Способ обнаружения малозаметных подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат - повышение дальности обнаружения малозаметных подвижных объектов. Указанный результат достигается за счет применения операций, обеспечивающих максимизацию выходного отношения сигнал/шум и основанных на нахождении наибольших собственных значений корреляционных матриц, используемых при формировании и компенсации являющегося когерентной помехой прямого сигнала передатчика подсвета, а также при выделении и оптимальном когерентном обнаружении полезных сигналов, полученных после компенсации помехи и откорректированных на заданном множестве гипотетических значений пространственных координат, направлений и скоростей движения объектов. 1 ил.

 

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Достижение высокой эффективности обнаружения, локализации и идентификации наземных, морских и воздушных объектов ограничивается существенной априорной неопределенностью размеров, отражающих свойств и состояний (пространственных координат, направления и скорости движения) объекта, а также несовершенством известных способов обнаружения и слежения за подвижными объектами.

Технология скрытного обнаружения и слежения за подвижными объектами, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения в диапазонах коротких, метровых, дециметровых и сантиметровых волн: широковещательные (УКВ FM-радиовещание, цифровое телевидение DVB-Т2), информационные (связь) и измерительные (управление, навигация), пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить скрытность и эффективность поиска и пространственной локализации широкого класса подвижных объектов.

Известен способ обнаружения малозаметных подвижных объектов [1], заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные от объектов радиосигналы этого передатчика, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, из цифровых сигналов формируют прямые и сжатые рассеянные сигналы, сравнивают выделенные прямые и рассеянные сигналы и определяют временные задержки, доплеровские сдвиги и направления прихода рассеянных сигналов, по временным задержкам, доплеровским сдвигам и направлениям прихода выполняют обнаружение и пространственную локализацию подвижных объектов.

Данный способ не содержит операций подавления когерентной помехи в виде прямого радиосигнала передатчика и, как следствие, обеспечивает эффективное обнаружение только очень крупных близко расположенных подвижных объектов.

Более эффективным является способ обнаружения малозаметных подвижных объектов [2], свободный от этого недостатка и выбранный в качестве прототипа.

Согласно этому способу используют прямые и рассеянные подвижными объектами широкополосные радиосигналы, излучаемые передатчиками радиоэлектронных систем различного назначения, когерентно принимают решеткой антенн многолучевые радиосигналы, включающие прямые и рассеянные радиосигналы, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, цифровые сигналы объединяют в матричный цифровой сигнал и запоминают, из матричного цифрового сигнала формируют сигнал пространственной корреляционной матрицы, который совместно с сигналом вектора наведения, определяемым азимутально-угломестным направлением приема прямого радиосигнала, длиной волны и геометрией решетки, преобразуют в сигнал оптимального весового вектора, преобразуют матричный цифровой сигнал в прямой цифровой сигнал, который запоминают, формируют и запоминают зависящие от временного сдвига комплексные взаимно-корреляционные функции (ВКФ) между цифровым сигналом отдельной антенны и прямым цифровым сигналом, определяют максимальное значение модуля каждой комплексной ВКФ и фиксируют соответствующие этим максимумам значения комплексной ВКФ, вычисляют разностные цифровые сигналы, формируют зависящие от временного и частотного сдвигов комплексные двумерные взаимно-корреляционные функции (ДВКФ) между каждым разностным цифровым сигналом и прямым цифровым сигналом, усредняют модули комплексных ДКФВ, определяют по максимумам усредненной ДКФВ число сжатых сигналов и фиксируют значения задержки по времени и абсолютного доплеровского сдвига каждого p-го сжатого сигнала, идентифицируют соответствующие отдельному максимуму усредненной ДКФВ составляющие комплексных ДКФВ как сжатый по времени и частоте р-й сигнал, выделяют и запоминают значения составляющих комплексных ДКФВ, задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала, по выделенным значениям р-ых идентифицированных составляющих комплексных ДКФВ синтезируют комплексный двумерный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го сжатого сигнала, по значениям задержки и абсолютного доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.

Способ-прототип благодаря наличию операций адаптивной пространственной фильтрации и операций радиоэлектронной компенсации когерентной помехи в виде мощного прямого радиосигнала передатчика подсвета обеспечивает обнаружение более широкого класса подвижных объектов. Однако способ-прототип содержит операции формирования классической двумерной взаимной корреляционной функции, которая содержит высокие боковые лепестки, маскирующие сигналы далеких и слабо рассеивающих объектов.

Таким образом, недостатком способа-прототипа является ограниченная дальность обнаружения малозаметных подвижных объектов.

Техническим результатом изобретения является повышение дальности обнаружения малозаметных подвижных объектов.

Повышение дальности обнаружения малозаметных подвижных объектов достигается за счет применения новых операций, обеспечивающих максимизацию выходного отношения сигнал/шум и основанных на нахождении наибольших собственных значений корреляционных матриц, используемых при формировании и компенсации являющегося когерентной помехой прямого сигнала передатчика подсвета, а также при выделении и оптимальном когерентном обнаружении полезных сигналов, полученных после компенсации помехи и откорректированных на заданном множестве гипотетических состояний (пространственные координаты, направление и скорость движения) объектов.

Технический результат достигается тем, что в способе обнаружения малозаметных подвижных объектов, заключающемся в том, что используют прямые и рассеянные подвижными объектами широкополосные радиосигналы, излучаемые передатчиками радиоэлектронных систем различного назначения, когерентно принимают решеткой антенн многолучевые радиосигналы, включающие прямые и рассеянные радиосигналы, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы, согласно изобретению, преобразуют цифровой сигнал каждой антенны в откорректированный по временной задержке и доплеровскому сдвигу частоты для известного состояния передатчика цифровой сигнал sn, где - номер антенны, объединяют откорректированные цифровые сигналы sn в матрицу откорректированных сигналов Ф, которую преобразуют в пространственную корреляционную матрицу откорректированных сигналов G=ФНФ и в сигнальную матрицу F=ФФН, находят наибольшее собственное значение корреляционной матрицы откорректированных сигналов G и соответствующий найденному собственному значению главный собственный вектор сигнальной матрицы F, идентифицируют найденное значение главного собственного вектора как прямой цифровой сигнал u, который запоминают, формируют нормированный коэффициент взаимной корреляции βn=uН s n/║u║2 между прямым цифровым сигналом u и откорректированным цифровым сигналом sn каждой антенны, получают разностный цифровой сигнал каждой антенны , преобразуют разностный цифровой сигнал каждой антенны в откорректированный по временной задержке и доплеровскому сдвигу частоты на заданном множестве гипотетических состояний объектов разностный цифровой сигнал , откорректированные разностные цифровые сигналы всех антенн объединяют в матрицу разностных сигналов , матрицу разностных сигналов преобразуют в пространственную корреляционную матрицу разностных сигналов , находят наибольшее собственное значение корреляционной матрицы разностных сигналов , после сравнения которого с порогом принимают решение об обнаружении подвижного объекта с текущим гипотетическим состоянием объекта.

Операции способа поясняются чертежом.

Устройство, в котором реализуется предложенный способ, включает последовательно соединенные антенную систему 1, N-канальный преобразователь частоты (ПРЧ) 2, N-канальное устройство квадратурной дискретизации 3, вычислитель 4 и устройство отображения 5.

В свою очередь вычислитель 4 включает устройство сдвига 4-1, формирователь разностных сигналов 4-2, устройство сдвига 4-3, устройство обнаружения 4-4.

Устройство сдвига 4-1 и ПРЧ 2 имеют связь с внешними системами для получения информации о параметрах излучения выбранного передатчика подсвета. Кроме этого устройство сдвига 4-1 получает от внешних систем информацию о векторе состояния передатчика подсвета в виде: пространственных координат, направления и скорости движения при выборе подвижного передатчика или только пространственных координат при выборе стационарного передатчика. Связь с внешними системами с целью упрощения не показана.

Антенная система 1 содержит N антенн с номерами n=1…N, объединенных в решетку. Антенная решетка может быть произвольной пространственной конфигурации: плоской прямоугольной, плоской кольцевой или объемной, в частности конформной.

Полоса пропускания каждого канала многоканального ПРЧ 2 обеспечивает прием широкополосного сигнала. Кроме того, многоканальные ПРЧ 2 и устройство 3 выполнены с общим гетеродином, который обеспечивает когерентный прием радиосигналов. Для периодической калибровки каналов по внешнему источнику сигнала с целью устранения их амплитудно-фазовой неидентичности ПРЧ 2 обеспечивает подключение одной из антенн вместо всех антенн решетки. Возможна калибровка по внутреннему источнику сигнала. При этом может быть использован генератор шума, выход которого также может подключаться вместо всех антенн для периодической калибровки каналов. Если разрядность и быстродействие АЦП, входящих в состав устройства 3, достаточны для непосредственного аналого-цифрового преобразования входных сигналов, то вместо ПРЧ 2 могут использоваться частотно избирательный полосовой фильтр и усилитель. Другими словами, аналоговая часть устройства, реализующего предлагаемый способ, может быть построена по принципу прямого усиления.

Устройство, реализующее предложенный способ, работает следующим образом.

После получения информации о параметрах излучения выбранного передатчика подсвета ПРЧ 2 настраивается на частоту радиосигнала подсвета.

Многолучевые радиосигналы, включающие излучаемый передатчиком подсвета прямой радиосигнал с расширенным спектром и рассеянные объектами радиосигналы этого передатчика, когерентно принимаются пространственно разнесенными приемными антеннами решетки 1.

Принятый каждой антенной решетки 1 зависящий от времени t суммарный радиосигнал xn(t) в ПРЧ 2 когерентно переносится на более низкую частоту.

Сформированный в ПРЧ 2 ансамбль принятых радиосигналов xn(t) синхронно преобразуется в устройстве 3 в ансамбль комплексных цифровых сигналов xn(z), где z=1, …, Z - номер временного отсчета сигнала. Цифровые сигналы xn=[xn(1), …, xn(z), …,xn(Z)] поступают в устройство 4-1, где синхронно регистрируются на заданном временном интервале.

Кроме этого в устройстве 4-1 выполняются следующие действия:

преобразуется цифровой сигнал каждой антенны xn в откорректированный по временной задержке и доплеровскому сдвигу частоты для известного состояния передатчика цифровой сигнал sn.

При этом учитывается поступающая от внешних систем информация о состоянии передатчика в виде текущих пространственных координат, направлении и скорости его движения, если выбран подвижный передатчик, и в виде только пространственных координат, если выбран стационарный передатчик. Преобразование осуществляется известным способом [3].

Так, по пространственным координатам передатчика рассчитывается ожидаемое значение временной задержки τn, а по направлению и скорости движения передатчика вычисляется ожидаемое значение доплеровского сдвига частоты ℓn сигнала, принятого каждой n-ой антенной. После этого каждый отсчет , где µn - значение комплексного коэффициента рассеяния цели, u(z) - копия сигнала передатчика, принятого каждой n-ой антенной сигнала, корректируется по следующей формуле . Отметим, если передатчик является стационарным, то значение доплеровского сдвига частоты ℓn его сигнала равно нулю и принятый каждой n-ой антенной сигнал корректируется только по задержке;

объединяются откорректированные цифровые сигналы sn в матрицу откорректированных сигналов Ф=(s1, …, sN) размером Z×N;

матрица откорректированных сигналов Ф преобразуется в N×N пространственную корреляционную матрицу откорректированных сигналов G=ФНФ и в Z×Z сигнальную матрицу F=ФФН;

находится наибольшее собственное значение корреляционной матрицы откорректированных сигналов G и соответствующий найденному собственному значению главный собственный вектор сигнальной матрицы F.

Наибольшее собственное значение и главный собственный вектор находятся известными способами [4, 5]. Данная операция вносит существенный вклад в повышение чувствительности и, следовательно, дальности обнаружения малозаметных объектов, так как обеспечивает максимизацию выходного отношения сигнал/шум при последующей компенсации когерентной помехи в виде прямого сигнала передатчика подсвета;

идентифицируется найденное значение главного собственного вектора как прямой цифровой сигнал u.

Прямой цифровой сигнал u поступает в формирователь 4-2, где запоминается.

В формирователе 4-2 выполняются следующие действия:

формируется нормированный коэффициент взаимной корреляции βn=uН s n/║u║2 между прямым цифровым сигналом u и откорректированным цифровым сигналом sn каждой антенны;

получается разностный цифровой сигнал каждой антенны .

Разностные цифровые сигналы антенн поступают в устройство 4-3.

В устройстве 4-3 выполняются следующие действия:

преобразуется разностный цифровой сигнал каждой антенны в откорректированный по временной задержке и доплеровскому сдвигу частоты на заданном множестве гипотетических состояний объектов разностный цифровой сигнал . Преобразование разностного цифрового сигнала каждой антенны в откорректированный разностный цифровой сигнал также осуществляется известным способом [3]. При этом гипотетическое состояние объекта описывается несколькими гипотетическими (ожидаемыми) величинами: пространственными координатами, направлением и скоростью движения подвижного объекта;

откорректированные разностные цифровые сигналы всех антенн объединяются в Z×N матрицу разностных сигналов ;

матрица разностных сигналов преобразуется в N×N пространственную корреляционную матрицу разностных сигналов .

Пространственная корреляционная матрица разностных сигналов поступает в устройство 4-4.

В устройстве 4-4 находится наибольшее собственное значение корреляционной матрицы разностных сигналов .

Данная операция также вносит существенный вклад в повышение чувствительности и, следовательно, дальности обнаружения малозаметных объектов, так как обеспечивает максимизацию выходного отношения сигнал/шум при выделении полезных сигналов, полученных после компенсации помехи и откорректированных на заданном множестве гипотетических состояний объектов;

После сравнения собственного значения корреляционной матрицы разностных сигналов G ˜ с порогом в устройстве 4-4 принимается решение об обнаружении подвижного объекта с текущим гипотетическим состоянием объекта. Гипотетическое состояние объекта описывается гипотетическими пространственными координатами, гипотетическим направлением и гипотетической скоростью движения объекта. Порог выбирается, исходя из минимизации вероятности ложной тревоги.

В устройстве 5 отображаются результаты обнаружения и пространственной локализации объектов.

Таким образом, за счет применения новых операций, обеспечивающих максимизацию выходного отношения сигнал/шум и основанных на нахождении наибольших собственных значений корреляционных матриц, используемых при формировании и компенсации являющегося когерентной помехой прямого сигнала передатчика подсвета, а также при выделении и оптимальном когерентном обнаружении полезных сигналов, полученных после компенсации помехи и откорректированных на множестве гипотетических состояний объектов, удается решить поставленную задачу с достижением указанного технического результата.

Источники информации

1. US, патент, 6703968 В2, кл. G01S 13/87, 2004 г.

2. RU, патент, 2444754, кл. G01S 13/02, 2012 г.

3. Справочник по радиолокации. Под ред. М. Сколника. Нью-Йорк, 1970. Пер. с англ. (в четырех томах) под общей ред. К.Н. Трофимова. Том 1. Основы радиолокации. Под ред. Я.С. Ицхоки. М., «Сов. Радио», 1976, 456 с.

4. Уилкисон Дж. X. Алгебраическая проблема собственных значений. - М.: Наука, 1970. 564 с.

5. Марпл С.Л. (мл.). Цифровой спектральный анализ и его приложения. М.: «Мир», 1990. 584 с.

Способ обнаружения малозаметных подвижных объектов, заключающийся в том, что используют прямые и рассеянные подвижными объектами широкополосные радиосигналы, излучаемые передатчиками радиоэлектронных систем различного назначения, когерентно принимают решеткой антенн многолучевые радиосигналы, включающие прямые и рассеянные радиосигналы, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы, отличающийся тем, что преобразуют цифровой сигнал каждой антенны в откорректированный по временной задержке и доплеровскому сдвигу частоты для известного состояния передатчика цифровой сигнал sn , где - номер антенны, объединяют откорректированные цифровые сигналы sn в матрицу откорректированных сигналов Ф, которую преобразуют в пространственную корреляционную матрицу откорректированных сигналов G=ФНФ и в сигнальную матрицу F=ФФН, находят наибольшее собственное значение корреляционной матрицы откорректированных сигналов G и соответствующий найденному собственному значению главный собственный вектор сигнальной матрицы F, идентифицируют найденное значение главного собственного вектора как прямой цифровой сигнал u, который запоминают, формируют нормированный коэффициент взаимной корреляции βn=uНsn/║u║2 между прямым цифровым сигналом u и откорректированным цифровым сигналом sn каждой антенны, получают разностный цифровой сигнал каждой антенны , преобразуют разностный цифровой сигнал каждой антенны в откорректированный по временной задержке и доплеровскому сдвигу частоты на заданном множестве гипотетических состояний объектов разностный цифровой сигнал , откорректированные разностные цифровые сигналы всех антенн объединяют в матрицу разностных сигналов , матрицу разностных сигналов преобразуют в пространственную корреляционную матрицу разностных сигналов , находят наибольшее собственное значение корреляционной матрицы разностных сигналов G ˜ , после сравнения которого с порогом принимают решение об обнаружении подвижного объекта с текущим гипотетическим состоянием объекта.



 

Похожие патенты:

Изобретение относится к области радиолокации, в частности к РЛС ближней радиолокации, в которые входят обзорные нелинейные радиолокаторы (НРЛ), осуществляющие поиск объектов, содержащих активные радиоэлементы.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к радиолокации пассивных космических объектов (КО), например крупных метеоритов и астероидов (размерами более десяти метров), которые могут представлять опасность при столкновении с Землей.

Изобретение может быть использовано в системах классификации и идентификации воздушных объектов (ВО), использующих принцип усреднения признака принадлежности при изменении ракурса объекта, а также в системах построения радиолокационных изображений объектов методом инверсного синтезирования апертуры.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к радиоэлектронике. Технический результат - обеспечение доступа к узкополосным сигналам в отложенном режиме и повышение числа одновременно функционирующих каналов приема.

Изобретение может быть использовано в импульсно-доплеровских радиовысотомерах (РВ). Достигаемый технический результат - расширение функциональных возможностей, повышение скрытности излучения и максимальной измеряемой высоты без увеличения излучаемой мощности.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение предназначено для обеспечения первичной цифровой обработки сигналов в реальном масштабе времени во всех режимах работы бортовой радиолокационной станции (БРЛС). Достигаемый технический результат - формирование управляющих сигналов, синхронизирующих работу блоков, входящих в состав БРЛС. Указанный результат достигается тем, что в радиолокационный приемник, содержащий n (n - целое число) приемных каналов и формирователь опорных частот, введено устройство управления. Каждый приемный канал включает усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой формирователь квадратур, постоянное запоминающее устройство, устройство цифрового гетеродинирования, адаптер, цифровой сумматор и передатчик данных. Устройство управления содержит два приемопередатчика SMI, два формирователя сигналов, семь буферов, два драйвера сигналов и преобразователь уровней. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат - повышение вероятности поиска малоразмерных подвижных объектов. Указанный результат достигается за счет выбора передатчиков, совмещенных в пространстве и излучающих на множестве частот узкополосные и широкополосные радиосигналы, а также применения новой совокупности операций адаптивной и комбинированной обработки прямых и рассеянных объектами радиосигналов выбранных передатчиков. 1 ил.

Изобретение относится к области радиолокации, в частности бортовым измерителям высоты полета, и может быть использовано в импульсно-доплеровских радиовысотомерах для систем управления полетом летательных аппаратов. Достигаемый технический результат изобретения - повышение скрытности излучения. Сущность изобретения состоит в том, что в радиомолчании (до излучения коротких пакетов радиоимпульсов) вычислительное устройство импульсно-доплеровского радиовысотомера проводит анализ уровня помех с выхода датчика помех и при превышении некоторого порогового уровня помех изменяет несущую частоту сверхвысокочастотного генератора таким образом, чтобы уровень помех стал ниже порогового, что позволяет адаптировать работу радиовысотомера к изменяющейся помеховой обстановке, снизить вероятность обнаружения летательного аппарата по излучению радиосредств, затруднить целеуказание. 5 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения является повышение эффективности обнаружения и пространственной локализации широкого класса объектов. Повышение эффективности обнаружения и пространственной локализации широкого класса объектов достигается за счет применения новых операций нелинейной итерационной обработки радиосигналов. 1 ил.

Изобретение относится к радиотехнике, преимущественно к радиолокации, в частности может быть использовано для зондирования квазимонохроматическими и дискретно-частотными сигналами стационарных, линейно рассеивающих электромагнитные волны объектов. Достигаемый технический результат - повышение разрешающей способности радиолокационной станции (РЛС) по дальности за счет когерентной обработки сигналов разной частоты при сохранении потребляемой энергии, энергопотенциала и простоты конструкции РЛС. Указанный результат достигается за счет того, что способ радиолокационного зондирования пространства заключается в излучении N элементами передающей решетки сигналов с произвольными амплитудой A0n и фазой φ0n, их приеме М элементами приемной решетки, при этом М=N, и когерентном их сложении, причем излучают сигнал n-м элементам передающей решетки на частоте fn=f0+nΔf, где n=1, …, N; f0 - минимальная частота; Δf - шаг по частоте, а когерентное сложение осуществляют в соответствии с формулой где Sm - результат когерентного сложения выходных сигналов элементов приемной решетки; A0nm, φ0nm - зарегистрированные амплитуда и фаза сигнала на выходе m-го элемента приемной решетки; kn - волновое число; c - скорость света. 1 ил.

Изобретение относится к области измерительной техники, в частности микроволновой интерферометрии. Приемо-передающее устройство для фазометрических систем миллиметрового диапазона длин волн содержит генератор непрерывного зондирующего излучения, гетеродин, два смесителя, передающую и приемную антенны и волноводный тракт. Волноводный тракт выполнен в виде трех диэлектрических волноводов: волновода, соединяющего генератор и передающую антенну, волновода, соединяющего приемную антенну и вход одного смесителя, волновода, расположенного между упомянутыми волноводами, имеющего криволинейную форму и соединяющего гетеродин с другим смесителем. При этом смесители выполнены по схеме с одним входом и соединены через квадратурный фазовый детектор с блоком цифровой обработки. Технический результат заключается в упрощении конструкции приемо-передающего устройства. 2 ил.

Изобретение относится к радиолокации и может быть использовано для распознавания классов воздушно-космических объектов (ВКО) в радиолокационных станциях. Достигаемый технический результат изобретения - увеличение количества распознаваемых классов ВКО при достаточно высоком уровне вероятности правильного распознавания. Указанный результат достигается за счет того, что устройство радиолокационного распознавания ВКО содержит блок обработки радиолокационной информации, вычислитель вертикальной составляющей скорости, вычислитель трассовой скорости, классификаторы первого и второго уровней, параметрический классификатор, вычислитель частотного признака распознавания, вычислитель эффективной площади рассеяния, блок усреднения частотного признака распознавания и блок усреднения эффективной поверхности рассеяния - с соответствующими связями. 1 ил.

Изобретение относится к средствам обнаружения скрытно вмонтированных в стены помещений электронных "подслушивающих" и "подсматривающих" устройств. Технический результат заключается в повышении достоверности обнаружения устройств несанкционированного съема речевой и визуальной информации, обеспечиваемое за счет повышенной информативности принимаемых сигналов. Нелинейный локатор содержит пульт управления, ПЭВМ, блок излучения электромагнитных волн, выполненный с возможностью направления на обследуемую поверхность зондирующих частотных сигналов, блоки приема электромагнитных волн, выполненные с возможностью приема отраженных от обследуемой поверхности частотных сигналов, телеметрический блок, анализатор частотного спектра откликов от заложенных в обследуемой поверхности нелинейных устройств, дисплей. Анализатором частотного спектра производится оценка принятых сигналов по превышению их над фоновым шумом. При этом имеет место интегральная обработка результатов обследования поверхности и анализируется спектральная картина откликов, предопределяющая повышенную информативность принимаемых сигналов. Дисплей выполнен с возможностью индикации отклика от второй гармоники, соответствующего полупроводнику, красным цветом, а отклика от третьей гармоники, соответствующего окислу, - зеленым цветом. 2 з.п. ф-лы, 2 ил.

Изобретение относится к радиотехнике и может быть использовано в системах скрытного контроля воздушного, наземного и надводного пространства с использованием неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения, излучающих сигналы с расширенным спектром. Достигаемый технический результат изобретения - повышение вероятности обнаружения и обеспечение возможности классификации радиомолчащих объектов. Указанный результат достигается за счет использования дополнительной информации о тонкой структуре эхо-сигналов доплеровской сигнатуры объектов и применения новых операций, реализующих сравнение и объединение рассеянных сигналов на основе частотной (доплеровский сдвиг), временной (задержка) и угловой (амплитудно-фазовое распределение) информации. 3 ил.

Изобретение относится к радиотехнике и может быть использовано в системах скрытного контроля воздушного, наземного и надводного пространства с использованием неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения, излучающих монохроматические или амплитудно-модулированные сигналы. Достигаемый технический результат изобретения - повышение вероятности обнаружения и обеспечение возможности классификации радиомолчащих объектов. Указанный результат достигается за счет использования дополнительной информации о тонкой структуре эхо-сигналов доплеровской сигнатуры объектов и применения новых операций, реализующих сравнение и объединение рассеянных сигналов на основе частотной (доплеровский сдвиг) и угловой (амплитудно-фазовое распределение) информации. 4 ил.
Наверх