Система для контроля и регулирования режима работы трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано для автоматического контроля технологического процесса транспортировки жидкости и газа, например для контроля и управления блоком электроприводных задвижек на участках нефтепроводов, газопроводов, водоводов, расположенных в труднодоступной местности. Система содержит узел средств измерений, приемно-передающую аппаратуру, источник питания, центральный диспетчерский пункт с записывающим устройством, узел электроприводных задвижек и микропроцессорный контроллер. Источник питания выполнен автономным комбинированным, состоящим из аккумуляторной батареи и вихревой трубки с термопреобразователем. Аккумуляторная батарея соединена с узлом средств измерений, радиомодемом и микропроцессорным контроллером. Вихревая трубка с термопреобразователем размещена внутри трубопровода перед узлом электроприводных задвижек и соединена с узлом средств измерений. Технический результат: повышение эффективности контроля, надежности работы и обеспечение безопасности эксплуатации трубопровода. 1 ил.

 

Изобретение относится к трубопроводному транспорту и может быть использовано для автоматического контроля технологического процесса транспортировки жидкости и газа, например для контроля и управления блоком электроприводных задвижек на участках нефтепроводов, газопроводов, водоводов, расположенных в труднодоступной местности.

Известен магистральный трубопровод, содержащий установленные на трассе трубопровода задвижки с приводами, разделяющие трассу на отдельные участки, на каждом из которых установлены датчики, причем контакты реле датчиков расхода и давления включены последовательно в электрическую цепь, при этом электрическая цепь выработки сигнала управления для каждого участка связана с приводом задвижки, расположенной на входе участка (а.с. №1651015, F17D 5/02, приоритет от 27.03.80 г., оп. 23.05.91 г., бюл. №19).

Недостатком указанного технического решения является его невысокая надежность работы.

Известна система контроля и регулирования режима работы трубопровода, содержащая узел средств измерений, приемно-передающую аппаратуру, источник питания и центральный диспетчерский пункт с записывающим устройством (пат. №1839706, F17D 5/00, приоритет от 24.12.90 г., оп. 30.12.93 г., бюл. №48-47).

Недостатком указанной системы является ее невысокая надежность работы.

Известна система контроля и регулирования режима работы трубопровода, которая содержит узел средств измерений, приемно-передающую аппаратуру, источник питания и центральный диспетчерский пункт с записывающим устройством, узел электроприводных задвижек, микропроцессорный контроллер, выход которого подключен к входу узла электроприводных задвижек, а в качестве источника питания используют автономный комбинированный источник питания (пат. №2304740 F17D 5/00, приоритет от 06.04.2005 г.).

Недостатком указанной системы является также ее невысокая надежность работы, обусловленная, в том числе, применением комбинированного источника питания с дизель-генератором, и, кроме того, система предполагает частое нахождение при ней обслуживающего персонала.

Предлагаемая система контроля и регулирования режима работы трубопровода лишена приведенных выше недостатков и позволяет, не требуя больших материальных и человеческих затрат, повысить безопасность эксплуатации трубопровода, предотвратить аварийные ситуации на нем, повысить достоверность контроля, экологичность и эффективность управления.

Поставленная цель достигается тем, что система для контроля и регулирования режима работы трубопровода содержит узел средств измерений, приемно-передающую аппаратуру (радиомодем), автономный комбинированный источник питания и центральный диспетчерский пункт с записывающим устройством, узел электроприводных задвижек, микропроцессорный контроллер, выход которого подключен к входу узла электроприводных задвижек.

Причем записывающее устройство представляет собой микроконтроллер с программным обеспечением, а в качестве датчика измеряемых параметров используют датчик давления, датчик температуры, датчик расхода и автономный комбинированный источник питания, который представляет собой сочетание химического, вихревого и термоэлектрического источников.

При этом выделение аварийных отклонений параметров в микропроцессорном контроллере осуществляют посредством программного обеспечения; прием и передачу информации о параметрах системы осуществляют с помощью радиомодема, а обработку информации о параметрах системы осуществляют путем сравнения измеряемых параметров с предельными значениями этих параметров с помощью программного обеспечения.

На фиг.1 представлена схема системы для контроля и регулирования режима работы трубопровода.

Система для контроля и регулирования режима работы трубопровода (далее по тексту - система) содержит защитный кожух 1 в виде блок-бокса контейнерного типа, аккумуляторную часть автономного комбинированного источника питания 2, узел средств измерений 3, узел электроприводных задвижек 4, микропроцессорный контроллер 5 с программным обеспечением, приемно-передающую аппаратуру 6, которая представляет собой радиомодем, и центральный диспетчерский пункт 7.

Защитный кожух 1 - блок-бокс контейнерного типа - выполнен в виде прочного корпуса, в котором размещены микропроцессорный контроллер 5, узел средств измерений 3, система поддержания микроклимата 8, представляющая собой обогреватель или несколько обогревателей, система безопасности 9, включающая систему пожарной безопасности и систему контроля несанкционированного доступа в виде замкнутой электрической цепи, работающей на разрыв, радиомодем 6 и аккумуляторная часть автономного комбинированного источника питания 2.

Внутри трубопровода, например на его внутренней стенке, перед узлом электроприводных задвижек 4 смонтирована вихревая трубка 11 с термоэлектрическим преобразователем, выход которой через электропружинный клапан 12 соединен с окружающей средой, причем электропружинный клапан 12 предварительно регулируется таким образом, что он срабатывает автономно (то есть, открывается) при снижении давления в трубопроводе на 7…10% ниже номинального, либо принудительно по сигналу микропроцессорного контроллера 5, включая при этом по его управляющему сигналу вихревую трубку с термоэлектрическим преобразователем 11, а выход вихревой трубки с термоэлектрическим преобразователем 11 соединен с узлом средств измерений 3.

Также поясним, что возникающий при этом вихревой эффект (эффект Ранка-Хилша) реализуется за счет перепада давления газа и заключается в снижении температуры центральных слоев закрученного потока и нагреве периферийных слоев. Отметим, что вихревая трубка характеризуется предельной простотой и надежностью в работе, поскольку она не имеют движущихся частей. Основными элементами вихревой трубки (ВТ) являются вихревая камера с тангенциальным сопловым вводом, диафрагма, примыкающая к камере, и вентиль на горячем конце трубы для обеспечения необходимого соотношения потоков. Аппарат работает следующим образом: сжатый газ, расширяясь в сопле, разгоняется до скорости звука и интенсивно закручивается. При этом в рабочем объеме ВТ формируется высокоскоростной вихревой поток, в котором и возникает эффект Ранка-Хилша. Внутренние - охлажденные - слои газа отводятся через диафрагму в виде холодного потока, а периферийные - нагретые - в виде горячего потока. Возникающая при этом разность температур достигает 200°С градусов и более.

Для выработки электрического тока при работе ВТ могут быть использованы, например, классические термоэлектрические преобразователи на основе эффекта Зеебека, широко применяемые на практике, либо преобразователи на основе нового физического явления, заключающегося в возникновении спонтанной генерации электрического напряжения образцом материала при его равномерном нагреве. В основе эффекта лежит коллективный процесс изменения валентности ионов редкоземельного металла (Sm-самария), сопровождающийся скачкообразным увеличением количества свободных электронов и обеспечивающий коэффициент полезного действия порядка 45%, что превосходит лучшие образцы классических термоэлектрических преобразователей в 3...4 раза.

Указанные термопреобразователи на основе преобразующего элемента из монокристаллического либо поликристаллического сульфида самария SmS, легированного донорными примесями, обладают полной автономностью, высокой надежностью, простотой эксплуатации и конструкции, долговечностью, малогабаритностью, высокими энерговесовыми характеристиками и технологичностью в производстве. Полученный таким образом электрический ток используется после преобразования далее для привода узла электроприводных задвижек 4 и подзарядки химических источников тока 2.

Микропроцессорный контроллер 5 соединен с узлом средств измерений 3 и узлом электроприводных задвижек 4, установленными на контролируемом участке трубопровода. Причем выход микропроцессорного контроллера 5 подключен к входу узла электроприводных задвижек 4.

Кроме того, микропроцессорный контроллер 5 соединен с узлом средств измерений 3, системой безопасности 9, системой поддержания микроклимата 8, радиомодемом 6 и аккумуляторной частью автономного комбинированного источника питания 2, расположенными внутри защитного кожуха 1.

Микропроцессорный контроллер 5 осуществляет управление узлами и оборудованием, расположенными как внутри защитного кожуха, так и на контролируемом участке трубопровода, посредством программного обеспечения, а для реализации заданных ему функций имеет необходимые входы и выходы.

Поэтому сбор информации о технологических параметрах системы, ее обработку и выработку управляющего сигнала на исполнительные механизмы (аккумуляторная часть автономного комбинированного источника питания 2 и узел электроприводных задвижек 4) производят в микропроцессорном контроллере 5.

Информационная связь (прием и передача информации) между микропроцессорным контроллером 5 и центральным диспетчерским пунктом 7 осуществляется посредством радиомодема 6, а связь между остальными узлами и оборудованием - по проводной - кабельной линии связи.

Узел средств измерений 3 состоит из первичных средств измерений, представляющих собой датчик или несколько датчиков, преобразователя сигнала и установлен как внутри защитного кожуха 1, так и на контролируемом участке трубопровода. Выход узла средств измерений 3 соединен с входом микропроцессорного контроллера 5.

В частности, могут быть использованы датчики температуры среды размещения оборудования и/или узлов, давления транспортируемой среды, ее температуры и расхода и другие.

По показаниям датчика или нескольких датчиков осуществляют контроль за состоянием транспортной системы (трубопровода и протекающей в нем среды), защитного кожуха 1, узлов и оборудования, расположенного внутри него.

Таким образом, в качестве информации о параметрах системы используют данные контроля за состоянием самого трубопровода, протекающей в нем среды, защитного кожуха 1, узлов и оборудования, расположенного как внутри него, так и на контролируемом участке трубопровода, например контроль за целостностью защитного кожуха 1, трубопровода, за давлением протекающей в нем среды.

Преобразователь сигнала представляет собой источники питания первичных средств измерений и электронные блоки нормирования - преобразования нестандартных сигналов, поступающих с первичных средств измерений, в унифицированные сигналы.

Аккумуляторная часть автономного комбинированного источника питания 2 является частью комбинированного источника питания, который представляет собой сочетание химического (аккумуляторные батареи), вихревого и термоэлектрического источников, то есть вихревой трубки с термоэлектрическим преобразователем 11.

При этом постоянно подключенными к аккумуляторной части автономного комбинированного источника питания 2 остаются узел средств измерений 3, радиомодем 6 и микропроцессорный контроллер 5.

Электропитание системы поддержания микроклимата 8 всегда осуществляется от аккумуляторной части автономного комбинированного источника питания 2, а электропитание узла электроприводных задвижек 4 при резком понижении давления в трубопроводе и подзарядка аккумуляторной части автономного комбинированного источника питания осуществляются от вихревого и термоэлектрического источников, то есть вихревой трубки с термоэлектрическим преобразователем 11, которые включаются при автономном срабатывании электропружинного клапана 12 при резком понижении давления в трубопроводе либо при принудительном срабатывании электропружинного клапана 12 по управляющему сигналу микропроцессорного контроллера 5.

Центральный диспетчерский пункт 7 включает в себя приемно-передающую аппаратуру 6, которая представляет собой радиомодем, и записывающее устройство 10 в виде микроконтроллера с программным обеспечением, с помощью которых осуществляет прием и передачу информации, запись данных и контроль обработанной информации о параметрах, поступающей с микропроцессорного контроллера 5.

Предлагаемая система для контроля и регулирования режима работы трубопровода функционирует следующим образом.

Защитный кожух 1 располагают вблизи контролируемого участка трубопровода.

Во время работы транспортной системы узел электроприводных задвижек 4 открыт и датчиками узла средств измерений 3 измеряются сигналы технологических параметров, например давления, температуры, расхода в текущем рабочем режиме.

В процессе транспортирования текущей среды (нефти, газа) по трубопроводу осуществляют сбор информации о параметрах транспортной системы, то есть контролируемая информация о технологических параметрах транспортной системы передается от узла средств измерений 3 (с датчика или датчиков через преобразователь сигнала) в микропроцессорный контроллер 5 для ее обработки с помощью программного обеспечения.

При этом обработку информации о параметрах транспортной системы осуществляют в микропроцессорном контроллере 5 с выделением аварийных отклонений параметров с помощью программного обеспечения.

Одновременно с процессом обработки технологических параметров транспортной системы микропроцессорным контроллером 5 осуществляется и процесс обработки технологических параметров защитного кожуха 1, узлов и вспомогательного оборудования, например целостности защитного кожуха 1, пожарной безопасности и температурного режима внутри него. Для этого посредством датчиков узла средств измерений 3, установленных внутри защитного кожуха 1, осуществляется сбор информации о контролируемых технологических параметрах, таких как температуры внутри защитного кожуха 1, уровня заряда аккумуляторных батарей - аккумуляторной части автономного комбинированного источника питания 2, которая поступает в микропроцессорный контроллер 5 для ее обработки с помощью программного обеспечения.

Вся информация, полученная микропроцессорным контроллером 5 в процессе сбора информации о параметрах системы, им же и обрабатывается, то есть сравниваются измеряемые параметры с предельными значениями этих технологических параметров. При этом предельные значения заранее занесены в память микропроцессорного контроллера 5 с центрального диспетчерского пункта 7. Кроме этого, в файле текущих или аварийных ситуаций фиксируется, то есть записывается и запоминается, как само значение контролируемого технологического параметра, так и время события, и далее передается на центральный диспетчерский пункт 7 в виде регламентных сообщений, например «параметры в норме», где принятая информация о параметрах системы также записывается, запоминается и осуществляется контроль за обработанной микропроцессорным контроллером 5 информацией о параметрах системы.

Процесс сравнивания значений контролируемых технологических параметров с его предельными значениями микропроцессорным контроллером 5 осуществляется для каждого измеренного значения технологического параметра в отдельности.

В результате сравнения в микропроцессорном контроллере 5 формируется - вырабатывается сигнал на исполнительные механизмы, который управляет ими, то есть управляющий сигнал.

В качестве исполнительных механизмов используют:

узел электроприводных задвижек 4 (опустить/поднять);

аккумуляторную часть автономного комбинированного источника питания 2 с электропружинным клапаном 12 (включение вихревой трубки с термоэлектрическим источником 11, зарядка аккумуляторной части автономного комбинированного источника питания);

систему поддержания микроклимата (включить/выключить).

Например, отслеживая состояние аккумуляторной части автономного комбинированного источника питания 2, микропроцессорный контроллер 5 управляет их зарядкой посредством выработки управляющего сигнала на электропружинный клапан 12 для его принудительного срабатывания для включения вихревой трубки с термоэлектрическим источником 11 для подзарядки химического источника питания 2, а при значении параметра температуры внутри защитного кожуха 1 ниже заданного микропроцессорный контроллер 5 вырабатывает управляющий сигнал на электропружинный клапан 12, после которого запускается вихревая трубка с термоэлектрическим источником 11. При достижении заданного значения контролируемого параметра температуры микропроцессорный контроллер 5 снова вырабатывает управляющий сигнал и вихревая трубка с термоэлектрическим преобразователем 11 выключается.

Кроме этого, постоянно под контролем программного обеспечения микропроцессорного контроллера 5 находится система безопасности 9 защитного кожуха 1. В случае выхода контролируемых параметров за заданную предельную величину значений микропроцессорный контроллер 5 вырабатывает соответствующий управляющий сигнал на исполнительный механизм, например на автономный комбинированный источник питания 2, и отключает силовые цепи в защитном кожухе 1. Также микропроцессорный контроллер 5 обеспечивает несколько уровней защиты от ложного срабатывания узла электроприводных задвижек 4. При выявлении в процессе сравнения значений технологических параметров отклонений от заданного предельного значения эта аварийная информация также фиксируется программным обеспечением микропроцессорного контроллера 5, как само значение, так и время события, и передается на центральный диспетчерский пункт 7, в том числе и в виде запроса для определения контролируемой ситуации.

Вся собранная микропроцессорным контроллером 5 информация о параметрах системы с датчиков 3 формируется для передачи на центральный диспетчерский пункт 7, согласно протоколу обмена, в виде файла для передачи информации о состоянии как внутри защитного кожуха 1, так и самого трубопровода и текущей в нем среды. Передача информации о параметрах системы с микропроцессорного контроллера 5 и прием ее на центральном диспетчерском пункте 7 осуществляется как в обычном текущем режиме (в защитном кожухе 1 и в транспортной системе), так и в виде запроса для получения подтверждения аварийной ситуации в транспортной системе. Кроме того, запрос для получения подтверждения аварийной ситуации или для уточнения полученной информации может поступать как с центрального диспетчерского пункта 7 на микропроцессорный контроллер 5, так и наоборот.

Обмен (прием-передача) информацией о параметрах системы между микропроцессорным контроллером 5 и центральным диспетчерским пунктом 7 осуществляется по команде управляющего сигнала с микропроцессорного контроллера 5 в виде, например, передачи аварийных сообщений, регламентного сообщения «параметры в норме» и так далее. После получения микропроцессорным контроллером 5 с центрального диспетчерского пункта 7 подтверждения аварийной ситуации в транспортной системе и разрешения на управление узлом электроприводных задвижек 4 осуществляется выработка управляющего сигнала с микропроцессорного контроллера 5 на узел электроприводных задвижек 4, который под воздействием этого управляющего сигнала закрывается, тем самым перекрывая контролируемый участок трубопровода. Причем при резком понижении давления в трубопроводе электропружинный клапан 12 срабатывает автономно и при этом включается вихревая трубка с термоэлектрическим преобразователем 11, включающим далее узел электроприводных задвижек 4.

Независимо от этого в случае подтверждения аварийной ситуации в транспортной системе (пока давление в трубопроводе не успело упасть) в короткий срок (3…8 минут) дистанционно перекрывается узел электроприводных задвижек 4 контролируемого участка трубопровода с помощью управляющего сигнала с микропроцессорного контроллера 5. Благодаря этому предотвращаются длительные утечки нефти, газа из трубопровода, которые могут привести к аварии, значительным экономическим потерям и загрязнению окружающей среды (переходы нефтепроводов через водные преграды, при расположении нефтепроводов рядом с лесными массивами и так далее).

При возникновении аварийной ситуации как внутри защитного кожуха 1, так и в транспортной системе на центральном диспетчерском пункте 7 автоматически срабатывает устройство оповещения путем включения световой, звуковой или иной сигнализации. Для выработки дополнительной электроэнергии в светлое время суток на крыше и боковых поверхностях защитного кожуха 1 могут быть дополнительно размещены солнечные элементы, соединенные через преобразователь с аккумуляторной частью автономного комбинированного источника питания 2.

В целом предлагаемая система контролирует и управляет технологическими параметрами транспортной системы (трубопровода и протекающей в нем среды) на участке трубопровода в труднодоступных зонах (болота, водные переходы, пойменные территории и так далее), к которым затруднено или нецелесообразно подведение силовых линий электроснабжения, и технологическими параметрами защитного кожуха 1 с узлами и оборудованием, при этом не требуя больших материальных и человеческих затрат (не используются, например, линии электропередач - ЛЭП) и позволяя повысить безопасность эксплуатации трубопровода, а также повысить достоверность контроля, экологичность и эффективность управления.

Указанные функции системы осуществляются в режиме реального времени путем непрерывного сбора информации о параметрах, ее обработки, записи, приема и передачи, своевременно оповещая диспетчера на центральном диспетчерском пункте 7 обо всех штатных, нештатных и аварийных режимах работы системы.

В целом система проста в изготовлении, в монтаже и обслуживании, надежна и экономична в эксплуатации.

Система для контроля и регулирования режима работы трубопровода, содержащая узел средств измерений, приемно-передающую аппаратуру, источник питания и центральный диспетчерский пункт с записывающим устройством, узел электроприводных задвижек и микропроцессорный контроллер, отличающаяся тем, что источник питания выполнен автономным комбинированным, состоящим из аккумуляторной батареи, соединенной с узлом средств измерений, радиомодемом и микропроцессорным контроллером, и вихревой трубки с термопреобразователем, размещенной внутри трубопровода перед узлом электроприводных задвижек, соединенной с узлом средств измерений.



 

Похожие патенты:

Способ и устройство предназначены для управления внутритрубным объектом. Способ заключается в дистанционном управлении внутритрубным объектом с помощью команд управления по двум каналам управления - низкочастотному электромагнитному каналу и радиоканалу метрового диапазона волн, причем низкочастотные электромагнитные сигналы излучают и принимают с помощью приемо-передающего оборудования, установленного вне и внутри трубопровода, а сигналы, передающиеся по радиоканалу метрового диапазона волн, излучают и принимают с помощью приемо-передающего оборудования, установленного внутри трубопровода, используя его в качестве волновода, с размещением одного комплекта приемо-передающего оборудования метрового диапазона волн на внутритрубном объекте.

Изобретение относится к контрольно-измерительной технике и может использоваться для определения планово-высотного положения подземного магистрального трубопровода.

Изобретение относится к измерительной технике, в частности средствам бесконтактной диагностики, представляет собой устройство для диагностики технического состояния металлических трубопроводов и может быть использовано при дефектоскопическом контроле состояния, например напряженно-деформированного состояния металла трубопровода, нарушения целостности трубопровода и изоляционного покрытия и т.п., подводных и/или подземных нефте- и газопроводов и других металлических трубопроводов.

Изобретение относится к нефтяной промышленности и может быть использовано для укрытия вантуза, располагаемого на линейной части магистрального трубопровода, с целью защиты от несанкционированного доступа к вантузу сторонних лиц.

Изобретение относится к трубопроводному транспорту нефтегазохимических продуктов, в частности к приборам и устройствам для контроля технического состояния трубопровода.

Изобретение относится к трубопроводному транспорту и предназначено для определения мест образования неполной закупорки в трубопроводе при транспорте сжимаемой жидкости, например нестабильного конденсата.

Изобретение относится к трубопроводному транспорту и может быть использовано для контроля движения очистных, диагностических и иных объектов в трубопроводах в потоке перекачиваемого продукта, например скребков, разделителей и т.д.

Изобретение относится к области техники неразрушающего контроля качества магистральных газопроводов, в частности к обеспечению взрывозащиты дефектоскопа-снаряда.

Изобретение относится к устройствам неразрушающего контроля дефектов стенок магистральных трубопроводов и предназначено для регулирования скорости движения внутритрубного снаряда-дефектоскопа.

Изобретение относится к транспортным устройствам, автономно работающим внутри строящихся магистральных трубопроводов, и служит для перемещения внутри трубопровода оборудования для контроля качества сварных соединений, например, рентгенографического аппарата.

Группа изобретений относится к трубопроводному транспорту, в частности к защитным устройствам и к устройствам для наблюдения за оборудованием. Предложено предохранительное устройство для заглушки трубы и для трубы, в котором заглушка содержит закрывающую внутреннюю стенку трубы гильзу, при этом предохранительное устройство выполнено для выработки сигнала тревоги. Предохранительное устройство имеет содержащее датчик корпусного шума устройство обнаружения корпусного шума для обнаружения манипуляций на трубе. Кроме того, изобретение относится к системе для контроля труб с множеством предохранительных устройств, с приемной станцией для приема, предпочтительно передаваемых далее посредством ретранслятора, сигналов предохранительного устройства, с системой электронной обработки данных, которая выполнена для обработки сигналов и выдачи сигнала тревоги. 2 н. и 30 з.п. ф-лы, 8 ил.

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения подводного трубопровода. В способе измеряют модуль вектора индукции магнитного поля Земли (ВИМПЗ) при помощи магнитометров, установленных совместно с точкой приема сигнала на одном вертикальном носителе, буксируемом за судном. Определяют градиент модуля ВИМПЗ и осуществляют совместную обработку магнитометрических данных и координат магнитометров. Координаты магнитометров определяют расчетным путем на основании измеренных координат и углов наклона носителя с учетом рассчитанных поправок на деформацию носителя. В процессе совместной обработки магнитометрических данных и координат магнитометров определяют x, y, z координаты в точках пересечения траектории движения вертикального носителя с трубопроводом, найденных по аномальным значениям модуля ВИМПЗ. По упомянутым координатам судят о пространственном положении трубопровода. Техническим результатом является повышение точности определения местоположения локальных объектов. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме. Измеритель искривления трубчатого канала выполнен в виде несущего корпуса (2), размещенного внутри трубчатого канала (1) по всей его длине и жестко связанного с внутренними стенками трубчатого канала (1) радиальными перемычками (3). На несущем корпусе (2) закреплен, по меньшей мере, один механический преобразователь радиуса изгиба в величину зазора между перемещаемыми при изгибе деталями, на которых установлены датчики изгиба (4). В частных случаях исполнения устройства датчик изгиба (4) выполнен в виде конденсаторов, пластины которых закреплены на деталях, образующих зазор, или в виде магнитопроводов с обмотками и магнитных сердечников, закрепленных на деталях, образующих зазор. Технический результат заключается в расширении функциональных возможностей измерителя искривления трубчатого канала. 2 з.п. ф-лы, 4 ил.

Изобретение относится к системам управления, предназначенным для обеспечения дистанционного контроля технологическим процессом транспортировки нефти по магистральным нефтепроводам. Технический результат - обеспечение надежности и безопасности перекачки нефти. Система содержит связанные каналами связи с контролируемыми нефтеперекачивающими станциями (НПС) территориальные (ТДП), районные (РДП) и местные (МДП) диспетчерские пункты, осуществляющие соответственно верхний, средний и нижний уровни контроля и управление тремя технологическими участками (ТУ-1, ТУ-2, ТУ-3) с использованием протокола IEC-608750-5. В состав программно-технического комплекса верхнего и нижнего уровней входят серверы ввода-вывода, серверы математической модели, контроллеры алгоритмов, видеостена, межсетевые экраны, автоматизированное рабочее место (АРМ) диспетчера. В состав программно-технического комплекса нижнего уровня входят сервер ввода-вывода микропроцессорной системы автоматизации (МПСА) НПС, сервер ввода-вывода линейной телемеханики (ЛТМ), межсетевые экраны, АРМы оператора НПС, оператора ЛТМ и системы измерения количества и показаний качества нефти (СИКН). Предусмотрена блокировка управления из РДП и МДП при управлении технологическим процессом транспортировки нефти из ТДП. Предусмотрена передача функции управления на средний или нижний уровень, а также возврат функции управления от среднего и нижнего уровня в ТДП. 3 з.п. ф-лы, 6 ил.

Способ относится к системам автоматического контроля работы нефтегазового оборудования и позволяет своевременно обнаруживать предаварийные ситуации, связанные с отложением гидратов в газовом оборудовании. В способе периодически измеряют давление газа до и после газового оборудования, температуру газа внутри или до и после газового оборудования, расход газа через газовое оборудование или перепад давления газа на замерном сужающем устройстве, находящемся в потоке газа, проходящем через газовое оборудование. По измеренным значениям формируют показатель загидрачивания работающего газового оборудования и по степени отклонения текущего значения этого показателя от базового, определенного при заведомо безгидратном режиме работы газового оборудования, судят о степени его загидрачивания. При формировании показателя загидрачивания газового оборудования, регулирующего поток газа, дополнительно используют относительную площадь или степень открытия его проходного сечения. Определяемые в безгидратном режиме работы базовые значения показателя загидрачивания используют в качестве показателя технического состояния газового оборудования. 2 з.п. ф-лы, 2 ил.

Устройство и способ предназначены для определения положения трубопровода в пространстве при эксплуатации и строительстве трубопроводов. Устройство состоит из аппаратной части: акселерометров, гироскопов и одометра, и программной части, при этом аппаратная часть установлена на внутритрубный инспекционный прибор и состоит из набора датчиков. Программная часть состоит из алгоритмов определения навигационных параметров в следующей последовательности: расчет линейной скорости, выставка, то есть определение положения в пространстве внутритрубного инспекционного прибора, расчет навигационных параметров, расчет радиусов изгиба трубопровода, коррекция траектории. Данные, полученные с аппаратной части, переписываются и расчет навигационных параметров производится с использованием программной части. При этом способ заключается в том, что данные, полученные с диагностического комплекса для определения положения трубопровода, располагаются по таблицам и совмещаются по дистанциям, и данные пропуска внутритрубного инспекционного прибора с установленной на нем аппаратной частью диагностического комплекса для определения положения трубопровода с более ранней датой считаются базовыми, а данные последующих пропусков сравниваются с базовыми, а критерием наличия перемещения трубопровода на инспектируемом участке является превышение модуля разностной кривизны заданного порогового значения. Технический результат - повышается точность измерений пространственного положения трубопровода. 2 н.п. ф-лы, 7 ил.

Изобретение относится к технике неразрушающего контроля качества магистральных трубопроводов, в частности, к способам внутритрубной дефектоскопии с помощью дефектоскопов-снарядов. Способ заключается в измерении параметров материалов и выявлении дефектов в магистральных трубопроводах с меняющимися плотностями и скоростями транспортируемого продукта при помощи двухмодульного дефектоскопа-снаряда с изменяемой площадью поперечного сечения по внешнему обводу корпуса и получение изображения внутренней поверхности трубопровода в видимом диапазоне длин волн. В устройстве двухмодульного дефектоскопа-снаряда на одном из модулей в плоскости, перпендикулярной его продольной оси, размещены плоские створки, выполненные с возможностью синхронного раскрытия и увеличения площади поперечного сечения дефектоскопа-снаряда, установлен дополнительный аэродинамический винт с направлением вращения противоположном первому, применены средства балансировки центров масс и установлено многоканальное оптикоэлектронное устройство для получения информации о внутренней поверхности трубопровода. Предлагаемое техническое решение позволяет получить более достоверную и точную информации о состоянии внутренней поверхности магистральных трубопроводов при изменяющихся условиях движения транспортируемого продукта и, как следствие, повышает эффективность применения дефектоскопа-снаряда. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к трубопроводному транспорту. Технический результат - создание экономичной, стационарной оптической системы мониторинга надземных переходов магистральных трубопроводов, позволяющей получать информацию о реальном изменении геометрии трубы надземного перехода и положения ее опор в формате 3D. Система диагностики технического состояния магистрального трубопровода на участках надземных переходов содержит оптическое устройство и аппаратно-программный комплекс. Она также снабжена мишенями-маркерами, закрепленными на трубопроводе и его опорах и выполненными с вертикальными и горизонтальными градуировками, эталонные снимки которых занесены в базу данных аппаратно-программного комплекса. В качестве оптического устройства использован фотоаппарат. Аппаратно-программный комплекс выполнен с возможностью обработки снимка каждой мишени-маркера посредством наложения на ее эталонный снимок и расчета величины отклонения геометрии трубопровода и положения его опор по величине смещений вертикальных и горизонтальных градуировок мишеней-маркеров от их положений на эталонных снимках. 3 ил.

Изобретение относится к области мониторинга состояния трубопроводов. Технический результат - повышение точности контроля. Способ включает установку датчиков на трубопроводе, измерение ими параметров текущего состояния трубопровода, определение отклонения текущих параметров состояния трубопровода от нормы, получение адаптированной к текущему состоянию модели состояния трубопровода и оценку дальнейшего состояния трубопровода. При этом в качестве датчиков используют распределенные или квазираспределенные волоконно-оптические датчики, расположенные непрерывно по всей длине трубопровода в виде секций. Датчики измеряют в непрерывном режиме магнитное, электрическое, тепловое и акустическое поля в качестве текущих параметров состояния трубопровода. Анализируют отклонения измеренных полей от нормы, выявляют на трубопроводе участки проявления отклонений, осуществляют местную диагностику состояния трубопровода в указанных участках. При этом либо устраняют выявленную неисправность, либо, при отсутствии неисправности, адаптируют модель состояния трубопровода к текущему состоянию путем включения в указанную модель описания выявленного отклонения. Также изобретение относится к системе мониторинга технического состояния трубопровода, предназначенной для осуществления указанного способа. 2 н. и 12 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области диагностики и контроля состояния подземных стальных трубопроводов и может быть использовано в нефтегазодобывающей промышленности, коммунальном хозяйстве и других областях промышленности, эксплуатирующих стальные трубопроводы. Способ определения положения кольцевых сварных швов подземного трубопровода, изготовленного из ферромагнитного материала, включает измерение индукции постоянного магнитного поля над осью трубопровода с определенным шагом, построение графика и поиск экстремумов зависимости параметров индукции магнитного поля от линейной координаты, осуществляют приведение измеренных значений параметров индукции к среднему значению глубины заложения трубопровода, определяют значения высоты экстремумов, линейные координаты экстремумов, высота которых превышает заданное пороговое значение, считают вероятными координатами кольцевых сварных швов трубопровода. Технический результат - повышение достоверности определения линейных координат кольцевых сварных швов подземного трубопровода на основании результатов наземных магнитометрических измерений и обеспечение возможности проведения поиска швов в автоматизированном режиме. 1 з.п. ф-лы, 10 ил., 1 табл.
Наверх