схему (3), такую как возбудитель для возбуждения светодиодных цепей (2) индивидуально для обеспечения окружающего света для дисплея (5). 2 н. и 13 з.п. ф-лы, 15 ил.

Изобретение относится к области светотехники. Техническим результатом является снижение потока направленного ослепляющего света. Технический результат достигается за счет того, что в светильнике (1), содержащем кожух (2), имеющий по меньшей мере одну боковую стеночную часть (3) и нижнюю стеночную часть (5), источник света (7), расположенный в кожухе (2), и оптически прозрачный лист (10), указанный оптически прозрачный лист (10) выполнен искривленным и имеет множество удлиненных призматических структур с прямыми верхними углами (16) на ее вогнутой поверхности. Упомянутая поверхность обращена в сторону, противоположную источнику света (7). 9 з.п. ф-лы, 6 ил.

Изобретение относится к дисплейному устройству и способу отображения, в которых обеспечивается бесшовный экран с использованием дисплейных панелей. Устройство отображает изображение на основании сигналов изображения и содержит дисплейную панель с дисплейной областью, в которой в виде матрицы расположены дисплейные элементы. На краю дисплейной панели расположена рамочная область, не содержащая дисплейных элементов. Устройство также содержит подсвечивающее устройство, испускающее свет в форме плоско распространяющегося излучения в направлении задней поверхности, противоположной дисплейной поверхности дисплейной области, и световод, который установлен на дисплейной панели и способен изменять световой путь части света, испускаемого дисплейными элементами. Указанная часть света направляется в рамочную область, при этом яркость на единицу площади на испускающей свет поверхности подсвечивающего устройства выше на краю дисплейной области, содержащем световод, чем в нормальной области изображения, не содержащей световод за пределами дисплейной области. Технический результат - повышение качества отображения. 2 н. и 13 з.п. ф-лы, 18 ил.

Изобретение относится к светоизлучающему модулю и к светоизлучающему устройству, содержащему множество таких светоизлучающих модулей. Технический результат - повышение плотности упаковки, легкости монтажа, улучшение рассеяния тепла, увеличение яркости, уменьшение стоимости. Это достигается тем, что светоизлучающее устройство (3a-c; 23; 26; 33a-c) содержит множество источников (12a-e; 27a-h) света, скомпонованных в по меньшей мере первом и втором столбцах (18a-b; 28a-c), расположенных бок о бок и проходящих вдоль первого направления расширения (х1) светоизлучающего модуля (3a-c; 23; 26; 33a-c); и множество пар (13a-b, 14a-b, 15a-b, 16a-b 17a-b) соединительных клемм, каждая из которых электрически подключена к соответствующей паре источников (3a-c; 23; 26; 33a-c) света для обеспечения подачи электрической энергии. Каждая пара (13a-b, 14a-b, 15a-b, 16a-b, 17a-b) соединительных клемм содержит первую соединительную клемму (13a, 14a, 15a, 16a, 17a) и вторую соединительную клемму (13b, 14b, 15b, 16b, 17b), которые расположены на противоположных сторонах светоизлучающего модуля (3a-c; 23; 26; 33a-c). Источники (12a-e; 27a-h) света скомпонованы в предопределенной последовательности источников света вдоль первого направления расширения (X1) светоизлучающего модуля (3a-c; 23; 26; 33a-c), и пары (13a-b, 14a-b, 15a-b, 16a-b 17a-b) соединительных клемм, электрически подключенные к соответствующим источникам (12a-e; 27a-h) света, скомпонованы в предопределенной последовательности источников света вдоль первого направления расширения (х1) светоизлучающего модуля таким образом, что соотношение между светящейся площадью и общей площадью светоизлучающего модуля больше 25%. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к подложке для исследований усиленного поверхностью комбинационного рассеяния. Подложка содержит полупроводниковую поверхность с формированными на ней нитевидными кристаллами, покрытыми пленкой металла, выбранного из группы, состоящей из серебра, золота, платины, меди и/или их сплавов. В качестве материала для полупроводниковой поверхности использован смешанный нитрид алюминия, галлия и индия. Каждый сформированный нитевидный кристалл имеет внутри линейный дефект. Плотность поверхности нитевидных кристаллов, имеющих внутри линейный дефект, составляет от 108/см2 до 1010/см2, их длина нитевидных кристаллов составляет от 0,2 мкм до 2,0 мкм, а диаметр нитевидных кристаллов - от 40 нм до 150 нм. Отношение длины нитевидных кристаллов, имеющих внутри линейный дефект, к их диаметру составляет от 5 до 50, а толщина пленки металла на полупроводниковой поверхности составляет от 50 нм до 150 нм. 12 з.п. ф-лы, 9 ил., 3 пр.

Изобретение относится к модуляции света методами управления интенсивностью и фазовыми характеристиками светового потока и может найти применение для лазерных источников света общего назначения, в том числе для подавления спекла. Спеклоподавитель содержит модулятор, содержащий нанесенные на первую прозрачную подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем, и систему из i штук параллельных ленточных электродов заземления и управления, размещенных с зазором над прозрачным гелеобразным слоем и соединенных электрически с устройством управления. Устройство управления содержит, по крайней мере, один регистр сдвига заземления и один регистр сдвига управления, электрически соединенные с электродами заземления и электродами управления соответственно, а также блоки обратной связи, тактовый генератор, делитель частоты и блок обнуления. Технический результат - повышение качества спеклоподавления. 2 н. и 2 з.п. ф-лы, 7 ил.
Наверх