Способ упрочнения твердых сплавов


 


Владельцы патента RU 2534670:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" (RU)

Изобретение относится к области металлургии, в частности к изделиям из твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием. Техническим результатом предлагаемого изобретения является упрощение технического процесса термообработки твердых сплавов,. Способ термической обработки твердосплавного изделия включает спекание твердосплавного изделия и охлаждение. Спекание проводят при температуре 1650°С, затем осуществляют вакуумный отпуск с нагревом до температуры 1050°С-1250°С и выдержкой 1 час, а охлаждение проводят вместе с печью в течение 4 часов. Увеличиваются твердость, прочность и стойкость изделий. 1 ил., 4 табл.

 

Изобретение относится к области машиностроения, преимущественно к способам термического упрочнения изделий порошковой металлургии, в частности к изделиям из твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Известен способ термической обработки изделий из карбидсодержаших твердых сплавов с помощью закалки [Лошак М.Г. Прочность и долговечность твердых сплавов. - Киев: Наукова думка, 1984. - 218 с.], при котором температура закалки всегда выбирается ниже температуры эвтектики компонентов твердого сплава: монокарбида вольфрама и цементирующей кобальтовой связки. Недостатками известного способа являются малая степень упрочнения режущих пластин из твердых сплавов и низкая стойкость их к воздействию ударных нагрузок.

Наиболее близким к заявляемому способу является способ термической обработки изделий из карбидсодержаших твердых сплавов, полученных методом стационарного спекания в присутствии жидкой фазы, при котором температуру обработки выбирают в интервале температур 800-1400°C [Wu Yinfang. A survey of study on heat-treatment of cemented carbide. - Hard metals and hard materials. - 1993. - V.1, 1. - P.20-23 (прототип)], причем интервал температур, больших 1280°С, лежит выше температуры эвтектики (1280°C) компонентов твердого сплава. Таким образом, при термообработке в интервале температур 1280-1400°C происходит повторная рекристаллизация твердого сплава. Недостатками известного способа являются:

- относительно малая степень упрочнения режущих пластин из твердых сплавов:

- низкая стойкость режущих пластин из твердых сплавов к воздействию ударных нагрузок.

Заявляемое изобретение направлено на упрощение технического процесса термообработки: снижение температур термообработки, отсутствие применения закалочных ванн, увеличение стойкости.

Техническим результатом предлагаемого изобретения является упрощение технического процесса термообработки твердых сплавов, увеличение стойкости.

Техническая задача решается тем, что в способе термической обработки твердых сплавов, включающем спекание твердых сплавов при температуре 1650°C, охлаждение, после спекания производят отпуск в вакуумной печи при температуре 600°C в среде инертного газа, выдерживают в печи от 4 до 24 часов с последующим охлаждением вместе с печью в течение 2,5 часов.

Для пояснения способа на чертеже показан внешний вид твердосплавных штабиков ВК8(а) и Т14К8(б), увеличение 1:1.

Способ осуществляют следующим образом:

Спекание твердых сплавов осуществляли при температуре 1650°C, охлаждение после спекания, производят отпуск в вакуумной печи СГВ2.3/15ЭМ1 при температуре 600°C (вакуум 5×10-5 мм рт.ст), в среде инертного газа, длительность выдержки от 4 до 24 часов.

Сущность отпуска заключается в том, что в герметичном контейнере создается разреженная инертная атмосфера. С этой целью используется азот. Внутри контейнера размещают детали, которые подключают к отрицательному полюсу источника постоянного напряжения - катод. Анодом служит стенка контейнера. Между катодом и анодом включается высокое напряжение (500-1000 В). В этих условиях происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу - катоду. Электрическое сопротивление газовой среды вблизм катода резко возрастает, вследствие чего почти все напряжение, подаваемое между анодом и катодом, падает на сопротивление вблизи катода, на расстоянии нескольких миллиметров от него. Благодаря этому создается очень высокая напряженность электрического поля вблизи катода.

Ионы азота, входя в эту зону высокой напряженности, разгоняются до больших скоростей и, соударяясь с деталью (катодом), внедряются в ее поверхность. При этом высокая кинетическая энергия, которую имели ионы азота, переходит в тепловую. В результате деталь за короткое время, примерно 15-30 мин, разогревается до температуры 600°С, при соударении ионов с поверхностью детали происходит выбивание ионов железа с ее поверхности. Благодаря этому происходит очистка поверхности от оксидных пленок.

После отпуска в вакуумной печи охлаждение твердых сплавов проводили вместе с печью в течение 2,5 часов.

До и после отпуска в инертной среде была определена твердость (таблица 1, 2) и прочность при изгибе (таблица 3).

Таблица 1
Марка твердого сплава Время отпуска, ч Твердость, HV Твердость средняя, HV
1 2 3 Среднее
600°C - инертная среда
ВК8 4 1354 1354 1402 1370 (1331) 1330
1354 1332 1332 1339
1332 1332 1187 1307
ВК8 8 1427 1427 1427 1427 (1359) 1360
1267 1267 1268 1267
1354 1402 1378 1378
ВК8 16 1427 1378 1427 1410 (1409) 1410
1415 1415 1415 1415
1402 1402 1408 1404
ВК8 24 1354 1332 1533 1400 (1403) 1400
1378 1332 1427 1379
1378 1402 1533 1437
Т14К8 4 1427 1402 1402 1410 (1449) 1450
1478 1452 1478 1469
1478 1478 1452 1469
Т14К8 8 1452 1402 1427 1427 (1427) 1430
1402 1427 1452 1427
1402 1452 1427 1355
Т14К8 16 1428 1428 1533 1479 (1469) 1470
1427 1402 1505 1444
1402 1452 1452 1435
Т14К8 24 1427 1452 1402 1427 (1458) 1460
1452 1452 1533 1479
1452 1452 1505 1469
Т14К8 исходная 1452 1427 1378 1419 1420
ВК8 исходная 1302 1332 1282 1305 1310
1312 1318 1305 1327
1302 1302 1278 1294
Талица 2
t, ч Т14К8 ВК8
4 Твердость и прочность увеличилась на 10%. Твердость и прочность увеличилась на 10%.
8 Твердость увеличилась на 20%, прочность - на 30%. Твердость и прочность увеличилась на 20,%.
16 Твердость увеличилась на 40%, прочность - на 90%. Твердость и прочность увеличилась на 40%.
24 Твердость увеличилась на 30%, прочность - на 50%. Твердость и прочность увеличилась на 30%.
Таблица 3
Марка твердого сплава Время отпуска, ч Прочность, Н/мм2 Прочность средняя, Н/мм2
1 2 3 Среднее
600°С - инертная среда
ВК8 4 2154 2154 2202 2170 2130
2154 2132 2132 2139
2107 2107 2127 2107
ВК8 8 2127 2127 2127 2127 2160
2167 2167 2168 2167
2154 2102 2178 2178
ВК8 16 2427 2378 2427 2410 2406
2378 2378 2378 2378
2402 2402 2402 2402
ВК8 24 2354 2332 2533 2406 2400
2378 2332 2427 2379
2378 2402 2533 2437
Т14К8 4 1727 1702 1702 1715 1720
1778 1752 1778 1769
1678 1678 1652 1669
Т14К8 8 2145 2102 2080 2100 2140
2140 2200 2145 2180
2210 2252 2147 2200
Т14К8 16 2701 2532 2602 2661 2880
2942 2903 2933 2938
3050 3060 3010 3040
Т14К8 24 2378 2378 2363 2370 2360
2513 2402 2505 2476
2472 2452 2152 2229
Т14К8 исходная 1502 1498 1502 1501 1500
ВК8 исходная 1800 1869 1800 1823 1830

Результаты исследований на данном этапе показали, что отпуск в вакууме эффективно проводить для сплава Т14К8. С увеличением длительности выдержки от 4 до 24 часов твердость увеличивается от 10% до 40%, прочность - от 10% до 90%. Лучший режим отпуска при длительности выдержки 16 часов: твердость увеличилась на 40%, прочность - на 90%.

Для сплава ВК8 проведение отпуска в инертной атмосфере приводит к увеличению твердости и прочности на 10-40%.

Влияние температуры отжига на износ поверхности (таблица 4) твердых сплавов ВК8 и Т14К8 изучено в следующей серии экспериментов. Резание проводилось торцевым точением от центра к периферии n=400, t=1 час, s=0,1 мм/об. Коэффициент стойкости (определяли как отношение износостойкости до и после отпуска в инертной атмосфере) увеличился в 3-6 раз.

Проанализировали результаты проведенных экспериментальных работ по повышению физико-механических свойств твердых сплавов групп ВК и ТК и провели сравнение с прототипом (таблица 4). Была проведена термообработка с нагревом образцов в инертной среде при температуре 600°C, с выдержкой от 4 до 24 часов. Твердость увеличилась от 10 до 40%, прочность - от 10% до 90%, коэффициент стойкости увеличился в 3-6 раз.

Таблица 4
Марка материала Вид обработки Предел прочности, МПа Твердость, HV Коэффициент стойкости, K
ВК8 Исходный 1830 1310 3
Отпуск 4 ч 2130 1330 4
Отпуск 8 ч 2160 1360 5
Отпуск 16 ч 2406 1410 6
Отпуск 24 ч 2400 1400 4
Т14К8 Исходный 1500 1420 3
Отпуск 4 ч 1720 1450 3,5
Отпуск 8 ч 2140 1430 4
Отпуск 16 ч 2880 1470 5
Отпуск 24 ч 2360 1460 4,5

Способ термической обработки твердосплавного изделия, включающий спекание твердосплавного изделия и охлаждение, отличающийся тем, что спекание проводят при температуре 1650°С, затем осуществляют вакуумный отпуск с нагревом до температуры 1050°С-1250°С и выдержкой 1 час, а охлаждение проводят вместе с печью в течение 4 часов.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к изделиям из карбидсодержаших твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием.

Изобретение относится к обработке металлокерамических материалов резанием, в частности к формированию поверхностного слоя пористых металлокерамических спеченных материалов, которые могут быть использованы при производстве деталей из антифрикционных материалов, которые применяются в качестве самосмазывающихся подшипников скольжения для установки в спидометрах, распределителях зажигания, стартерах, стеклоочистителях, стеклоподъемниках автомобилей и тракторов, глубинных насосах, бытовой технике.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Для повышения физико-механических свойств инструментальных и конструкционных материалов осуществляют лазерную обработку изделий с использованием лазера импульсного действия при полезной энергии импульса 60-500 Дж, плотности мощности импульса 1,2·1010-4,3·1011 Вт/м2, длине волны 1,064·10-6 м, продолжительности импульса 0,8·10-3 с, диаметре луча 1,2·10-3-2,5·10-3 м и расстоянии от места облучения до упрочняемой поверхности 12-30 мм.
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжелонагруженных деталей, работающих при повышенных температурах.

Изобретение относится к порошковой металлургии, в частности к получению износостойкого антифрикционного самосмазывающегося сплава с большим содержанием олова. Распыленные порошки состава Al-40Sn прессуют в брикет и спекают в инертной атмосфере при температуре 590-615°C в течение 90-30 минут.

Изобретение относится к порошковой металлургии, в частности к получению деталей из низколегированных порошковых материалов на основе железа с повышенными физико-механическими и эксплуатационными свойствами.

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов. .

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей, работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению. Способ получения биметаллического диска газотурбинного двигателя включает засыпку в капсулу для диска, состоящего из ободной и ступичной частей, гранул двух жаропрочных никелевых сплавов, горячее изостатическое прессование капсулы и последующую термообработку. В капсулу для диска засыпают гранулы двух жаропрочных никелевых сплавов, различающихся по температуре сольвуса не более чем на 5-10°С. Для засыпки ободной части диска используют гранулы одного жаропрочного никелевого сплава с фракцией 140 мкм и более. Для ступичной части используют гранулы другого жаропрочного никелевого сплава с фракцией не более 70 мкм, при этом горячее изостатическое прессование и термообработку проводят при одной температуре, превышающей температуру сольвуса каждого сплава. Повышается КПД, ресурс и надежность и снижается вес газотурбинного двигателя за счет более высоких характеристик прочности и сопротивления малоцикловой усталости в ступице дисков турбины и повышенных характеристик жаропрочности и трещиностойкости на их ободе. 1 табл.

Изобретение относится к области металлургии, в частности к способам получения деталей аддитивным спеканием. Предложен способ производства детали на основе сплавов Co-Cr-Mo, имеющих значения среднего предельного удлинения при 800°C более 10% и среднего предела текучести при 800°C более 400 МПа. Способ включает получение спеченной детали аддитивным спеканием порошков сплава на основе Co-Cr-Mо, проведение двух термических обработок с промежуточным охлаждением. Снижается хрупкость полученных деталей, повышается пластичность и предел текучести при высоких температурах. 5 з.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области порошковой металлургии сплавов на основе алюминия, используемых в подшипниках скольжения. Cпособ получения антифрикционного износостойкого сплава на основе алюминия включает получение смеси чистых порошков алюминия и олова, содержащей 35-45% вес. олова, формирование брикетов с пористостью 12-18%, их спекание в безокислительной атмосфере при температуре 585-615°С в течение 45-60 минут с последующим угловым прессованием спеченного сплава с сохранением ориентации плоскости течения материала во время пластической обработки при интенсивности деформации не менее 100%. Техническим результатом изобретения является обеспечение максимальной износостойкости сплава при сухом трении. 4 ил., 1 табл.

Группа изобретений относится к получению азотированных спеченных стальных деталей. Получают предварительно легированный стальной порошок на основе железа, включающего менее 0,3 мас.% Mn, по меньшей мере один элемент из группы: 0,2-3,5 мас.% Cr, 0,05-1,2 мас.% Mo и 0,05-0,4 мас.% V, и максимум 0,5 мас.% неизбежных примесей. Упомянутый стальной порошок смешивают со смазывающим веществом и графитом, уплотняют под давлением 400-2000 МПа, спекают полученную прессовку в восстановительной атмосфере при температуре 1000-1400 °С и азотируют спеченную деталь в азотсодержащей атмосфере при температуре 400-600 °С с продолжительностью выдержки менее 3 часов. Полученная деталь имеет износостойкость при скользящем контакте и наличии смазки, обеспечивающую безопасный износ при давлении Герца, составляющем до по меньшей мере 800 МПа при испытании при скорости скольжения 2,5 м/с в течение 100 секунд. Обеспечивается получение спеченных стальных деталей с износостойкими свойствами, сравнимыми со свойствами деталей, изготовленных из отбеленного чугуна. 2 н. и 11 з.п. ф-лы, 7 ил., 5 табл., 1 пр.

Изобретение относится к области металлургии, преимущественно к способам радиационного упрочнения поверхностей изделий из твердых сплавов, в частности режущего инструмента из твердых сплавов на основе карбида вольфрама с кобальтовой связкой. Способ упрочнения поверхности режущего инструмента из твердых сплавов на основе карбида вольфрама с кобальтовой связкой включает воздействие на поверхность инструмента потоком электронов. Обеспечивают получение поверхностью инструмента заряда 0,1- 0,8 мK/см2, при этом на поверхность инструмента воздействуют потоком электронов с энергией электронов 0,5-1,5 МэВ в течение не менее 10 с. Повышается износостойкость инструмента и срок его службы. 2 табл.

Изобретение относится к области металлургии, в частности к способу изготовления трехмерного изделия. Способ изготовления трехмерного изделия (11) из жаропрочного сплава на основе никеля, кобальта или железа (12) характеризуется тем, что осуществляют последовательное нанесение на пластину-подложку порошка или суспензии порошка сплава на основе никеля, кобальта или железа и наращивание изделия аддитивным процессом с получением изделия (11) с анизотропией свойств. Затем проводят термическую обработку полученного изделия (11), обеспечивающую перекристаллизацию и/или укрупнение зерен для снижения анизотропии свойств изготавливаемого изделия. Изготавливают трехмерное изделие аддитивным способом без анизотропии свойств. 16 з.п. ф-лы, 5 ил.

Изобретение относится к изготовлению породоразрушающего инструмента. Формируют в графитовой форме композиционную матрицу инструмента, содержащую включения в виде алмаза или твердого сплава, прессуют, затем проводят нагрев спрессованного инструмента до температуры пропитки с горячим прессованием и охлаждают инструмент на воздухе до 350°C. После снятия графитовой формы погружают инструмент в воду комнатной температуры и проводят последующую сушку. После сушки проводят закалку инструмента криогенной обработкой путем погружения его в жидкий азот и выдержкой в нем 16-20 минут, при этом формирование композиционной матрицы в графитовой форме осуществляют с учетом ожидаемого уровня остаточных напряжений в инструменте после криогенной обработки. Обеспечивается повышение стойкости и качества породоразрушающего инструмента. 1 табл.
Изобретение может быть использовано для изготовления рабочих органов машин разного назначения, взаимодействующих с высокоабразивной средой. Способ включает термическое воздействие на высокопрочный металл, придание ему заданной формы, крепление образованного износоустойчивого элемента к рабочему органу оборудования. Образуют трубчатую полую металлическую оболочку, например, прямоугольного, эллиптического, круглого или треугольного сечения. Полость оболочки полностью заполняют смесью флюса и порошкообразного высокопрочного металла и подвергают ее высокотемпературному воздействию. Спекают смесь до образования монолитного тела и образования зоны диффузии шириной от 10 до 30% толщины трубчатой оболочки между боковой поверхностью тела сплава и внутренней боковой поверхностью трубчатой оболочки. Полученный износоустойчивый элемент закрепляют к рабочему органу оборудования с помощью газовой или электродуговой сварки, образуют опорную поверхность в виде зоны диффузии между поверхностью рабочего органа и внешней частью металлической оболочки. Воздействием абразивной среды на упомянутый элемент удаляют металлическую оболочку, которая находится вне зоны, образованной опорной поверхностью. Технический результат заключается в обеспечении возможности придания любой необходимой формы износоустойчивому элементу и высокого качества крепления к любой металлической поверхности рабочего органа.

Изобретение относится к области упрочняющей обработки изделий из твердых сплавов. Техническим результатом изобретения является повышение ресурса работы инструментов, деталей машин и механизмов, работающих в условиях резания, трения и абразивного износа. Для достижения технического результата рабочую поверхность инструмента или изделия из твердого сплава облучают импульсным сильноточным электронным пучком с энергией 10-30 кэВ при длительности импульсов облучения 150-200 мкс и количеством импульсов 10-30, при давлении плазмообразующих газов в рабочей камере облучения 0,02-0,03 Па и плотности энергии в электронном пучке 40-60 Дж/см2, при этом в качестве плазмообразующего газа для получения электронного пучка используются инертные газы криптон или ксенон. 6 ил., 3 табл.

Изобретение относится к области металлургии, а именно к электроимпульсной обработке твердосплавных пластин режущего инструмента, и может быть использовано в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности. В способе обработки твердосплавных пластин режущего инструмента, включающем воздействие на пластины импульсным электрическим током, воздействие осуществляют импульсами электрического тока с частотой 10-100 кГц с энергией 1-100 кДж и длительностью воздействия 10-3-10-5 с. Повышается износостойкость инструмента и расширяются технологические возможности осуществления способа. 2 ил., 2 табл., 2 пр.
Наверх