Способ и устройство для измерения углового ускорения контролируемого объекта

Изобретение относится к области приборостроения и предназначено для измерения углового ускорения. Для измерения углового ускорения объекта производят измерение длительности интервалов времени между фронтами всех импульсов импульсным датчиком углового положения, определяют среднюю скорость на каждом интервале времени, создавая обращенное относительное движение частей импульсного датчика углового положения, различно связанных с контролируемым объектом, обеспечивая генерирование импульсным датчиком максимального количества импульсов на конечном участке торможения контролируемого объекта, и производят измерение значений углового ускорения при торможении. Устройство содержит инерционную массу 5, импульсный датчик углового положения 2, жестко установленный на контролируемом объекте 1, регистрирующее устройство 7 и вычислитель 8, а также обгонную муфту 6, установленную между контролируемым объектом 1 и инерционной массой 5, жестко закрепленную на валу оптического диска 3 импульсного датчика углового положения 2, в качестве которого выбран датчик-энкодер. Изобретение обеспечивает повышение точности определения углового ускорения на конечном участке торможения контролируемого объекта. 2 н. и 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области приборостроения и может быть использовано для измерения углового ускорения.

Известны способ измерения ускорения и устройство для измерения ускорений, описанные в а.с.№767658, 1978 г., МПК G01P 15/08. Способ заключается в том, что определяется положение объекта через известные промежутки времени и по ним вычисляются скорость и ускорение.

Устройство, реализующее данный способ, содержит светодиоды, импульсный генератор и регистратор (фотопленку).

К недостаткам данного способа и устройства можно отнести относительно низкую точность измерений при малых скоростях движения и сложность обработки результатов.

Наиболее близким и выбранным в качестве прототипа является способ измерения угловых ускорений, описанный в а.с.№824061, опубл. 23.04.1981 г., МПК G01P 15/08 под названием «Цифровой измеритель ускорения вала», включающий измерение длительности интервалов времени между фронтами всех импульсов импульсного датчика углового положения, определение средней скорости на каждом интервале времени и значений углового ускорения. Устройство, реализующее данный способ, содержит импульсный датчик углового положения (квантователь), регистрирующее устройство и вычислитель (реализованный на триггерах и элементах цифровой логики).

К недостаткам данных технических решений относится недостаточная точность вычисления углового ускорения на конечном участке торможения контролируемого объекта (при малых скорости и угловом перемещении).

Целью данного изобретения является повышение точности определения углового ускорения на конечном участке торможения контролируемого объекта.

Это достигается тем, что в способе измерения углового ускорения контролируемого объекта, включающем измерение длительности интервалов времени между фронтами всех импульсов импульсного датчика углового положения, определение средней скорости на каждом интервале времени и значений углового ускорения, согласно изобретению создают относительное движение частей импульсного датчика углового положения, различно связанных с контролируемым объектом, обеспечивая генерирование датчиком максимального количества импульсов, и проводят измерение углового ускорения на конечном участке торможения контролируемого объекта.

А также это достигается тем, что устройство для измерения углового ускорения контролируемого объекта, содержащее импульсный датчик углового положения, регистрирующее устройство и вычислитель, снабжено инерционной массой и обгонной муфтой, установленной между контролируемым объектом и инерционной массой, при этом инерционная масса жестко закреплена на валу импульсного датчика углового положения.

Кроме того, в устройстве для измерения углового ускорения контролируемого объекта в качестве импульсного датчика угловых положений выбран датчик-энкодер.

Технический результат заключается в том, что удалось уменьшить неопределенность последовательности угловых положений контролируемого объекта и количество получаемых значений углового ускорения в важном интервале времени - непосредственно перед его остановкой и в момент остановки, уменьшив период импульсов датчика угловых положений и увеличив количество этих импульсов.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки способа (создание относительного движения частей импульсного датчика углового положения, различно связанных с контролируемым объектом, с обеспечением генерирования импульсным датчиком максимального количества импульсов на конечном участке торможения контролируемого объекта и произведение измерения значений угловой скорости при торможении) и устройства для измерения углового ускорения контролируемого объекта (снабжение его инерционной массой и обгонной муфтой, установленной между контролируемым объектом и инерционной массой, при этом инерционная масса жестко закреплена на валу импульсного датчика углового положения) не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На чертеже представлен общий вид предлагаемого устройства.

Устройство для измерения углового ускорения контролируемого объекта 1, в качестве которого выбрана планшайба, содержит импульсный датчик углового положения 2, корпус которого жестко установлен на контролируемом объекте 1, регистрирующее устройство 7, записывающее в привязке ко времени сигналы с оптопар 4, входящих в состав датчика углового положения 2, вычислитель 8, обгонную муфту 6, установленную между контролируемым объектом 1 и инерционной массой 5, жестко закрепленной на валу оптического диска 3 датчика углового положения 2, в качестве которого выбран датчик-энкодер, выдающий 3600 импульсов за один оборот оптического вала.

Устройство работает следующим образом.

Контролируемый объект 1 приводится во вращение, при этом датчик углового положения 2 и инерционная масса 5 на этапе подготовки торможения вращаются вместе с контролируемым объектом 1 и имеют равную с ним угловую скорость. Импульсы на регистрирующее устройство 7 не поступают, так как оптический диск 3 не вращается относительно корпуса импульсного датчика углового положения 2 и установленных в нем оптопар 4.

При торможении контролируемого объекта 1 вместе с ним тормозится корпус датчика углового положения 2, а инерционная масса 5 продолжает вращение с достигнутой при разгоне скоростью, поскольку обгонная муфта 6 не препятствует этому. По мере торможения контролируемого объекта 1 частота следования импульсов с оптопар 4 растет и достигает максимума в момент остановки контролируемого объекта 1. Все импульсы фиксируются с привязкой по времени регистрирующим устройством 7. В вычислителе 8 на каждом угловом интервале определяется средняя скорость оптического диска 3, продолжающего вращение, относительно корпуса, тормозящегося вместе с объектом, а по разности значений скорости на соседних интервалах определяется угловое ускорение. При этом, благодаря тому, что скорость вращения оптического диска 3 относительно корпуса датчика углового положения 2 максимальна в момент остановки контролируемого объекта 1, количество получаемых значений скорости на важном участке также максимально. Максимальное ускорение достигается в момент остановки датчика углового положения 2 (план-шайбы), за последние 5-10 угловых минут достигается около (20-30)% углового ускорения. При отсутствии описанного соединения частей энкодера 2 на важном участке будет зарегистрировано 1-2 импульса, а при его наличии 100-200 импульсов.

Заявляемые способ и устройство позволили добиться повышения точности определения углового ускорения на конечном участке торможения контролируемого объекта.

Для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, подтверждена возможность осуществления способа и устройства для измерения углового ускорения контролируемого объекта и способность обеспечения достижения усматриваемого заявителем технического результата. Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

1. Способ измерения углового ускорения контролируемого объекта, включающий измерение длительности интервалов времени между фронтами всех импульсов импульсного датчика углового положения, определение средней скорости на каждом интервале времени и определение значений углового ускорения, отличающийся тем, что создают относительное движение частей импульсного датчика углового положения, различно связанных с контролируемым объектом, обеспечивая генерирование импульсным датчиком максимального количества импульсов на конечном участке торможения контролируемого объекта, и производят измерение значений углового ускорения при торможении.

2. Устройство для измерения углового ускорения контролируемого объекта, содержащее импульсный датчик углового положения, жестко установленный на контролируемом объекте, регистрирующее устройство и вычислитель, отличающееся тем, что оно снабжено инерционной массой и обгонной муфтой, установленной между контролируемым объектом и инерционной массой, при этом инерционная масса жестко закреплена на валу импульсного датчика углового положения.

3. Устройство для измерения углового ускорения контролируемого объекта по п.2, отличающееся тем, что в качестве импульсного датчика угловых положений выбран датчик-энкодер.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано при изготовлении интегральных акселерометров. Чувствительный элемент интегрального акселерометра выполнен из проводящего монокристаллического кремния и содержит маятник 3, соединенный с помощью упругих подвесов 2 с каркасной рамкой 1, обкладки 4, соединенные с каркасной рамкой 1 через площадки 6, расположенные на каркасной рамке 1.
Изобретение относится к микромеханическим устройствам и может применяться в интегральных акселерометрах и гироскопах. Техническим результатом заявленного изобретения является повышение точности емкостного датчика при измерении угловых перемещений.

Изобретение относится к устройствам для измерения ускорения и может быть использовано в качестве первичного преобразователя в системах инерциальной навигации и сейсмометрии.

Изобретение относится к измерительной технике и может быть использовано в микромеханических датчиках линейных ускорений. .

Изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений, скоростей и ускорений. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может применяться в интегральных акселерометрах. .

Изобретение относится к области измерительной техники, в частности к средствам измерения линейных ускорений, угловых скоростей и тепловых полей малой интенсивности в инфракрасной и терагерцовой области.

Изобретение относится к измерительной технике, а именно к датчикам угловых ускорений, принцип действия которых основан на законе электромагнитной индукции. .

Изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений, скоростей и ускорений объектов в бесплатформенных инерциальных навигационных системах.

Изобретение относится к измерительной технике и может быть использовано в системах ориентации и навигации. Линейный микроакселерометр содержит основание, крышку, рамку с инерционной массой, выполненной из кремния, установленную с возможностью линейного перемещения на упругих подвесах вдоль продольной оси, датчик положения и источник напряжения, при этом в устройство дополнительно введены два компаратора, два усилителя тока, ключ, электромагнитный силовой привод, состоящий из 2N катушек, размещенных на 2N магнитопроводящих сердечниках с явно выраженными полюсами, направленными к торцевым сторонам инерционной массы, при этом магнитопроводящие сердечники размещены на противоположных торцевых сторонах рамки по N с каждой стороны, а на поверхности инерционной массы в области каждого из торцов расположены магнитопроводы, замыкающие магнитные потоки катушек, причем входы катушек подключены к выходу ключа, входы которого через компараторы подключены к датчику положения, который выполнен оптическим, и состоит из излучателя и фотоприемников, при этом излучатель подключен к источнику напряжения, а между излучателем и фотоприемниками расположена оптическая щель. Технический результат - повышение точности измерения ускорения. 1 ил.

Изобретение относится к измерительной технике. Устройство содержит положительный и отрицательный источники опорных напряжений, ключевую схему для переключения полярности источников опорных напряжений, генератор синхронизирующих импульсов, сумматор обратной связи, дифференциальные измерительные емкости, первый синхронный детектор. В устройство введен второй синхронный детектор. Выходы первого и второго синхронных детекторов соединены с неинвертирующим и инвертирующим входами фильтра нижних частот. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к области измерительной техники и касается линейного микроакселерометра с оптической системой. Микроакселерометр включает в себя корпус, две инерционные массы на упругих подвесах, два датчика положения, два компенсационных преобразователя. Датчики положения выполнены в виде двух пар монохроматических излучателей с различным спектром излучения и двух фотоприемников с цветоделением, имеющих не менее двух выходов спектральных диапазонов. Излучатели расположены над инерционной массой, а фотоприемники размещены в корпусе соосно с фотоприемниками. Монохроматические излучатели снабжены ограничителями светового потока. Технический результат заключается в повышении точности измерений и упрощении конструкции. 1 ил.

Изобретение относится к области испытания механических систем, у которых главными деталями являются вращающиеся тела, о сопротивлениях движению которых судят по замедлению при выбеге, и может быть использовано для определения отрицательных ускорений вращающихся частей. Вращающуюся деталь снабжают датчиком оборотов с одной меткой, что исключает неточность угловой разметки, которая появилась бы при большом количестве меток. Реагирующий на одиночную метку датчик оборотов соединяют с регистрирующим прибором и компьютером. Регистрируют, например, в дискретной форме, зависимость числа оборотов, а при известном радиусе вращающейся детали - пути в функции времени на определенном отрезке временного интервала, аппроксимируют эту зависимость детерминированной, непрерывной, дифференцируемой функцией, вторая производная которой по времени дает зависимость замедления тела в функции времени. Изобретение обеспечивает повышение точности и эффективности определения замедлений вращающихся тел. 7 ил.

Изобретение относится к измерительной технике. Микромеханический демпфер содержит демпфирующий узел, выполненный в виде сосредоточенной массы, соединенной с помощью упругих подвесов с демпфируемым узлом, с целью получения оптимального демпфирования, при этом в устройстве выполнено следующее соотношение между параметрами: Kд1 - абсолютный коэффициент демпфирования внешнего узла (демпфируемого); Kд2 - абсолютный коэффициент демпфирования внутреннего узла внешнего узла (демпфирующего); m1 - масса внешнего узла; m2 - масса внутреннего узла; G1 - жесткость подвеса внешнего узла; G2 - жесткость подвеса внутреннего узла; χ - коэффициент механической связи между внешним и внутренним узлами. Технический результат - оптимизация режима работы микромеханического демпфера. 1 ил.

Изобретение относится к измерительной технике и может применяться в навигационно-пилотажных системах летательных аппаратов. Сущность изобретения заключается в том, что чувствительный элемент микроэлектромеханического гироскопа выполнен из монокристаллического кремния, представляющий конструкцию «рамка в рамке». При этом во внешней рамке выполнен электростатический силовой преобразователь, компенсирующий в ней кориолисов момент, возникающий в ней при вторичных колебаниях, передаваемых от внутренней рамки. Технический результат - повышение точности измерений. 1 ил.

Изобретение относится к измерительной технике. Устройство содержит две дифференциальные измерительные емкости, источник опорного напряжения, пару ключей зарядки измерительных емкостей, генератор тактовых импульсов, инвертор напряжения, пару ключей для съема сигнала с измерительных емкостей и фильтр нижних частот. Полный цикл работы устройства осуществляется за два такта синхронизирующих импульсов: в первый такт обе измерительные емкости заряжаются от источника опорного напряжения через первую пару ключей. Во второй такт обе измерительные емкости одновременно разряжаются, через вторую пару ключей, на фильтр нижних частот, который формирует сигнал соответствующей величины и полярности. Технический результат заключается в повышении точности. 1 ил.

Изобретение относится к навигационным устройствам, в частности может быть использовано для определения направления на географический север. Техническим результатом изобретения является повышение точности определения направления на географический север. Технический результат достигается за счет того, что устройство для определения направления на географический север, содержит помимо датчика углового движения также датчик, чувствительный к изменению угла наклона. Обработка сигналов производится путем исключения из сигнала датчика угловых движений сигналов, вызванных наклонами оси вращения, с использованием показаний установленного на ту же платформу датчика, чувствительного к изменениям угла наклона. Момент начала вращения платформы определяют из условия стабилизации электродных токов неподвижного молекулярно-электронного датчика. Для уменьшения времени стабилизации электродных токов предварительно механически перемешивают жидкость в канале датчика угловой скорости путем вибраций платформы или помещают в жидкости вне области расположения преобразующего элемента датчика угловой скорости дополнительные электроды, находящиеся при одинаковом электрическом потенциале. 3 з.п. ф-лы, 3 ил.

Изобретение относится к измерительным устройствам и может быть использовано в МЭМС акселерометрах и гироскопах. Емкостный датчик перемещений содержит широтно-импульсный модулятор, подвижный электрод и выполненные на изоляционных обкладках неподвижные электроды, размещенные симметрично относительно подвижного электрода с одинаковыми зазорами, каждый неподвижный электрод разделен пополам, а одинаковые части, размещенные с разных сторон подвижного электрода на одинаковом расстоянии от оси качания, соединены между собой перекрестно и составляют два дифференциально включенных измерительных конденсатора, которые при равных зазорах имеют одинаковую емкость, при этом неподвижные электроды, находящиеся на одной изоляционной обкладке, разделены асимметрично относительно оси качания и перекрывают всю площадь подвижного электрода, а ответные неподвижные электроды выполнены симметрично относительно плоскости подвижного электрода. Технический результат - повышение чувствительности и точности преобразователя перемещений. 3 ил.
Наверх