Труба фильда



Труба фильда
Труба фильда
Труба фильда
Труба фильда

 


Владельцы патента RU 2534337:

Открытое акционерное общество "АКМЭ-инжиниринг" (RU)

Изобретение относится к машиностроению, а именно к трубам Фильда для высокотемпературных трубчатых теплообменных аппаратов, например, для прямоточных парогенераторов ядерных энергетических установок с нагревающим жидкометаллическим теплоносителем (например, сплав свинца с висмутом). Труба Фильда прямоточного парогенератора содержит опускную трубу, промежуточную трубу, установленную с зазором на опускной трубе и наружную трубу с внешней поверхностью, омываемой потоком нагревающего теплоносителя. Зазор содержит теплоизоляционный материал, в нижней торцевой части зазора размещен герметизирующий элемент. На внешней поверхности промежуточной трубы расположен спиральный элемент, выполненный с возможностью интенсификации теплообменных процессов между нагревающим теплоносителем и внутренним теплоносителем в трубе Фильда. Технический результат - повышение коэффициента теплоотдачи между внутренней поверхностью наружной трубы и внутренним теплоносителем. 1 н. и 7 з.п. ф-лы, 4 ил.

 

Область техники

Изобретение относится к машиностроению, а именно к трубам Фильда для высокотемпературных трубчатых теплообменных аппаратов, например для прямоточных парогенераторов ядерных энергетических установок с нагревающим жидкометаллическим теплоносителем (например, сплав свинца с висмутом).

Уровень техники

Известна труба Фильда (патент JP 58184498, опубликован 27.10.1983), содержащая внутреннюю трубу с навитой на нее проволокой и наружную трубу, охватывающую внутреннею трубу. Проволока обеспечивает, в частности, интенсификацию теплообменных процессов в потоке теплоносителя, протекающего в трубе Фильда. Однако эта конструкция неэффективна при использовании в прямоточном парогенераторе, в частности, из-за нежелательного паразитного теплообмена между теплоносителем в канале внутренней трубы (например, нисходящим потоком питательной воды) и теплоносителем в канале (например, восходящим потоком перегретого пара), образованным внешней поверхностью внутренней трубы и внутренней поверхностью внешней трубы. Это паразитный теплообмен уменьшает температуру перегретого пара на выходе кольцевого канала, что, в конечном счете, приводит к снижению технико-экономических показателей ядерной энергетической установки, использующей парогенератор.

Наиболее близким аналогом предлагаемого изобретения является труба Фильда (Патент RU №50290, опубликован 27.12.2005) прямоточного парогенератора ядерной установки, содержащая опускную трубу, промежуточную трубу, установленную на ней с зазором, наружную трубу с внешней поверхностью, омываемой потоком нагревающего (внешнего) теплоносителя. Недостатком данной конструкции является, в частности, недостаточно высокая интенсивность теплоотдачи между внутренней поверхностью наружной трубы и соприкасающимся с ней потоком внутреннего теплоносителя. Это снижает эффективность образования перегретого пара в случае использования указанной трубы Фильда в прямоточном парогенераторе, что ведет к снижению технико-экономических показателей ядерной энергетической установки, использующей парогенератор.

Раскрытие изобретения

Задача, на решение которой направлено заявляемое изобретение, состоит в повышении технико-экономических показателей ядерной энергетической установки, использующей прямоточный парогенератор с трубами Фильда. В частности, она состоит в увеличении температуры перегретого пара, вырабатываемого парогенератором.

Техническим результатом предлагаемого изобретения является устранение вышеперечисленных недостатков, а именно: повышение коэффициента теплоотдачи между внутренней поверхностью наружной трубы (нагретой внешним теплоносителем) и соприкасающимся с ней потоком внутреннего теплоносителя, а также уменьшение паразитного теплообмена между теплоносителем в канале внутренней трубы (например, нисходящим потоком питательной воды) и теплоносителем в канале (например, восходящим потоком перегретого пара), образованным внешней поверхностью внутренней трубы и внутренней поверхностью внешней трубы.

На указанные технические результаты оказывают влияние следующие существенные признаки трубы Фильда.

Труба Фильда прямоточного парогенератора содержит опускную трубу, промежуточную трубу, установленную с зазором на опускной трубе, и наружную трубу с внешней поверхностью, омываемой потоком нагревающего теплоносителя, причем зазор содержит теплоизоляционный материал, в нижней торцевой части зазора размещен герметизирующий элемент, на внешней поверхности промежуточной трубы расположен спиральный элемент, выполненный с возможностью интенсификации теплообменных процессов между нагревающим теплоносителем и внутренним теплоносителем в трубе Фильда.

Труба Фильда может содержать в верхней торцевой части зазора дополнительный герметизирующий элемент. Теплоизоляционный материал может быть выбран из группы или смеси материалов, включающих пар и воду. Теплоизоляционный материал может быть газом. На промежуточной трубе могут быть сформированы поперечные гофры, выполненные с возможностями компенсации разности температурных удлинений опускной и промежуточной труб и дистанционирования промежуточной трубы. Глубина гофр на промежуточной трубе может быть меньше ширины зазора, а внутренняя труба содержать дистанционирующий элемент. Дистанционирующий элемент может представлять собой продольные ребра, соприкасающиеся с вышеуказанными гофрами, или проволоку, закрепленную на торцах опускной трубы. Спиральный элемент может быть выполнен в виде спирально навитого проволочного элемента с диаметром, равным или меньше ширины зазора между внешней и промежуточной трубами, и шагом навивки h=(0,5÷50)D, где D - наружный диаметр промежуточной трубы.

Краткое описание чертежей

На Фиг.1 показан вариант конструкции трубы Фильда с дополнительным герметизирующим элементом в верхней торцевой части зазора и гофрированной промежуточной трубой.

На Фиг.2 показан поперечный разрез трубы Фильда для варианта трубы Фильда по Фиг.1.

На Фиг.3 показан вариант конструкции трубы Фильда с дистанционирующим элементом в виде проволки, закрепленной на торцах опускной трубы.

На Фиг.4 показан поперечный разрез трубы Фильда для варианта трубы Фильда по Фиг.3.

Осуществление изобретения

В предлагаемом изобретении устройство - труба Фильда является основным узлом парогенератора, производящего перегретый пар. В состав трубы Фильда входят наружная труба 2, омываемая потоком нагревающего теплоносителя, промежуточная труба 3, установленная с зазором 6 на опускной трубе 4. Зазор 6 содержит теплоизоляционный материал и, соответственно, является теплоизолирующим зазором. Герметизирующий элемент 1 размещен в нижней торцевой части зазора 6 между опускной 4 и промежуточной трубами 3. Дополнительный герметизирующий элемент размещают в верхней торцевой части зазора 6 между наружной 2 и промежуточной 3 трубами. Спиральный элемент 5 размещен на внешней поверхности промежуточной трубы 3. Дистанционирующий элемент 7 закреплен на торцах опускной трубы 3. Трубные доски парогенератора 8 образуют канал для перегретого пара, выходящего из трубы Фильда.

Выполнение промежуточной трубы 3 с поперечными гофрами с заданными расчетными или эмпирически заданными размерами (глубиной) обеспечивает компенсацию разности температурных удлинений опускной 4 и промежуточной труб 3. Кроме того, такие гофры обеспечивает дистанционирование промежуточной трубы по отношению к опускной трубе. Спиральный элемент 5 выполнен в виде спирально навитого проволочного элемента с диаметром, равным или меньше ширины зазора между внешней и промежуточной трубами, и шагом навивки h=(0,5÷50)D, где D - наружный диаметр промежуточной трубы. Шаг навивки выбирается из заданного диапазона и выбран экспериментальным путем подбора оптимальных условий теплообмена.

Устройство функционирует следующим образом (см. Фиг 1, 3). Внутренний теплоноситель (питательная вода на входе опускной трубы 4) опускается вниз по опускной трубе теплообменной трубы Фильда прямоточного парогенератора. Далее поток внутреннего теплоносителя поворачивает у закрытого конца наружной трубы 2 на 180° и по зазору между промежуточной трубой и внутренней поверхностью наружной трубы 2 поднимается вверх. При подъеме вверх внутренний теплоноситель нагревается из-за передачи ему тепла со стороны нагревающего (внешнего) теплоносителя через стенки наружной трубы.

При движении вверх внутренний теплоноситель нагревается с превращением в пароводяную смесь, переходящую в перегретый пар, в результате теплопередачи, от нагревающего теплоносителя. В нижней зоне подъема (по зазору между промежуточной трубой и внутренней поверхностью наружной трубы 2) теплоноситель представляет собой жидкость с частицами пара внутри. Далее при подъеме теплоноситель представляет собой пар с каплями воды (средняя зона). И наконец, в верхней зоне подъема образуется перегретый пар (пар, не содержащий капель воды), поступающий в канал с трубными досками 8.

При взаимодействии со спиральным элементом 5 поток внутреннего теплоносителя закручивается, его скорость увеличивается, соответственно растет коэффициент теплоотдачи (от стенки наружной трубы 2 к внутреннему теплоносителю) и происходит интенсификация тепловых процессов, обеспечивающих формирование перегретого пара. Такой эффект действует в нижней и верхних зонах подъема. В средней зоне интенсификация теплообмена происходит за счет действия центробежной силы (возникающей при закручивании капель воды в паре из-за взаимодействия их со спиральным элементом) на капли воды в потоке пара, которая также ведет к увеличению коэффициента теплоотдачи.

Наличие теплоизолированного зазора 6 препятствует нежелательному радиальному теплообмену между проходящей вниз по опускной трубе 4 питательной воды и формирующейся пароводяной смесью, поднимающейся по зазору между наружной и промежуточной трубами. Это, в конечном счете, также ведет к более эффективному формированию пара.

Предложенная конструкция трубы Фильда может быть изготовлена промышленным способом и использована в высокотемпературных трубчатых теплообменных аппаратах типа прямоточных парогенераторов.

1. Труба Фильда, содержащая опускную трубу, промежуточную трубу, установленную с зазором на опускной трубе, и наружную трубу с внешней поверхностью, омываемой потоком нагревающего теплоносителя, причем зазор содержит теплоизоляционный материал, в нижней торцевой части зазора размещен герметизирующий элемент, а на внешней поверхности промежуточной трубы расположен спиральный элемент.

2. Труба Фильда по п.1, отличающаяся тем, что в верхней торцевой части зазора размещен герметизирующий элемент.

3. Труба Фильда по п.1, отличающаяся тем, что теплоизоляционный материал выбран из группы или смеси материалов, включающих пар и воду.

4. Труба Фильда по п.2, отличающаяся тем, что теплоизоляционный материал является газом.

5. Труба Фильда по п.1, отличающаяся тем, что на промежуточной трубе сформированы поперечные гофры, выполненные с возможностью компенсации разности температурных удлинений опускной и промежуточной труб и обеспечения дистанционирования промежуточной трубы.

6. Труба Фильда по п.5, отличающаяся тем, что глубина гофр на промежуточной трубе меньше ширины зазора, а опускная труба содержит дистанционирующий элемент.

7. Труба Фильда по п.6, отличающаяся тем, что дистанционирующий элемент представляет собой продольные ребра, соприкасающиеся с гофрами, или проволоку, закрепленную на торцах опускной трубы.

8. Труба Фильда по п.1, отличающаяся тем, что спиральный элемент выполнен в виде спирально навитого проволочного элемента с диаметром, равным или меньше ширины зазора между внешней и промежуточной трубами, и шагом навивки, равным от 0,5 до 50 величины наружного диаметра промежуточной трубы.



 

Похожие патенты:

Изобретение относится к термосифонным теплообменным аппаратам, которые могут использоваться в химической, нефтехимической и других отраслях промышленности. Техническим результатом заявленного изобретения является повышение эффективности и экономичности работы аппарата, а также упрощение процесса изготовления.

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах.

Изобретение относится к области теплообмена и может быть использовано преимущественно в области машиностроения для использования теплоты от выхлопных газов двигателей внутреннего сгорания (ДВС).

Изобретение относится к области теплотехники. Устройство для компримирования и осушки газа содержит многоступенчатый компрессор со ступенью низкого давления, ступенью высокого давления и нагнетательным патрубком и адсорбционный осушитель с зоной осушения и зоной регенерации, причем между ступенью низкого давления и ступенью высокого давления помещен промежуточный холодильник, и при этом устройство дополнительно снабжено теплообменником, имеющим главную камеру с входной частью и выходной частью для первой первичной текучей среды, а концы трубок теплообменника соединены с отдельной входной камерой и выходной камерой для каждого трубного пучка; и при этом первый трубный пучок образует охлаждающий контур промежуточного холодильника, служащий для разогрева газа из ступени высокого давления для регенерации адсорбционного осушителя.

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами.

Изобретение относится к энергетике и может быть использовано в подогревательных системах тепловых электростанций. Теплообменник типа "труба в трубе" содержит две трубы, расположенные с зазором между ними, одна из которых представляет из себя тор, а вторая - полую ленту Мебиуса, причем по ленте Мебиуса могут быть выполнены продольные канавки.

Изобретение относится к сушильной технике, в частности к установкам для сушки растворов и суспензий, и может быть использовано в химической, пищевой и других отраслях промышленности.

Реактор // 2475870
Изобретение относится к теплообменной технике и предназначено для использования в качестве моноблочных корабельных высоконапряженных ядерных энергетических устройств (ЯЭУ) большой единичной мощности.

Изобретение относится к кожухотрубчатым теплообменным аппаратам и может использоваться в химической, нефтехимической и других отраслях промышленности. .

Изобретение относится к области энергетики и может быть использовано в химической, металлургической и газовой промышленности. .

Изобретение относится к области теплотехники, а именно к теплообменникам корпусного или погружного типа. Изобретение заключается в том, что теплообменник имеет вертикальные теплообменные трубы для прохода охлаждающего теплоносителя, простирающиеся вдоль всей теплообменной полости, при этом теплообменные трубы объединены в отдельные группы труб и отдельные группы труб разделены между собой вертикальными каналами. В центральной зоне теплообменной полости имеется вертикальный коллекторный канал, свободный от теплообменных труб. Каждая группа труб размещена в отдельной зоне корпуса, имеющей в поперечном сечении форму сектора круга, простирающегося от стенки цилиндрического корпуса до его центральной зоны. Теплообменник имеет вытеснитель, выполненный в виде сплошного тела, содержащего вертикальный стержень и присоединенные к нему вертикальные радиальные перегородки, причем стержень вытеснителя расположен в центральном канале, а каждая перегородка - в соответствующем вертикальном канале, разделяющем две смежные группы теплообменных труб. Техническим результатом изобретения является выравнивание тепловой нагрузки теплообменных труб посредством перераспределения потоков жидкометаллического нагревающего теплоносителя во входной камере и уменьшение вибрационных нагрузок. 2 н. и. 9 з.п. ф-лы, 4 ил.
Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов. Охладитель синтез-газа также включает кольцевой корпус (202), включающий трубопроводы (308, 309), которые выполнены с возможностью соединения по потоку с насадками (314) трубопроводов. Охладитель синтез-газа также включает часть быстрого охлаждения, предназначенную для удаления твердых частиц, захваченных потоком синтез-газа, проходящим через охладитель синтез-газа. Верхняя часть (214) и корпус (202) выполнены с возможностью соединения посредством кольцевого сварного шва. Описаны также система газификации и способ сборки охладителя синтез-газа. Технический результат заключается в возможности сборки элементов охладителя синтез-газа с использованием меньшего количества соединительных элементов по сравнению с известными охладителями. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к области теплотехники и может использоваться в теплообменниках для подогрева или охлаждения среды в жилищно-коммунальном хозяйстве. Теплообменник содержит наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, которая выполнена цилиндрической, заглушена с одной стороны и имеет с другой стороны фланец с патрубками подвода и отвода греющей или охлаждающей среды, причем патрубок подвода удлинен, во внутреннюю трубу встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях. К внутренней трубе вдоль ее горизонтальной поверхности приварены металлические ленты высотой, позволяющей свободно извлекать внутреннюю трубу. Технический результат - повышение коэффициента теплоотдачи, увеличение площади теплообмена, упрощение демонтажа теплообменника. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии. 3 н.п. ф-лы, 3 ил.

Изобретение относится к теплотехнике и может быть использовано в рекуперативных теплообменниках. Теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки, которые ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения. Вставки межтрубного пространства выполнены в виде тепловых труб. Технический результат - повышение эффективности работы теплообменника при уменьшении его материалоемкости и упрощении его конструкции. 1 з.п. ф-лы, 1 ил.

Изобретения относятся к химической, нефтяной, газовой и другим отраслям промышленности, а именно к технологии и оборудованию, предназначенным для охлаждения влажного природного газа. Охлаждение газа осуществляют в теплообменной секции одного устройства, которую разделяют на не менее чем две ступени охлаждения и располагают встык по боковым сторонам, при этом газ направляют последовательно от первой ступени охлаждения к следующей через соединяющий переходной коллектор, подачу охлаждающего воздуха осуществляют вращением от электродвигателей вентиляторов, которые располагают, по меньшей мере, по два над каждой ступенью охлаждения, организуют внутреннюю рециркуляцию нагретого воздуха на последней ступени охлаждения, контроль образования гидратов осуществляют датчиками, выполненными в виде дифференциальных термопар, которые подают сигнал в момент перекрытия гидратами проходного сечения наиболее охлаждаемых теплообменных труб. Управление теплообменными процессами осуществляется реверсированием и частотным регулированием вращения вентиляторов последней ступени охлаждения с поддержанием заданной температуры газа на выходе путем внутренней рециркуляции. Технический результат - предотвращение повышения температуры охлаждающего воздуха на входе в последнюю ступень охлаждения и обеспечение поддержания заданной температуры газа на выходе при непрерывном режиме работы оборудования. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к химической, нефтехимической и энергетической промышленности и может быть использовано для проведения каталитических процессов со значительными тепловыми эффектами при частичном превращении углеводородов. Способ проведения экзотермических и эндотермических каталитических процессов частичного превращения углеводородов включает подачу углеводородной смеси в слой гетерогенного катализатора, контактирование смеси с поверхностью данного катализатора, при этом процесс проводят последовательно в двух вертикальных кожухотрубных реакторах, направляя углеводородную смесь сначала в основной реактор и реакционную смесь из основного реактора в дополнительный реактор, при этом расход охлаждающего теплоносителя при экзотермическом процессе и горячего теплоносителя при эндотермическом процессе в дополнительном реакторе поддерживают ниже по сравнению с расходом охлаждающего или горячего теплоносителя в основном реакторе. Реакторная группа для осуществления способа включает основной реактор, кожух и трубки внутри него выполнены в форме усеченного конуса, кроме того трубки внутри кожуха наклонены относительно центральной оси и вокруг этой оси с образованием конусообразной полости, входные и выходные патрубки расположены тангенциально, и дополнительный реактор, идентичный основному, реакторы установлены вертикально и расположены относительно друг друга с чередованием малых и больших днищ, при этом основной и дополнительный реакторы соединены между собой последовательно. Изобретение обеспечивает повышение равномерности осуществляемых процессов и увеличение производительности. 2 н. и 8 з.п. ф-лы, 3 ил.
Наверх