Турбина двухконтурного газотурбинного двигателя

Изобретение относится к турбинам двухконтурных газотурбинных двигателей авиационного применения. Турбина двухконтурного газотурбинного двигателя включает турбины высокого и низкого давлений с опорами ротора турбин. Внутри ротора турбины низкого давления расположена воздушная полость повышенного давления, соединенная на входе с воздушной полостью первого соплового аппарата турбины низкого давления, а на выходе через заднее лабиринтное уплотнение - с проточной частью турбины низкого давления. Воздушная полость повышенного давления ограничена с внутренней стороны - первым и вторым лабиринтными уплотнениями. Уплотнения отделяют воздушную полость повышенного давления от воздушной полости пониженного давления. Воздушная полость пониженного давления разделена на переднюю и заднюю полости. Передняя полость расположена между опорой турбины высокого давления и конусным фланцем вала турбины низкого давления. Задняя полость расположена между конусным фланцем вала турбины низкого давления и опорой турбины низкого давления. Первое и второе лабиринтные уплотнения расположены друг относительно друга таким образом, чтобы отношение минимального диаметра по уплотнительным гребешкам первого лабиринтного уплотнения к минимальному диаметру по уплотнительным гребешкам второго лабиринтного уплотнения составляло 1,2…2,0. Изобретение позволяет повысить надежность и КПД турбины. 3 ил.

 

Изобретение относится к турбинам двухконтурных газотурбинных двигателей авиационного применения.

Известна турбина двухконтурного газотурбинного двигателя, в которой ротор турбины высокого давления и ротор турбины низкого давления установлены на подшипниках межтурбинной опоры (Патент US №6883303, 26.04.2005, F02C 7/20).

Недостатком такой конструкции является ее низкая экономичность из-за повышенных нагрузок от ротора на стойки турбины, которые деформируют в радиальном направлении корпус турбины.

Наиболее близкой к заявляемой является турбина двухконтурного газотурбинного двигателя, включающая опору ротора турбины высокого давления, установленную на выходе из турбины высокого давления, и опору ротора турбины низкого давления, установленную на выходе из турбины низкого давления (Патент US №7921634, 12.04.2011, F02K 3/02, F02K 3/072).

Недостатком известной конструкции, принятой за прототип, являются низкая надежность и коэффициента полезного действия (КПД) из-за повышенной величины осевой газовой силы, действующей на ротор турбины низкого давления.

Технический результат заявленного изобретения заключается в повышении надежности и КПД турбины за счет обеспечения охлаждения дисков всех ступеней ротора, исключения попадания горячего воздуха повышенного давления в масляные полости подшипниковых опор турбин высокого и низкого давления, а также уменьшения осевой силы, действующей на ротор турбины низкого давления.

Указанный технический результат достигается тем, что в турбине двухконтурного газотурбинного двигателя, включающей опору ротора турбины высокого давления, установленную на выходе из турбины высокого давления, и опору ротора турбины низкого давления, установленную на выходе из турбины низкого давления, внутри ротора турбины низкого давления расположена воздушная полость повышенного давления, соединенная на входе с воздушной полостью первого соплового аппарата турбины низкого давления, а на выходе через заднее лабиринтное уплотнение - с проточной частью турбины низкого давления, при этом воздушная полость повышенного давления выполнена ограниченной с внешней стороны дисками ротора турбины низкого давления, с передней по потоку газа стороны - опорой турбины высокого давления, с задней стороны - опорой турбины низкого давления, а с внутренней стороны - первым и вторым лабиринтными уплотнениями, отделяющими воздушную полость повышенного давления от воздушной полости пониженного давления, причем воздушная полость пониженного давления разделена на переднюю и заднюю полости, при этом передняя полость расположена между опорой турбины высокого давления и конусным фланцем вала турбины низкого давления, а задняя полость расположена между конусным фланцем вала турбины низкого давления и опорой турбины низкого давления, причем передняя полость соединена на входе через первое лабиринтное уплотнение с воздушной полостью повышенного давления, а на выходе через выполненные в конусном фланце вала каналы - с задней полостью, которая на входе через заднее лабиринтное уплотнение соединена с воздушной полостью повышенного давления, а на выходе через выполненные каналы в опоре турбины низкого давления - с атмосферой, при этом первое и второе лабиринтные уплотнения расположены друг относительно друга таким образом, чтобы соблюдалось соотношение D d = 1,2 2,0 , где:

D - минимальный диаметр по уплотнительным гребешкам первого лабиринтного уплотнения;

d - минимальный диаметр по уплотнительным гребешкам второго лабиринтного уплотнения.

Выполнение внутри ротора турбины низкого давления воздушной полости повышенного давления, соединенной на входе с воздушной полостью первого соплового аппарата турбины низкого давления, а на выходе через заднее уплотнение на выходе из турбины низкого давления - с проточной частью турбины низкого давления на ее выходе, и ограниченной с внешней стороны дисками ротора турбины низкого давления, с передней стороны - опорой турбины высокого давления, с задней стороны - опорой турбины низкого давления, позволяет исключить попадание высокотемпературного газа внутрь ротора турбины низкого давления, обеспечить надежное охлаждение дисков всех ступеней ротора, в том числе и на переходных режимах работы турбины, что повышает надежность турбины.

Выполнение внутри воздушной полости повышенного давления воздушной полости пониженного давления, отделенной с внешней стороны от воздушной полости повышенного давления первым (передним) и вторым (задним) лабиринтными уплотнениями, с внутренней стороны - валом турбины низкого давления и разделенной на переднюю полость пониженного давления, ограниченную с передней стороны опорой турбины высокого давления, с задней стороны - конусным фланцем вала турбины низкого давления, соединенную на входе через первое лабиринтное уплотнение с воздушной полостью повышенного давления, а на выходе, через каналы в конусном фланце вала турбины - с задней полостью пониженного давления, которая дополнительно на входе соединена через второе лабиринтное уплотнение с воздушной полостью повышенного давления, а на выходе, через каналы в опоре турбины низкого давления - с атмосферой, и которая ограничена с передней стороны конусным фланцем вала турбины низкого давления, а с задней стороны - опорой турбины низкого давления, повышает надежность турбины за счет исключения контакта высоконагруженного вала турбины низкого давления с высокотемпературным газом и обеспечивает надежную работу подшипниковых опор турбины высокого давления и турбины низкого давления, исключая попадание в масляную полость этих опор горячего воздуха повышенного давления.

Выполнение переднего лабиринтного уплотнения, отделяющего воздушную полость пониженного давления от внешней воздушной полости повышенного давления на большем диаметре по отношению к заднему лабиринтному уплотнению, позволяет существенно уменьшить осевую силу, действующую на ротор турбины низкого давления от газовых сил.

При D d < 1,2 увеличивается осевая сила от газовых сил, действующих на ротор турбины низкого давления; при D d > 2,0 ухудшается экономичность турбины из-за увеличения паразитных утечек охлаждающего воздуха из полости повышенного давления через переднее лабиринтное уплотнение в атмосферу.

На фиг.1 показан продольный разрез турбины двухконтурного газотурбинного двигателя; на фиг.2 показан элемент I на фиг.1 в увеличенном виде; на фиг.3 показан элемент II на фиг.1 в увеличенном виде.

Турбина 1 двухконтурного газотурбинного двигателя состоит из турбины 2 высокого давления и турбины 3 низкого давления. Ротор турбины 2 высокого давления установлен на подшипнике 4, размещенном в опоре 5 турбины 2 высокого давления, которая установлена на выходе 6 из турбины 2.

Ротор турбины 3 низкого давления установлен на подшипнике 7, размещенном в опоре 8 турбины 3 низкого давления, которая установлена на выходе 9 из турбины 3. Ротор турбины 3 низкого давления состоит из множества дисков 10, соединенных между собой конусными фланцами 11 и 12, а также из установленных на каждом из дисков 10 рабочих лопаток 13 и из вала 14 турбины 3 низкого давления, соединенного конусным фланцем 15 вала 14 с диафрагмой 16 диска 17. Каждый из дисков 10 состоит из ступицы 18, полотна 19 и обода 20.

Внутри ротора турбины 3 низкого давления организована полость 21 повышенного давления воздуха, ограниченная с внешней стороны дисками 10, с внутренней стороны - первым (передним) 22 и вторым (задним) 23 лабиринтными уплотнениями, с передней стороны - опорой 5 турбины 2 высокого давления и с задней стороны - опорой 8 турбины 3 низкого давления и соединенная на входе с воздушной полостью 24 сопловых лопаток 25 первого соплового аппарата турбины 3 низкого давления, а на выходе, через заднее выходное уплотнение 26, расположенное на выходе 9 из турбины 3 низкого давления - с проточной частью 27. Давление потока 28 охлаждающего воздуха, поступающего в воздушную полость 24 лопаток 25 из-за промежуточной ступени компрессора высокого давления (не показано), превышает давление потока 29 газа на входе в сопловой аппарат.

Первое (переднее) 22 и второе (заднее) 23 лабиринтные уплотнения ограничивают с внешней стороны воздушную полость 30 пониженного давления, которая ограничена с внутренней стороны валом 14 турбины 3 низкого давления, с передней стороны - опорой 5 турбины 2 высокого давления, с задней стороны - опорой 8 турбины 3 низкого давления и расположена внутри воздушной полости 21 повышенного давления.

Воздушная полость 30 пониженного давления разделена конусным фланцем 15 вала 14, выполненным с отверстиями (каналами) 31, на переднюю воздушную полость 32 пониженного давления и заднюю воздушную полость 33 пониженного давления. Полость 32 соединена на входе через первое (переднее) лабиринтное уплотнение 22 с воздушной полостью 21 повышенного давления, а на выходе, через отверстия 31, с задней воздушной полостью 33, которая на входе дополнительно соединена через второе (заднее) лабиринтное уплотнение 23 с воздушной полостью 21 повышенного давления, а на выходе, через выполненные в опоре 8 турбины 3 низкого давления отверстия (каналы) 34 - с атмосферой 35.

Пониженное давление воздуха в полостях 33 и 34 исключает попадание высокотемпературного воздуха в масляные полости 36 и 37 опор 4 и 8 турбины 1.

Первое (переднее) лабиринтное уплотнение 22 и второе (заднее) лабиринтное уплотнение 23 расположены друг относительно друга таким образом, чтобы соблюдалось соотношение D d = 1,2 2,0 , где:

D - минимальный диаметр по уплотнительным гребешкам первого (переднего) лабиринтного уплотнения 22;

d - минимальный диаметр по уплотнительным гребешкам второго (заднего) лабиринтного уплотнения 23.

Работает данное устройство следующим образом.

При работе турбины 1 двухконтурного газотурбинного двигателя поток 28 охлаждающего воздуха, проходящий через внутреннюю воздушную полость 24 сопловых лопаток 25, подогревается за счет тепла газового потока 29 и, далее поступая в полость 21, вызывает подогрев ступицы 18 и полотна 19 каждого из дисков 10 ротора 6 турбины 3 низкого давления, что снижает градиент температур между ободом 20 и полотном 19 каждого из дисков 10 и повышает их циклическую долговечность. Одновременно, за счет подогрева дисков 10, уменьшаются радиальные зазоры между ротором и статором турбины 3, что повышает ее коэффициент полезного действия.

Турбина двухконтурного газотурбинного двигателя, включающая опору ротора турбины высокого давления, установленную на выходе из турбины высокого давления, и опору ротора турбины низкого давления, установленную на выходе из турбины низкого давления, отличающаяся тем, что внутри ротора турбины низкого давления расположена воздушная полость повышенного давления, соединенная на входе с воздушной полостью первого соплового аппарата турбины низкого давления, а на выходе через заднее лабиринтное уплотнение - с проточной частью турбины низкого давления, при этом воздушная полость повышенного давления выполнена ограниченной с внешней стороны дисками ротора турбины низкого давления, с передней по потоку газа стороны - опорой турбины высокого давления, с задней стороны - опорой турбины низкого давления, а с внутренней стороны - первым и вторым лабиринтными уплотнениями, отделяющими воздушную полость повышенного давления от воздушной полости пониженного давления, причем воздушная полость пониженного давления разделена на переднюю и заднюю полости, при этом передняя полость расположена между опорой турбины высокого давления и конусным фланцем вала турбины низкого давления, а задняя полость расположена между конусным фланцем вала турбины низкого давления и опорой турбины низкого давления, причем передняя полость соединена на входе через первое лабиринтное уплотнение с воздушной полостью повышенного давления, а на выходе через выполненные в конусном фланце вала каналы - с задней полостью, которая на входе через заднее лабиринтное уплотнение соединена с воздушной полостью повышенного давления, а на выходе через выполненные каналы в опоре турбины низкого давления - с атмосферой, при этом первое и второе лабиринтные уплотнения расположены друг относительно друга таким образом, чтобы соблюдалось соотношение D d = 1,2 2,0 , где:
D - минимальный диаметр по уплотнительным гребешкам первого лабиринтного уплотнения;
d - минимальный диаметр по уплотнительным гребешкам второго лабиринтного уплотнения.



 

Похожие патенты:

Изобретение относится к роторам высокотемпературных турбомашин газотурбинных двигателей авиационного и наземного применения. В роторе (1) высокотемпературной турбомашины между первым (7) и вторым (8) и предпоследним (9) и последним (10) по потоку газа (11) уплотнительными гребешками в ободе (6) промежуточного диска 5 выполнены радиальные каналы (13) и (14), соединяющие воздушную междисковую полость (4) с газовой полостью (12) турбины.

Турбина низкого давления газотурбинного двигателя содержит лопаточные диски, соединенные с валом турбины через конусную цапфу. Лопаточные диски и конусная цапфа содержат на своей внутренней и наружной периферии, соответственно, кольцевые фланцы с выступами, образованными чередованием сплошных частей и полых частей.

Предложен вкладыш (10) и способ изменения уравновешивающего пар сквозного отверстия (54) в рабочем колесе (52) ротора паровой турбины. Вкладыш (10) содержит корпус (12), имеющий продольную ось (14) и противоположно расположенные первый и второй концы (16, 18).

Изобретение относится к области турбостроения и может быть использовано в конструкциях осевых компрессоров и турбин газотурбинных двигателей и энергетических установок.

Настоящее изобретение относится к области турбостроения и может быть использовано в конструкциях многоступенчатых компрессоров и турбин газотурбинных двигателей, энергетических установках паро- и гидротурбинах.

Радиальный кольцевой фланец элемента ротора или статора турбины газотурбинного двигателя содержит на внутренней периферийной части или на наружной периферийной части, соответственно, чередующиеся выпуклые части и части с углублениями, содержащие донные зоны.

Изобретение относится к многоступенчатым газовым силовым турбинам авиационных двигателей и установок наземного применения. Многоступенчатая газовая силовая турбина включает диски ротора, соединенные между собой фланцами с осевыми штифтами.

Радиальный кольцевой фланец содержит на внутренней или внешней периферии чередование выступов, имеющих отверстия для стягивающих крепежных болтов, и впадин, а также средства предотвращения неверного углового соединения, препятствующие прохождению болтов во впадину.

Изобретение относится к способу изготовления вала для турбины и/или генератора посредством сварного соединения и к валу, изготовленному упомянутым способом. Осуществляют удаление по меньшей мере с одной стороны основной ограничивающей круговой поверхности соответственно одной центральной части соответствующего элемента (5) вала относительно оси вращения (2) для получения соответственно одной открытой полости (11) по меньшей мере в одном цилиндре (3) в пределах оставшегося трубообразного ребра (13).

Сегментированный ротор турбины содержит множество рядов лопаток турбины и множество сегментов ротора. Сегменты ротора включают первый сегмент ротора, соединенный со вторым сегментом ротора в шве.

Прямозубое цилиндрическое зацепление между роторами движущихся деталей турбомашины содержит два зубчатых венца. Каждый зубчатый венец расположен на конце движущейся детали и находится в зацеплении с другим зубчатым венцом, оставляя свободным проход для воздуха между горловинами охватывающих частей и концами охватываемых частей зубьев. Зубчатый венец, по меньшей мере, одной движущейся детали продолжен в радиальном направлении относительно другого зубчатого венца для формирования внешнего или внутреннего расширения зубчатого венца напротив элемента, охватываемого движущейся деталью или охватывающего движущуюся деталь, установленную на другом зубчатом венце. Для защиты прохождения воздуха в соединении между роторами движущихся деталей один конец соединения продолжают в радиальном направлении относительно другого конца для формирования внешнего или внутреннего расширения. Расширение образуют напротив элемента, охватываемого движущейся деталью или охватывающего движущуюся деталь, установленную на другом конце соединения. Другое изобретение группы относится к роторной линии турбомашины, содержащей множество указанных выше прямозубых цилиндрических зацеплений между роторами деталей компрессоров и турбин. Группа изобретений позволяет исключить перекрытие прохода для воздуха, расположенного в соединении между роторами турбомашины. 3 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к области турбомашиностроения и, в частности, может быть реализовано в конструкции роторов осевых компрессоров и турбин. Ротор газотурбинного двигателя содержит диски рабочего колеса, сопряженные поверхностями внутреннего и внешнего кольцевых посадочных элементов, а также втулки с установленными в них штифтами. Во внутреннем и внешнем кольцевых посадочных элементах выполнены цилиндрические отверстия. Втулки размещены в отверстиях внешнего кольцевого посадочного элемента и имеют расширенный участок со стороны его внутренней поверхности. Во втулках выполнено отверстие под штифт, диаметр которого равен диаметру цилиндрического отверстия во внутреннем кольцевом посадочном элементе. Штифт зафиксирован от перемещения в радиальном направлении при помощи деформации наружной поверхности втулки. Изобретение позволяет повысить надежность соединения секций ротора компрессора или турбины, а также снизить габариты соединения кольцевых посадочных элементов. 2 з.п. ф-лы, 4 ил.

Газотурбинный двигатель включает вентилятор и компрессор низкого давления, рабочие колеса которых установлены на общем валу с помощью осевых болтов с гайками. На осевые болты между гайкой и фланцем крепления рабочего колеса вентилятора к валу установлены балансировочные удлинительные втулки, во внутренней полости которых расположен участок перехода от резьбовой части хвостовика болта к цилиндрической. Головки болтов зафиксированы вокруг своей оси фланцем лабиринта, а в осевом направлении - кольцом, установленным на валу вентилятора с помощью промежуточных втулок. Отношение наружного диаметра балансировочной втулки к диаметру цилиндрической части хвостовика болта составляет 1,2…3, отношение диаметра цилиндрической части хвостовика болта к длине балансировочной втулки 1,0…3, а отношение длины промежуточной втулки к длине головки болта 1…1,2. Изобретение позволяет повысить надежность газотурбинного двигателя за счет исключения дисбаланса ротора вентилятора и повышения прочности затяжки и осевой фиксации болтов крепления рабочих колес вентилятора и компрессора низкого давления к валу вентилятора. 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных ТРД. Вал компрессора низкого давления выполнен ступенчатой барабанно-дисковой конструкции, включающей не более четырех дисков. Каждый диск включает обод, переходящий в кольцевое полотно, усиленное массивной ступицей. Толщина полотном диска не менее чем в три раза меньше осевой ширины ступицы. Опертый на полотно обод снабжен системой наклонных пазов для установки хвостовиков рабочих лопаток. Пазы равномерно разнесены по периметру диска. Продольная ось каждого паза диска третьей ступени образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к оси пера, угол α установки хвостовика лопатки. Ободы первых трех дисков образуют относительно средней плоскости полотна две неравноплечие полки, которыми непосредственно или через проставки диски объединены в барабанно-дисковую конструкцию вала ротора. Вал собран из неразъемных монтажных секций. Полотно диска первой ступени и полотно диска третьей ступени снабжены кольцевыми элементами, неразъемно соединенными с ответными диафрагмами цапф передней и задней опоры. Образующая кольцевого элемента диска третьей ступени наклонена к оси вала под углом β. В заявленном узле диски соединены через кольцевые проставки. Проставки снабжены Г-образным в консольным отгибом, образующим фланец с системой отверстий для пропуска элементов разъемного соединения с соответствующим диском, радиально разнесенных по периметру фланца. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса вала ротора КНД без увеличения материалоемкости. 2 н. и 7 з.п. ф-лы, 3 ил.

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к рабочим колесам компрессоров низкого давления авиационных ТРД. Рабочее колесо первой ступени вала ротора компрессора низкого давления турбореактивного двигателя содержит диск со ступицей, центральным отверстием, полотно и обод, а также выпукло-вогнутых в поперечном сечении лопатки. Каждая лопатка включает перо и хвостовик. Обод ассиметрично соединен с полотном диска с образованием двух разноплечих наклонных в направлении вектора потока фронтальной и тыльной конических полок. Суммарная равноплечая часть ширины полок снабжена пазами, в которые заведены хвостовики лопаток. Тыльная полка обода дополнена выступающим за габарит пера лопатки кольцевым уширением, превышающим ширину фронтальной полки. Продольная ось каждого из пазов образует с осью рабочего колеса в проекции на условную осевую плоскость, нормальную к оси пера, угол α0 установки хвостовика в диапазоне значений α0=(17÷27)°. Пазы равномерно разнесены по периметру диска. При этом хорда боковых кромок пера в корневой зоне лопатки образует с осью ротора в проекции угол установки пера αк, нарастающий по радиальной высоте пера с градиентом закрутки пера, составляющим Gз.п.=(124,0÷186,8) [град/м]. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса рабочего колеса первой ступени КНД без увеличения материалоемкости. 2 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей. Диск последней ступени ротора компрессора низкого давления ТРД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод симметрично соединен с полотном диска с образованием равноплечих кольцевых полок. Полотно диска выполнено с возможностью разъемного соединения через проставку с полкой диска предшествующей ступени. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом образующей внешней поверхности обода относительно оси вала ротора. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол установки хвостовика лопатки. Пазы равномерно разнесены по периметру диска с заявленной угловой частотой и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса диска рабочего колеса последней ступени КНД без увеличения материалоемкости диска. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных ТРД. Вал компрессора низкого давления выполнен ступенчатой барабанно-дисковой конструкции, включающей не более четырех дисков. Каждый диск включает обод, переходящий в кольцевое полотно, усиленное массивной ступицей, снабженной центральным отверстием, ступенчато радиально нарастающим от первого к четвертому диску. Толщина полотна диска не менее чем в три раза меньше осевой ширины ступицы. Опертый на полотно обод снабжен системой наклонных относительно оси вала пазов для установки хвостовиков рабочих лопаток. Пазы равномерно разнесены по периметру диска. Продольная ось паза диска первой ступени образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к оси пера, угол установки хвостовика лопатки α=(19÷25)°. Ободы первых трех дисков образуют относительно средней плоскости полотна две неравноплечие полки, которыми непосредственно или через цилиндрические проставки диски объединены в барабанно-дисковую конструкцию вала ротора. Вал собран из неразъемных монтажных секций. Полотно диска первой ступени с фронтальной стороны и полотно диска третьей ступени с тыльной стороны снабжены коническими кольцевыми элементами, неразъемно соединенными с ответными коническими диафрагмами цапф передней и задней опоры. Образующая конического элемента диска первой ступени наклонена к оси вала под углом β. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса вала ротора КНД без увеличения материалоемкости. 5 з.п. ф-лы, 3 ил.

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к рабочим колесам компрессоров низкого давления авиационных ТРД. Рабочее колесо четвертой ступени вала ротора компрессора низкого давления турбореактивного двигателя содержит диск со ступицей, центральным отверстием, полотно и обод, а также рабочие лопатки, выполненные выпукло-вогнутыми в поперечном сечении. Каждая лопатка включает перо и хвостовик. Обод симметрично соединен с полотном диска с образованием двух равноплечих в направлении вектора потока фронтальной и тыльной конических полок. Обод снабжен пазами, в которые заведены хвостовики лопаток. Полотно диска снабжено системой равноудаленных от оси ротора отверстий. Продольная ось каждого из пазов образует с осью рабочего колеса в проекции на условную осевую плоскость, нормальную к оси пера, угол α0 установки хвостовика в диапазоне значений α0=(20÷32)°. При этом хорда боковых кромок пера в корневой зоне лопатки образует с осью ротора в проекции угол установки пера αк, нарастающий по радиальной высоте пера с градиентом закрутки пера, составляющим Gз.п.=(151,7÷274,0) [град/м]. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса рабочего колеса четвертой ступени КНД без увеличения материалоемкости. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных ТРД. Вал компрессора низкого давления выполнен ступенчатой барабанно-дисковой конструкции, включающей не более четырех дисков. Каждый диск включает обод, переходящий в кольцевое полотно, усиленное массивной ступицей. Толщина полотна диска не менее чем в три раза меньше осевой ширины ступицы. Опертый на полотно обод снабжен системой наклонных относительно оси вала пазов для установки хвостовиков рабочих лопаток. Пазы равномерно разнесены по периметру диска. Продольная ось каждого паза диска второй ступени образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к оси пера, угол α установки хвостовика лопатки. Ободы первых трех дисков образуют относительно средней плоскости полотна две неравноплечие полки, которыми непосредственно или через цилиндрические проставки диски объединены в барабанно-дисковую конструкцию вала ротора. Вал собран из неразъемных монтажных секций. Полотно диска первой ступени с фронтальной стороны и полотно диска третьей ступени с тыльной стороны снабжены коническими кольцевыми элементами, неразъемно соединенными с ответными коническими диафрагмами цапф передней и задней опор. В заявленном узле диски соединены через кольцевую проставку. Проставка снабжена системой кольцевых гребневых элементов лабиринтного уплотнения и Г-образным консольным отгибом, образующим кольцевой фланец с системой отверстий для пропуска элементов разъемного соединения с диском, радиально разнесенных по периметру фланца. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса вала ротора КНД без увеличения материалоемкости. 3 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей. Диск первой ступени ротора компрессора низкого давления ТРД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод асимметрично соединен с полотном диска с образованием разноплечих кольцевых конических наклонных полок. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом образующей внешней поверхности обода относительно оси вала ротора. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки. Пазы равномерно разнесены по периметру диска с заявленной угловой частотой и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Полотно снабжено коническим кольцевым элементом, выполненным с углом наклона образующей к геометрической оси диска, превышающим угол наклона образующей внешней поверхности обода. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса диска рабочего колеса первой ступени КНД без увеличения материалоемкости диска. 4 з.п. ф-лы, 3 ил.
Наверх