Система визуализации с массивом из множества детекторов



Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов
Система визуализации с массивом из множества детекторов

 


Владельцы патента RU 2534612:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Изобретение относится у системам и способам визуализации. Система визуализации содержит источник излучения, который испускает излучение, которое проходит через область исследования, и систему обнаружения, которая обнаруживает излучение, которое проходит через область исследования, и генерирует сигнал, характеризующий его. Система обнаружения содержит первый массив детекторов и второй массив детекторов. Первый и второй массивы детекторов представляют собой разнесенные отдельные массивы детекторов. Один из массивов детекторов выполнен с возможностью механического перемещения между первым положением, в котором массив детекторов находится на пути, по которому проходит испускаемое излучение, и вторым положением, в котором массив детекторов находится за пределами пути. Реконструктор реконструирует сигнал и генерирует данные объемного изображения, характеризующие его. Использование изобретения позволяет сохранить покрытие, скорость сканирования, максимального тока трубки и снижение дозы для пациента при работе в режиме высокого разрешения. 2 н. и 11 з.п. ф-лы, 17 ил.

 

Область техники, к которой относится изобретение

Следующее в целом относится к системе визуализации, которая выполнена с возможностью принимать и использовать более чем один массив детекторов и описана применительно к компьютерной томографии (КТ). Однако также оно подходит для других применений в медицинской и немедицинской визуализации.

Уровень техники

Сканер компьютерной томографии (КТ), как правило, содержит рентгеновскую трубку и массив детекторов, которые установлены на поворотном портале напротив друг друга через область исследования. Поворотный портал установлен с возможностью вращения на по существу стационарном портале и выполнен с возможностью вращения вокруг области исследования. Массив детекторов содержит одномерный или двухмерный массив фотосенсоров. В стандартном интегрирующем сканере массив детекторов содержит массив сцинтилляционных пикселей, оптически связанных с массивом фотодиодных пикселей.

Для целей сканирования поворотный портал, и, таким образом, рентгеновскую трубку, и массив детекторов вращают вокруг области исследования. Рентгеновская трубка испускает излучение, которое проходит через область исследования (объект или субъект, расположенный в ней) и освещает массив детекторов. Сцинтилляционные пиксели определяют излучение и генерируют свет, указывающий на него. Фотодиодные пиксели определяют свет и генерируют сигнал, указывающий на него. Реконструктор обрабатывает сигнал и генерирует данные объемного изображения, которые характеризуют сканируемый объект или субъект. Данные объемного изображения можно обработать для генерации одного или более изображений объекта или субъекта.

Массив детекторов в таком сканере выполнен с возможностью выполнения предварительно определяемого набора стандартных режимов сканирования, а не усовершенствованных режимов сканирования, таких как спектральная КТ, счет фотонов или высокое разрешение. К сожалению, адаптация массива детекторов для обеспечения таких усовершенствованных режимов сканирования может привести к значительному повышению общей стоимости сканера. Кроме того, адаптация массива детекторов по существу может снизить эффективность сканера в неусовершенствованных режимах сканирования. Примеры сниженной эффективности включают в себя уменьшенное покрытие, сниженная скорость сканирования, сниженный максимальный ток трубки и сниженная геометрическая эффективность.

Раскрытие изобретения

Аспекты настоящей заявке решают не только указанные выше, но и другие проблемы.

В одном из аспектов система визуализации содержит источник излучения, который испускает излучение, которое проходит через область исследования, и систему обнаружения, которая обнаруживает излучение, которое проходит через область исследования, и генерирует сигнал, характеризующий его. Система обнаружения содержит первый массив детекторов и второй массив детекторов. Первый и второй массивы детекторов представляют собой разнесенные отдельные массивы детекторов, и, по меньшей мере, один массив детекторов можно перемещать относительно луча излучения. Реконструктор реконструирует сигнал и генерирует данные объемного изображения, характеризующие его.

В другом аспекте способ сканирования с использованием системы визуализации включает в себя получение сигнала, который указывает на протокол сканирования для сканирования объекта или субъекта с использованием системы визуализации, и идентификацию типа массива детекторов на основе сигнала. Идентифицированный тип массива детекторов соответствует одному из множества массивов детекторов, установленных в системе визуализации. Способ дополнительно содержит перемещение перемещаемого массива детекторов, расположенного за пределами пути, по которому проходит излучение, испускаемое источником излучения системы, на этот путь или удержание перемещаемого массива детекторов на этом пути в ответ на идентификацию перемещаемого массива детекторов в качестве типа массива детекторов.

В другом аспекте способ содержит установку стационарного массива детекторов на пути, по которому проходит излучение, испускаемое системой визуализации, и установку перемещаемого массива детекторов в системе визуализации, причем перемещаемый массив детекторов выполнен с возможностью избирательного перемещения на этот путь или с него для визуализации объекта или субъекта.

Изобретение может принимать форму различных компонентов и схем компонентов, а также различных этапов и последовательностей этапов. Чертежи приведены лишь с целью иллюстрирования предпочтительных вариантов осуществления и их не следует толковать в качестве ограничения изобретения.

Краткое описание чертежей

На Фиг.1 проиллюстрирована примерная система визуализации.

На Фиг.2 и 3 проиллюстрировано относительное движение межу массивами детекторов.

На Фиг.4 и 5 проиллюстрирован способ перемещения массива детекторов.

На Фиг.6, 7, 8 и 9 проиллюстрированы различные сканирующие конфигурации.

На Фиг.10 и 11 проиллюстрирован перемещаемый разделенный массив детекторов.

На Фиг.12 и 13 проиллюстрирован другой перемещаемый разделенный массив детекторов.

На Фиг.14 проиллюстрирован вариант осуществления с массивами детекторов равного размера.

На Фиг.15 проиллюстрирован избирательно позиционируемый массив детекторов.

На Фиг.16 и 17 проиллюстрированы примерные способы.

Осуществление изобретения

На Фиг.1 проиллюстрирована система 100 визуализации, такая как КТ сканер. Сканер 100 содержит стационарный портал 102 и поворотный портал 104, который установлен с возможностью вращения на стационарном портале 102. Поворотный портал 104 вращают вокруг области 106 исследования вокруг продольной оси или оси z.

Источник 108 излучения, такой как рентгеновская трубка, установлен на поворотном портале 104 и вращается вместе с ним, а также испускает излучение из фокусного пятна 110. Коллиматор 112 источника коллимирует испускаемое излучение вдоль осей x и z, чтобы сформировать в целом конический, веерообразный, клиновидный или иной формы пучок излучения, который проходит область 106 исследования.

Система 114 обнаружения излучения, поддерживаемая поворотным порталом 104, стягивает дугу угла напротив источника 108 излучения, по другую сторону от области 106 исследования. Система 114 обнаружения излучения содержит N физически разделенных массивов 1141-114N детекторов, где N представляет собой целое число, которое больше или равно двум. Следует отметить, что проиллюстрированное разделение между массивами 114 детекторов и проиллюстрированные размеры или покрытие по оси x массивов 114 детекторов приведены с целью объяснения, а не ограничения.

Далее более подробно описано, что, по меньшей мере, один массив 114 детекторов можно избирательно позиционировать относительно пучка излучения, и массивы 114 детекторов можно использовать по отдельности и/или в сочетании, в зависимости от конфигурации системы 100. Это позволяет выполнять систему 100, по меньшей мере, с двумя различными массивами детекторов, включая, по меньшей мере, один неусовершенствованный массив детекторов (например, массив сцинтилляционных/фотосенсорных детекторов низкого разрешения) и, по меньшей мере, один усовершенствованный массив детекторов (например, спектральный, со счетом фотонов, высокого разрешения и т.д.). Альтернативно, можно выполнить систему 100, по меньшей мере, с двумя усовершенствованными массивами детекторов, которые содержат одинаковые или различные детекторы. В любом случае, усовершенствованный массив детекторов может содержать усовершенствованный детектор одного типа или усовершенствованные детекторы множества типов.

Массив 114 детекторов, используемый во время сканирования, обнаруживает излучение, проходящее через область 106 исследования, и генерирует сигнал, характеризующий его. Реконструктор 116 реконструирует сигнал и генерирует данные объемного изображения, характеризующие область 106 исследования, которая содержит объект или субъект. Когда во время сканирования используют более чем один массив 114 детекторов, сигнал, генерируемый одним или более массивами детекторов, реконструируют для генерации данных объемного изображения. Подходящие алгоритмы реконструкции включают в себя алгоритм фильтрованной обратной проекции, итеративный алгоритм и т.п. Данные объемного изображения можно использовать для генерации одного или более изображений объекта или субъекта.

Опора 118, такая как кушетка, поддерживает объект или субъекта в области 106 исследования. Опору 118 можно перемещать вдоль оси z согласованно с вращением поворотного портала 104, чтобы облегчить сканирование по спиральной, осевой или другой желаемой траектории. Вычислительная система общего назначения выполняет функцию консоли оператора 120, которая содержит понятные человеку устройства вывода, такие как дисплей и/или принтер, и устройства ввода, такие как клавиатура и/или мышь. Программное обеспечение, хранимое на консоли 120, позволяет оператору выбирать протокол сканирования, который использует конкретный один из, по меньшей мере, двух массивов 114 детекторов или одновременно более чем один из, по меньшей мере, двух массивов 114 детекторов.

Как кратко изложено выше, примеры усовершенствованных массивов детекторов включают в себя в качестве неограничивающих примеров спектральные массивы детекторов, массивы детекторов со счетом фотонов и массивы детекторов высокого разрешения. Неограничивающий пример спектрального массива детекторов включает в себя двухъярусный детектор со стопками сцинтилляторов и фотосенсоров, которые расположены или ниже сцинтилляторов в направлении визуализирующего излучения или смежно со стопкой сцинтилляторов в направлении, перпендикулярном визуализирующему излучению. Подходящий массив детекторов со счетом фотонов содержит вещество с прямым преобразованием, такое как теллурид кадмия (CdTe), теллурид кадмия цинка (CZT) или им подобное. Подходящий массив детекторов высокого разрешения, как правило, имеет по оси x и/или z отверстие диаметром менее одного (1) миллиметра (мм) в плоскости детектора, которое меньше отверстия для неусовершенствованного массива детекторов.

Указанные выше усовершенствованные массивы детекторов (т.е. спектральные, со счетом фотонов, высокого разрешения и т.д.), как правило, стоят дороже на единицу площади обнаружения, чем неусовершенствованные массивы детекторов. В таких случаях, можно выполнить усовершенствованный массив детекторов с уменьшенным покрытием по оси x и/или z, чтобы снизить стоимость. Конфигурация системы с, по меньшей мере, одним неусовершенствованным массивом детекторов и, по меньшей мере, одним усовершенствованным массивом детекторов с уменьшенным покрытием может снизить общую стоимость системы 100 относительно системы с усовершенствованным массивом детекторов с не уменьшенным покрытием, при этом сохраняя покрытие для неусовершенствованного массива детекторов.

Усовершенствованные массивы детекторов, такие как массивы детекторов со счетом фотонов, могут обладать более низкой характеристикой интенсивности потока по отношению к неусовершенствованному массиву детекторов. Это может снизить предел максимального тока источника излучения и/или максимальную скорость вращения поворотного портала при использовании усовершенствованного массива детекторов по отношению к использованию неусовершенствованного массива детекторов. Выполнение системы с, по меньшей мере, одним неусовершенствованным массивом детекторов и, по меньшей мере, одним усовершенствованным массивом детекторов со счетом фотонов позволяет системе 100 работать в режиме счета фотонов, при этом сохраняя предел тока источника излучения и скорость вращения поворотного портала при сканировании с использованием неусовершенствованного массива детекторов.

Усовершенствованные массивы детекторов, такие как массивы детекторов высокого разрешения, могут обладать более низкой геометрической эффективностью по отношению к неусовершенствованному массиву детекторов. Выполнение системы с, по меньшей мере, одним неусовершенствованным массивом детекторов и, по меньшей мере, одним усовершенствованным массивом детекторов высокого разрешения позволяет системе 100 работать в режиме высокого разрешения, при этом сохраняя геометрическую эффективность при сканировании с использованием неусовершенствованного массива детекторов. Кроме того, усовершенствованный массив детекторов высокого разрешения может повысить эффективность дозы (и снизить дозу пациента) по отношению к конфигурации, в которой используют гребень или другое устройство в сочетании с неусовершенствованным массивом детекторов для сканирования с высоким разрешением.

На Фиг.2 и 3 проиллюстрирован образцовый вариант осуществления системы 114 обнаружения излучения при N=2. В этом примере массив 1141 детекторов стационарно закреплен в системе 114 обнаружения, и массив 114N детекторов подвижно закреплен в системе 114 обнаружения. Массив 114N детекторов выполнен с возможностью перемещения между, по меньшей мере, первым и вторым положениями 202 и 204.

Как показано на Фиг.2, в первом положении 202 массив 114N детекторов расположен между массивом 1141 детекторов и фокусным пятном 110, поверх массива 1141 детекторов и на пути 206, по которому идет центральный луч, испускаемый источником 108 излучения. Как показано на Фиг.3, во втором положении 204 массив 114N детекторов расположен за пределами пути 206.

В этом варианте осуществления покрытие по оси x массива 114N детекторов меньше покрытия по оси x массива 1141 детекторов. В другом варианте осуществления покрытие по оси x массива 114N детекторов и покрытие по оси x массива 1141 детекторов по существу равны. В еще одном другом варианте осуществления покрытие по оси x массива 114N детекторов превышает покрытие по оси x массива 1141 детекторов. Аналогичным образом покрытие по оси z массива 114N детекторов может быть по существу равным (как показано), большим или меньшим, чем покрытие по оси z массива 1141 детекторов.

В проиллюстрированном варианте осуществления массив 1141 детекторов содержит неусовершенствованные детекторы, а массив 114N детекторов содержит усовершенствованные детекторы. В другом варианте осуществления массив 1141 детекторов содержит усовершенствованные детекторы, а массив 114N детекторов содержит неусовершенствованные детекторы. В еще одном другом варианте осуществления массивы 1141 и 114N детекторов содержат неусовершенствованные детекторы или усовершенствованные детекторы.

В проиллюстрированном варианте осуществления, массив 114N детекторов перемещают вдоль оси z. В другом варианте осуществления массив 114N детекторов перемещают вдоль оси x. В еще одном другом варианте осуществления массив 114N детекторов перемещают вдоль осей z и x.

На Фиг.4 и 5 проиллюстрирован неограничивающий подход к перемещению массива 114N детекторов по отношению к пучку излучения и между первым и вторым положениями 202 и 204, представленными на Фиг.2 и 3.

В проиллюстрированном варианте осуществления платформа или перемещаемая опора 402 поддерживает массив 114N детекторов. Перемещаемая опора 402 может представлять собой часть (как показано) первой части 404 несущей 406 или может быть прикреплена к ней. Вторая часть 408 несущей 406 стационарно прикреплена в системе 114 обнаружения. Подходящие несущие включают в качестве неограничивающих примеров шарикоподшипники, скользящие несущие, магнитные или гидравлические несущие.

Двигатель 410 приводит в движение перемещаемую опору 402 (и, таким образом, массив 114N детекторов) между первым положением 202 (Фиг.4) и вторым положением 204 (Фиг.5). Контроллер 412 управляет двигателем 410 на основе выбранного протокола сканирования или иным образом. Устройство кодирования или ему подобное можно использовать для предоставления информации о положении перемещаемой опоры для контроллера 412. В другом варианте осуществления перемещаемую опору 402 перемещают между положениями 202 и 204 посредством гидравлики или иным образом. На Фиг.6, 7, 8 и 9 проиллюстрированы различные режимы сканирования для конфигурации, описанной применительно к Фиг.2 и 3.

Как показано на Фиг.6, в этом варианте осуществления массив 114N детекторов находится в первом положении 202. В этом положении массив 114N детекторов расположен поверх массива 1141 детекторов и на пути пучка 602 излучения. Коллиматор 112 коллимирует пучок 602 и генерирует пучок с углом α 604 пучка относительно оси x и углом β 605 пучка относительно оси z. В этом варианте осуществления сигнал, генерируемый массивом 114N детекторов, реконструируют для генерации данных объемного изображения.

Как показано на Фиг.7, в этом варианте осуществления массив 114N детекторов находится во втором положении 204. В этом положении массив 114N детекторов расположен за пределами пути пучка 602 излучения. Коллиматор 112 коллимирует пучок 602 и генерирует пучок с углом γ 702 пучка относительно оси x и углом δ 703 пучка относительно оси z. В этом варианте осуществления сигнал, генерируемый массивом 1141 детекторов, реконструируют для генерации данных объемного изображения. Кроме того, массив 1141 детекторов может работать, как если бы массив 114N детекторов был опущен в системе 100, включая сохранение того же покрытия, скорости, геометрической эффективности и/или интенсивности потока.

Следует отметить, что на Фиг.6 и 7 покрытия по оси z массивов 1141 и 114N детекторов (как определено углами β и δ) по существу равны, тогда как покрытие по оси x массива 114N детекторов (определено углом α) меньше покрытия по оси x массива 1141 детекторов (определено углом γ). В другом варианте осуществления покрытия по оси z массивов 1141 и 114N детекторов по существу равны, и покрытия по оси x массивов 1141 и 114N детекторов по существу равны. В еще одном другом варианте осуществления покрытия по оси x массивов 1141 и 114N детекторов по существу равны, тогда как покрытие по оси z массива 114N детекторов меньше покрытия по оси z массива 1141 детекторов. В другом варианте осуществления покрытие по оси z и покрытие по оси x массива 114N детекторов меньше покрытия по оси z и покрытия по оси x массива 1141 детекторов соответственно.

Как показано на Фиг.8, в этом варианте осуществления массив 114N детекторов находится в первом положении 202, как описано в связи с Фиг.6. Однако коллиматор 112 коллимирует пучок 602 для генерации пучка с углом γ 702 пучка, как описано в связи с Фиг.7. Пучок 602 излучения освещает массив 114N детекторов и подмассивы 802 и 804 массива 1141 детекторов, не покрываемые массивом 114N детекторов.

В этом варианте осуществления сигналы, генерируемые одним или обоими массивами 1141 и 114N детекторов, реконструируют для генерации данных объемного изображения. В качестве примера, массив 114N детекторов может генерировать неполные или усеченные проекции вследствие уменьшенного покрытия по оси x. Сигнал от подмассивов 802 и 804 массива 1141 детекторов можно комбинировать с сигналом от массива 114N детекторов для «завершения» неполных проекций.

На Фиг.9 проиллюстрирован вариант осуществления, в котором коллиматор 112 коллимирует пучок для генерации пучка, который асимметрично освещает массивы 114N детекторов.

На Фиг.10 и 11 проиллюстрирован вариант осуществления, в котором массив 114N детекторов содержит первую и вторую независимо перемещаемые части 114N1 и 114N2. Перемещаемые части 114N1 и 114N2 перемещают вдоль оси z и сближают поверх массива 1141 детекторов, чтобы сформировать массив 114N детекторов.

На Фиг.12 и 13 проиллюстрирован другой вариант осуществления, в котором массив 114N детекторов содержит первую и вторую независимо перемещаемые части 114N1 и 114N2. В этом варианте осуществления перемещаемые части 114N1 и 114N2 перемещают вдоль оси x и сближают поверх массива 1141 детекторов, чтобы сформировать массив 114N детекторов.

На Фиг.14 проиллюстрирован вариант осуществления, в котором массивы 1141 и 114N детекторов имеют по существу одинаковое покрытие.

На Фиг.15 проиллюстрирован вариант осуществления, в котором массив 114N детекторов избирательно позиционируют в пучке. В проиллюстрированном варианте осуществления массив 114N детекторов можно перемещать вдоль осей x и z и размещать асимметрично или вне центра по отношению к массиву 1141 детекторов. В проиллюстрированном варианте осуществления, край 1502 массива 114N детекторов расположен около центральной линии 206 излучения. В другом варианте осуществления край 1502 проходит через центральную линию 206 излучения. Использование такого асимметричного пучка позволяет уменьшить область детектора, как показано, что может уменьшить стоимость детектора.

В описанных выше вариантах осуществления массив 1141 детекторов стационарен, а массив 114N детекторов подвижен. В другом варианте осуществления массив 1141 детекторов подвижен, а массив 114N детекторов стационарен. В еще одном другом варианте осуществления оба массива 1141 и 114N детекторов подвижны.

На Фиг.16 проиллюстрирован образцовый способ. На стадии 1602 первый массив детекторов устанавливают в систему визуализации. Первый массив детекторов устанавливают напротив источника излучения, с противоположной стороны от области 106 исследования. На стадии 1604 второй массив детекторов устанавливают в систему визуализации. Аналогичным образом, второй массив детекторов устанавливают напротив источника излучения, с противоположной стороны от области 106 исследования. Один из первого или второго массивов 1141, 114N детекторов стационарно закреплен в системе 100, а другой массив 1141, 114N детекторов подвижно закреплен в системе 100. На стадии 1606 систему 100 выполняют с возможностью избирательного перемещения перемещаемого детектора на путь, по которому испускаемое излучение проходит, или за пределы пути на основе выбранного протокола сканирования. На стадии 1608 систему 100 выполняют с возможностью коллимации испускаемого излучения и обработки данных от одного или обоих массивов детекторов на основе выбранного протокола сканирования.

На Фиг.17 проиллюстрирован образцовый способ. На стадии 1702 получают сигнал, характеризующий выбранный протокол сканирования. На стадии 1704 идентифицируют тип массива детекторов на основе протокола сканирования. Тип массива детекторов выбирают из нескольких типов массивов детекторов, установленных в системе 100 визуализации. На стадии 1706, если идентифицированный массив детекторов соответствует стационарно закрепленному массиву детекторов, то на стадии 1708 любой подвижно закрепленный массив детекторов сохраняют или перемещают за пределы пути, по которому проходит испускаемое излучение. Альтернативно, на стадии 1710, если идентифицированный массив детекторов соответствует подвижно закрепленному массиву детекторов, то подходящий подвижно закрепленный массив детекторов сохраняют или перемещают на путь, по которому проходит испускаемое излучение. На стадии 1712 осуществляют сканирование.

Изложенное выше можно реализовать машиночитаемых инструкций, которые при исполнении процессором(ами) компьютера управляют процессором(ами) для осуществления описанных действий. В таком случае, инструкции хранят в машиночитаемом носителе, который связан с подходящим компьютером или иным образом доступен для него.

Следует принимать во внимание, что систему 100 визуализации можно выполнить, как описано в настоящем документе, и она может содержать только один массив детекторов. В таком случае один или несколько дополнительных массивов детекторов можно последовательно устанавливать в систему. Это позволяет покупателю купить сканер 100 с массивом 114 детекторов конкретного типа, а затем добавить массив 114 детекторов другого типа. В другом случае, массивы детекторов другого типа альтернативно можно менять на один массив детекторов. В еще одном случае один массив детекторов может представлять собой неусовершенствованный или усовершенствованный массив детекторов. Дополнительно или альтернативно дополнительный массив детекторов может представлять собой неусовершенствованный или усовершенствованный массив детекторов.

В настоящем документе изобретение описано со ссылкой на различные варианты осуществления. Модификации и изменения могут прийти на ум после прочтения описанного в настоящем документе. Подразумевают, что изобретение следует толковать в качестве включающего все такие модификации и изменения в такой мере, в какой они входят в объем прилагаемой формулы изобретения или ее эквивалентов.

1. Система (100) визуализации, содержащая:
источник (108) излучения, который испускает излучение, которое проходит через область (106) исследования;
система (114) обнаружения, которая обнаруживает излучение, которое проходит через область (106) исследования, и генерирует сигнал, характеризующий его, причем система (114) обнаружения содержит:
первый массив (1141-114N) детекторов; и
второй массив (1141-114N) детекторов, причем первый и второй массивы (1141-114N) детекторов представляют собой разнесенные отдельные массивы детекторов, и, по меньшей мере, один из массивов (1141-114N) детекторов выполнен с возможностью механического перемещения между первым положением (202), в котором массив (1141-114N) детекторов находится на пути, по которому проходит испускаемое излучение, и вторым положением (204), в котором массив (1141-114N) детекторов находится за пределами пути; и
реконструктор (116), который реконструирует сигнал и генерирует данные объемного изображения, характеризующие его.

2. Система (100) визуализации по п.1, в которой, по меньшей мере, один из массивов (1141-114N) детекторов содержит спектральный массив детекторов, массив детекторов со счетом фотонов или массив интегрирующих детекторов высокого разрешения.

3. Система (100) визуализации по п.2, в которой, по меньшей мере, один из массивов (1141-114N) детекторов включает в себя массив интегрирующих детекторов невысокого разрешения.

4. Система (100) визуализации по любому из пп.1-2, в которой, по меньшей мере, одно из покрытий по оси x или z одного из, по меньшей мере, одного массива (1141-114N) детекторов превышает соответствующее одно из покрытий по оси x или z другого из, по меньшей мере, одного массива (1141-114N) детекторов.

5. Система (100) визуализации по любому из пп.1-2, в которой покрытие по оси x и z одного из, по меньшей мере, одного массива (1141-114N) детекторов по существу такое же, как и покрытие по оси x и z другого из, по меньшей мере, одного массива (1141-114N) детекторов.

6. Система (100) визуализации по любому из пп.1-2, в которой сигнал включает в себя сигнал, генерируемый одним из, по меньшей мере, одного массива (1141-114N) детекторов.

7. Система (100) визуализации по любому из пп.1-2, в которой сигнал включает в себя первый сигнал, генерируемый первым массивом (1141-114N) детекторов, и второй сигнал, генерируемый вторым массивом (1141-114N) детекторов.

8. Система (100) визуализации по п.7, в которой перемещаемый массив (1141-114N) детекторов содержит, по меньшей мере, два из спектрального массива детекторов, массива детекторов со счетом фотонов и массива интегрирующих детекторов высокого разрешения.

9. Система (100) визуализации по любому из пп.1-2, в которой перемещаемый массив (1141-114N) детекторов можно перемещать вдоль направления оси z.

10. Система (100) визуализации по любому из пп.1-2, в которой перемещаемый массив (1141-114N) детекторов можно перемещать вдоль направления оси x.

11. Система (100) визуализации по любому из пп.1-2, в которой перемещаемый массив (1141-114N) детекторов можно перемещать вдоль направления как оси x, так и оси z.

12. Система (100) визуализации по любому из пп.1-2, в которой перемещаемый массив (1141-114N) детекторов выполнен с возможностью асимметричного расположения на указанном пути.

13. Способ сканирования с использованием системы (100) визуализации, содержащий этапы:
приема сигнала, характеризующего протокол сканирования для сканирования объекта или субъекта с использованием системы (100) визуализации;
идентификации типа массива детекторов на основе сигнала, причем идентифицированный тип массива детекторов соответствует одному из множества массивов детекторов, установленных в системе (100) визуализации; и
перемещения перемещаемого массива (1141-114N) детекторов, расположенного за пределами пути, по которому проходит излучение, испускаемое источником (108) излучения системы (100), на путь или удержания перемещаемого массива (1141-114N) детекторов на пути в ответ на идентификацию перемещаемого массива (1141-114N) детекторов в качестве типа массива детекторов.



 

Похожие патенты:
Изобретение относится к медицине, нейрохирургии, неврологии и лучевой диагностике и может быть использовано для определения объема внутримозгового образования при черепно-мозговой травме и заболеваниях головного мозга.

Изобретение относится к медицине, а именно к лучевой диагностике, и может быть использовано для дифференциальной диагностики заболеваний легких с применением компьютерной томографии.
Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано для малоинвазивного хирургического лечения глиальных опухолей головного мозга супратенториальной локализации.

Изобретение относится к медицине, а именно нейрохирургии, неврологии и лучевой диагностике. Проводят томографию головного мозга.
Изобретение относится к медицине, рентгенологии, хирургии. Выполняют мультиспиральную компьютерную томографию (МСКТ) с контрастированием тонкого и толстого кишечника, для чего вначале проводят пероральное контрастирование тонкой кишки водорастворимым контрастным веществом (ВКВ) в течение 30-40 минут.

Изобретение относится к способам и устройствам динамической визуализации информации о состоянии коронарных сосудов. Способ включает этапы получения первых динамических данных о сердечной деятельности в течение первой стадии сердечной деятельности, во время которой контрастное вещество определяют в первой области, получения вторых динамических данных о сердечной деятельности в течение второй стадии сердечной деятельности, во время которой контрастное вещество определяют во второй области.

Изобретение относится к молекулярной визуализации. Система визуализации содержит источник излучения, которое пересекает область обследования, детектор излучения и формирования сигнала, характеризующего энергию обнаруженного излучения, селектор данных, который выполняет дискриминацию сигнала по энергии на основании относящихся к энергетическим спектрам установочных параметров, соответствующих первой и второй спектральным характеристикам контрастного вещества, введенного в субъект, и блок реконструкции сигнала на основании первой и второй спектральных характеристик и формирования данных объемного изображения, характеризующих мишень.

Изобретение относится к области электрофизиологии сердца и, в частности, к процедурам радиочастотной абляции и установки кардиостимуляторов под визуальным контролем.

Изобретение относится к способам и устройствам для улучшения большого поля зрения при получении изображений CT. В способе используются две процедуры сканирования: с центрированными источником излучения и детектором и в геометрии со смещением.

Изобретение относится к средствам формирования изображения в позитрон-эмиссионной томографии. Имитатор реакции на терапевтическое лечение содержит моделирующее устройство для формирования модели структуры объекта или субъекта, который подлежит лечению, на основании информации об объекте или субъекте, и прогнозирующее устройство, которое формирует прогнозированную реакцию, указывающую на то, каким образом структура вероятно должна реагировать на лечение, на основании модели и плана терапевтического лечения, и которое формирует параметрическую карту, которая включает в себя количественную информацию, указывающую на прогнозированную реакцию, при этом параметрическая карта количественно описывает накопление изотопного индикатора воспаленной ткани и используется для удаления вклада накопления изотопного индикатора от воспаленной ткани из данных изображения, оставляя накопление изотопного индикатора от опухоли в данных изображения.

Изобретение относится к медицине, в частности к ультразвуковой и лучевой диагностике, нейрохирургии, неврологии. Проводят спиральную компьютерную томографию шейного отдела позвоночника. Исследуют канал позвоночной артерии, выявляют наличие его стеноза. Вычисляют площадь поперечного сечения канала позвоночной артерии Sк на уровне стеноза. Выполняют цветовое дуплексное сканирование и вычисляют площадь поперечного сечения позвоночной артерии Sа на стороне патологии вне зоны стеноза. Рассчитывают индекс компрессии позвоночной артерии ИК по формуле И К = 1 3 S к : S а . При значении индекса 1,0 и более компрессия отсутствует, при показателе от 0,9 до 0,7 диагностируют умеренную компрессию позвоночной артерии, от 0,6 до 0,4 - значительную, ниже 0,4 - выраженную. Способ обеспечивает повышение точности диагностики за счет учета размеров позвоночной артерии на стороне поражения в зоне стеноза и вне его. 3 пр.
Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для диагностики стадии оптической нейропатии при эндокринной офтальмопатии. При проведении спектральной оптической когерентной томографии области диска зрительного нерва и макулы оценивают: толщину слоя нервных волокон сетчатки в перипапиллярной зоне, площадь нейроретинального пояска, объем нейроретинального пояска, толщину сетчатки макулярной зоны. При толщине слоя нервных волокон сетчатки в перипапиллярной зоне от 100 до 108 мкм, площади нейроретинального пояска от 1,5 до 1,7 мм2, объеме нейроретинального пояска от 0,5 до 0,6 мм3, толщине сетчатки макулярной зоны от 210 до 241,2 мкм - определяют латентную стадию. При толщине слоя нервных волокон сетчатки в перипапиллярной зоне от 109 до 133 мкм, площади нейроретинального пояска от 1,5 до 1,7 мм2, объеме нейроретинального пояска от 0,61 до 0,7 мм3, толщине сетчатки макулярной зоны от 241,3 до 316,9 мкм - определяют развитую стадию. При толщине слоя нервных волокон сетчатки в перипапиллярной зоне от 134 до 167 мкм, площади нейроретинального пояска от 1,71 до 2,9 мм2, объеме нейроретинального пояска от 0,71 до 0,8 мм3, толщине сетчатки макулярной зоны от 317 до 346,9 мкм - определяют далекозашедшую стадию. Способ обеспечивает повышение точности диагностики стадии оптической нейропатии при эндокринной офтальмопатии со своевременным выявлением перехода одной стадии оптической нейропатии в другую за счет определения наиболее значимых томографических показателей, что позволяет увеличить время сохранения высоких зрительных функций. 4 пр.

Изобретение относится к медицине, а именно к кардиологии, и предназначено для оптимизации контроля частоты сердечных сокращений перед процедурой МСКТ коронарных артерий среди пациентов молодого возраста с наследственными нарушениями соединительной ткани и дисфункцией автономной нервной системы. Для контроля частоты сердечных сокращений применяют ингибитор If-каналов синусового узла ивабрадин. Препарат назначают в дозе 5-10 мг/сут для достижения контролируемой частоты сердечных сокращений <65 уд./мин в течение 3 дней перед процедурой МСКТ. Способ предполагает персонифицированный подход к лечению и диагностике, направленный на повышение качества ведения пациентов с наследственными нарушениями соединительной ткани, а также позволяет расширить область применения препарата ивабрадин. 1 пр., 5 табл., 2 ил.

Изобретение относится к медицине, диагностике аденомы околощитовидных желез (ОЩЖ), и может найти применение в лучевой диагностике, эндокринологии, хирургии. Проводят многофазную мультиспиральную компьютерную томографию (МСКТ) с рентгеноконтрастным средством (РК) на артериальной и венозных фазах исследования - соответственно на 25 и 50 секундах после введения РК. Проводят снятие параметров, анализ полученных снимков и предоперационную диагностику состояния больного. При этом РК вводят одноразово, после его введения внутривенно вводят физиологический раствор, причем средства вводят через катетер со скоростью 4±1 мл/с. При анализе полученных снимков проводят визуальный и денситометрический анализы полученных изображений. В качестве параметров исследования определяют коэффициент ослабления излучения во всех образованиях области исследования, подозрительных на аденому ОЩЖ. Наличие аденомы диагностируют при фиксации коэффициента ослабления рентгеновского излучения до +180+200 HU в раннюю артериальную фазу и обнаружении снижения плотности не менее чем на 80 HU на венозной стадии. Способ обеспечивает улучшение, высокое качество диагностики аденом ОЩЖ за счет более точной фиксации местоположения новообразований, оптимального распределения и удержания контрастного вещества в зоне исследования в здоровых и патогенных зонах, что позволяет сократить время операции до 15 минут вместо 60 минут, сократить послеоперационный период с 5 до 1 суток. 6 ил., 4 пр.

Изобретение относится к медицине, а именно к стоматологии. Способ включает томографическое исследование пациента с последующим определением устойчивости зубной дуги для проведения шинирования. Определяют томографическое сечение, при котором полусумма площадей проекций интраальвеолярных частей контралатеральных моляров максимальна. При этом определяют расчетную проекцию площади опоры зубной дуги до фрагментации и расчетную проекцию площади опоры наибольшего фрагмента зубной дуги после фрагментации. При величине последней 50% и менее от расчетной проекции площади опоры зубной дуги до фрагментации осуществляют съемное шинирование, а при величине более 50% - несъемное шинирование. Способ повышает качество шинирования за счет количественного определения площади опоры зубной дуги. 2 пр., 7 ил.

Изобретение относится к медицине, травматологии, ортопедии, касается изучения плотности корковой пластинки диафиза длинных костей у больных с заболеваниями и повреждениями опорно-двигательной системы, а также контроля состояния корковой пластинки в процессе дистракционного остеосинтеза. Определяют плотность кости по шкале Хаунсфилда в области диафиза методом компьютерной томографии по топограмме диапазона сканирования на аксиальных срезах и мультипланарных реконструкциях в трех точках, расположенных в наружном, внутреннем и остеонном слоях корковой пластинки по передней, задней, латеральной и медиальной поверхности в верхней и средней трети голени. Используя измеренные значения, рассчитывают средние значения плотности наружного, внутреннего и остеонного слоев. Если плотность наружного слоя корковой пластинки в конце периода фиксации - не менее 600 HU, через год после демонтажа аппарата не менее 1100 HU, а соотношение плотностей наружного, остеонного и внутреннего слоя равно 1:1,2:0,9, то корковая пластинка имеет нормальную плотность. Способ обеспечивает количественную оценку плотностных параметров корковой пластинки длинных костей в динамике лечения с выявлением ее рентгенморфологических особенностей, с учетом ее зонального строения - внутренних, наружных пластинок и остеонного слоя. 5 ил., 1 пр.

Изобретение относится к визуализации перфузии. Техническим результатом является уменьшение взаимодействия с пользователем, а также увеличение скорости обработки данных визуализации перфузии. Способ содержит этапы, на которых: исполняют, посредством анализатора данных, исполняемые компьютером инструкции, которые выбирают, без взаимодействия с пользователем, протокол обработки из электронного хранилища протоколов на основе данных визуализации, соответствующих пациенту; обрабатывают, посредством анализатора данных, данные функциональной визуализации для субъекта с использованием выбранного протокола обработки в первом режиме обработки, причем выбранный протокол обработки данных изображения включает в себя по меньшей мере два этапа обработки; и осуществляют, с помощью процессора компьютера, проверку достоверности обработанных данных во время исполнения выбранного протокола обработки; изменяют, с помощью процессора компьютера, режим обработки с первого режима обработки на второй режим обработки на основе проверки достоверности, причем анализатор данных выполнен с возможностью обработки данных функциональной визуализации во втором режиме обработки. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к обработке медицинских изображений. Техническим результатом является повышение точности оценки движения интересующей ткани. Способ содержит: задание набора опорных местоположений около интересующей области субъекта или объекта, которую идентифицируют на, по меньшей мере, одном изображении из временной последовательности изображений; применение модели движения к опорному местоположению упомянутого набора, причем модель движения указывает траекторию через последовательность изображений; формирование набора записанных изображений из временной последовательности изображений, посредством одновременной записи временной последовательности изображений на основе модели, примененной к опорному местоположению упомянутого набора. 2 н. и 13 з.п. ф-лы, 2 ил.

Группа изобретений относится к медицинской технике, а именно к системам и способам ядерной медицинской визуализации. Система ядерной медицинской визуализации, в которой применяются модули детектора излучения с пикселизированными сцинтилляционными кристаллами, включает в себя детектор рассеяния, выполненный с возможностью обнаружения и маркирования, обнаруженных рассеянных и нерассеянных событий излучения, сохраняемых в памяти в режиме списка. Обнаруживают совпадающие пары как рассеянных, так и нерассеянных событий излучения, и определяют соответствующие линии ответа (LOR). С использованием линий ответа, соответствующих как рассеянным, так и обнаруженным нерассеянным событиям излучения, может быть восстановлено первое представление изображения области обследования, чтобы получить изображение пониженного разрешения, обладающее хорошими статистическими характеристиками в отношении помех. Второе изображение повышенного разрешения всей области обследования или ее частичного объема может быть получено с использованием линий ответа, соответствующих обнаруженным нерассеянным событиям излучения. Процессор количественной оценки выполнен с возможностью выделения, по меньшей мере, одного показателя, например объема, скорости счета, стандартизованного уровня накопления (SUV) и т.п. по меньшей мере из изображения пониженного разрешения, изображения повышенного разрешения или объединенного изображения. Использование изобретения позволяет увеличить разрешение изображения, снизить эффект наложения и увеличить отношение сигнал/шум. 4 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к области формирования медицинских изображений. Техническим результатом является обеспечение динамического сглаживания обнаруженных проекционных данных больших градиентов. Способ содержит этапы, на которых: уменьшают структурные артефакты в данных трехмерного объемного изображения; устраняют шумы в копии набора коронарных срезов в рабочем объеме данных трехмерного объемного изображения; формируют набор разностных коронарных срезов путем вычитания набора подвергнутых устранению шумов коронарных срезов из копии набора коронарных срезов; заменяют набор коронарных срезов на разностные коронарные срезы в рабочем объеме; устраняют шумы в копии набора сагиттальных срезов в рабочем объеме; формируют набор разностных сагиттальных срезов путем вычитания набора подвергнутых устранению шумов сагиттальных срезов из копии набора сагиттальных срезов; заменяют набор сагиттальных срезов на разностные сагиттальные срезы в рабочем объеме; устраняют шумы в копии набора аксиальных срезов в рабочем объеме после замены на разностные коронарные и сагиттальные срезы в рабочем объеме и вычитают набор подвергнутых устранению шумов аксиальных срезов из данных трехмерного объемного изображения. 2 н. и 13 з.п. ф-лы, 5 ил.
Наверх