Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации

Изобретение относится к электротехнической промышленности и может быть использовано при создании никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА). Техническим результатом заявляемого изобретения является повышение надежности эксплуатации никель-водородной аккумуляторной батареи в составе КА. Поставленная задача решается тем, что предлагается способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата заключающийся в проведении ее зарядов, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании цилиндрических поверхностей аккумуляторов посредством термоплаты, находящейся с ними в тепловом сопряжении, термостатировании поверхностей аккумуляторов, не находящиеся в тепловом сопряжении с термоплатой, для повышения их текущей температуры и автономная система электропитания космического аппарата для реализации способа, содержащая солнечную батарею, подключенную к нагрузке через преобразователь напряжения, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку. полусфер аккумуляторов электронагревателями исходя из их текущих зарядных и разрядных напряжений, при этом термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой проводят для аккумуляторов имеющих повышенное зарядное напряжение или пониженное разрядное напряжение, а в автономную систему электропитания космического аппарата дополнительно введен стабилизатор тока, входом подключенный к входным или выходным шинам автономной системы электропитания, а выходом - к электронагревателям, соединенным в последовательную цепь, причем каждый электронагреватель в исходном состоянии шунтируют управляемыми коммутаторами, связанными с устройствами контроля аккумуляторных батарей. 2 н. и 1 з.п. ф-лы, 1 ил.

 

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при создании и эксплуатации никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА).

Известны аккумуляторные батареи и способы эксплуатации никель-водородных аккумуляторных батарей, описанные в технической литературе (см. Б.И.Центер, Н.Ю.Лызлов "Металл-водородные электрические системы", -Л.: "Химия," Ленинградское отделение, 1989 г., [1]).

Известен способ эксплуатации никель-водородной аккумуляторной батареи (авт.св. №1746443, H01M 10/44, 12/06), в котором управление заряд-разрядными циклами проводят по двухуставочному датчику давления с разницей уставок давления ΔР и температуре, а разряд оканчивают по минимальному напряжению, при достижении на разряде аккумуляторов минимального значения напряжения, периодически повышают уставки датчика давления, причем нижнюю уставку повышают до уровня верхней, а верхнюю - на величину ΔР.

При практическом применении известных способов эксплуатации никель-водородных аккумуляторных батарей были выявлены следующие особенности поведения аккумуляторов.

Так на одном из действующих геостационарных КА, в процессе эксплуатации аккумуляторной батареи, в отдельных аккумуляторах наблюдалось постепенное снижение давления водорода. Учитывая, что давление водорода пропорционально степени заряженности никель-водородного аккумулятора, констатируем, что в батарее возник постепенно нарастающий разбаланс аккумуляторов по емкости. Более тщательный анализ напряжения аккумуляторов показал, что имеется некоторое количество аккумуляторов, имеющих тенденцию к снижению емкости.

Появление в составе батареи ряда аккумуляторов с пониженной емкостью резко сокращает энергетические возможности и ресурс батареи и КА в целом.

Проведенные исследования показали, что причиной пониженного разрядного напряжения этих аккумуляторов явилось возникновение в них температурного градиента. В результате этого из электролита, в центральной области активной массы, «уходит» вода в более холодные граничные области и, как следствие, повышается внутреннее сопротивление аккумулятора с соответствующим понижением разрядного напряжения.

Такой же эффект снижения энергетических характеристик отдельных аккумуляторов зафиксирован при эксплуатации никель-водородной аккумуляторной батареи в составе КА Intelsat V F-6 и экспериментально подтвержден в лаборатории COMSAT (см. Martin Earl and Todd Burke Comsat Labs., Andrew Dunnet, INTELSAT. Method for Rejuvenating Ni-H2 Battery Cells. Eng. Conf. "Technol. Energy Effic. 21-st Century", San Diego, Calif., aug. 3-7, 1992: IECIC-92 Vo1.1, 1992, p.127-132 [2]).

Движущей силой данного процесса является градиент температур: чем он выше, тем интенсивнее во времени происходит конденсация пара из электролита на более холодных областях аккумулятора.

Существует предельный градиент температур, ниже которого не происходит конденсация пара (при 15°C - примерно 7°C, а при 25°C - около 8°C).

Наиболее близким по технической сущности является способ эксплуатации никель-водородной аккумуляторной батареи (патент RU №2366041), заключающийся в проведении ее зарядов, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании аккумуляторов посредством термоплаты, находящейся в тепловом сопряжении с цилиндрическими поверхностями аккумуляторов, согласно которому дополнительно термостатируют поверхности аккумуляторов, не находящиеся в тепловом сопряжении с термоплатой, для повышения их текущей температуры. Этот способ принят за прототип.

Известный способ позволяет пассивными средствами снизить вероятность появления критичного (выше предельного) градиента температур, что повышает надежность эксплуатации аккумуляторной батареи.

Однако эффективность известного способа распространяется на малые мощности циклирования аккумуляторных батарей. При разряде аккумуляторной батареи большими токами (более 0,5 номинальной емкости) и на глубину до 0,8 номинальной емкости и более вероятность появления критичного (выше предельного) градиента температур сохраняется, что снижает надежность эксплуатации никель-водородной аккумуляторной батареи.

Известна автономная система электропитания космического аппарата, описанная в материалах патента №2334337, RU, принятая за прототип. Известная автономная система электропитания КА содержит солнечную батарею, подключенную к нагрузке через преобразователь напряжения, аккумуляторные батареи, подключенные через зарядные преобразователи к солнечной батарее, а через разрядные преобразователи - к входу выходного фильтра преобразователя напряжения. При этом нагрузка в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию. Параллельно аккумуляторным батареям подключены устройства контроля аккумуляторных батарей, связанные входом с аккумуляторными батареями для контроля напряжения, давления и температуры аккумуляторов, а выходом - с нагрузкой.

Недостатком известной автономной системы электропитания является то, что она не решает задач, связанных с устранением эффекта перераспределения воды в аккумуляторах аккумуляторных батарей, что снижает надежность эксплуатации никель-водородной аккумуляторной батареи в составе КА.

Задачей заявляемого изобретения является повышение надежности эксплуатации никель-водородной аккумуляторной батареи в составе КА.

Поставленная цель достигается тем, что при проведении зарядов аккумуляторной батареи, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании цилиндрических поверхностей аккумуляторов посредством термоплаты, находящейся с ними в тепловом сопряжении, термостатировании поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой, для повышения их текущей температуры контролируют текущее напряжение аккумуляторов, а термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой, проводят путем выборочного принудительного нагрева вершин полусфер аккумуляторов электронагревателями исходя из их текущих зарядных и разрядных напряжений, при этом термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой, проводят для аккумуляторов, имеющих повышенное зарядное напряжение или пониженное разрядное напряжение, а в автономную систему электропитания космического аппарата, содержащую солнечную батарею, подключенную к нагрузке через преобразователь напряжения, первичный источник электроэнергии, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку, дополнительно введен стабилизатор тока, входом подключенный к входным или выходным шинам автономной системы электропитания, а выходом - к электронагревателям, соединенным в последовательную цепь, причем каждый электронагреватель в исходном состоянии шунтируют управляемыми коммутаторами, связанными с устройствами контроля аккумуляторных батарей.

Действительно, активный теплосъем с никель-водородной аккумуляторной батареи осуществляется посредством термоплаты, находящейся в тепловом сопряжении с цилиндрическими (наиболее теплонапряженными) поверхностями аккумуляторов. Пассивное термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой (для повышения их текущей температуры), применяемое в прототипе, малоэффективно и не способно к какому-либо регулированию в процессе эксплуатации аккумуляторной батареи. Применение же принудительного нагрева вершин полусфер аккумуляторов электронагревателями позволяет гибко регулировать степень нагрева практически в любой конкретной ситуации и своевременно парировать последствия от нежелательного градиента температур в осевом сечении аккумуляторов (повышение внутреннего сопротивления аккумулятора).

Суть предлагаемого способа поясняется чертежом, где приведена функциональная схема автономной системы электропитания КА (с одной аккумуляторной батареей) для реализации заявляемого способа.

Автономная система электропитания КА содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 - к входу выходного фильтра преобразователя напряжения 3. Аккумуляторная батарея 4 содержит в своем составе последовательно соединенные аккумуляторы 4-1, последовательно соединенные электронагреватели 4-2, каждый из которых зашунтирован управляемым коммутатором 4-3.

Нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию (не показано).

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторных батарей 7, связанное с аккумуляторной батареей 4 (для контроля напряжения и температуры аккумуляторов 4-1) и с нагрузкой 2.

Дополнительно в автономную систему электропитания введен стабилизатор тока 22, входом по питанию подключенный к выходным шинам автономной системы электропитания, а по управлению - к нагрузке 2, выходом же - к электронагревателям 4-2, соединенным в последовательную цепь, причем каждый электронагреватель в исходном состоянии зашунтирован управляемыми коммутаторами 4-3, связанными с устройством контроля аккумуляторной батареи 7.

В цепи заряда-разряда аккумуляторной батарей установлен измерительный шунт 8.

Зарядный преобразователь 5 состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе 15, транзисторах 16 и выпрямителя на диодах 17.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра-конденсатора 18 и выходного фильтра на диоде 19, дросселе 20 и конденсаторе 21.

Схемы управления: 10 - зарядного преобразователя 5, 12 - разрядного преобразователя 6 и 14 - преобразователя напряжения 3, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2, в качестве обратных связей по величине зарядного тока и напряжения нагрузки соответственно.

Устройство работает следующим образом. В процессе эксплуатации аккумуляторная батарея 4 работает в основном в режиме хранения и периодических подзарядов от солнечной батареи 1 через зарядный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности для прохождения теневых участков орбиты или на случай потери ориентации солнечной батареи ИСЗ на Солнце.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты либо при нарушении ориентации нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.

Устройство контроля аккумуляторов 7 контролирует напряжение и температуру аккумуляторов и передает информацию об их состоянии в нагрузку 2 (бортовую ЭВМ), в которой реализуются следующие технологические операции.

В бортовой ЭВМ обрабатываются данные по текущему значению напряжения аккумуляторов 4-1 при включении заряда и разряда аккумуляторной батареи 4. При этом оценивается факт повышения внутреннего сопротивления каких-либо аккумуляторов по их напряжению при включении заряда либо разряда. Далее на нагревателях этих аккумуляторов отключают шунтирование управляемыми коммутаторами. Включают стабилизатор тока 22. В процессе дальнейшей работы контролируют восстановление внутреннего сопротивления упомянутых аккумуляторов до нормального значения, о чем судят также по их напряжению при включении заряда либо разряда. По мере восстановления аккумуляторов соответствующие нагреватели вновь шунтируют, а по завершения процесса - стабилизатор тока 22 выключают.

По результатам анализа телеметрических данных, при необходимости, по командам с Земли через командно-измерительную радиолинию алгоритмы управления электронагревателями могут корректироваться.

Таким образом, предлагаемый способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания КА и автономная система электропитания для его реализации позволяют снизить величину температурного градиента в осевом направлении аккумуляторов в процессе эксплуатации аккумуляторной батареи, что повышает надежность эксплуатации никель-водородной аккумуляторной батареи в составе автономной системы электропитания КА.

1. Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата, заключающийся в проведении ее зарядов, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании цилиндрических поверхностей аккумуляторов посредством термоплаты, находящейся с ними в тепловом сопряжении, термостатировании поверхностей аккумуляторов, не находящиеся в тепловом сопряжении с термоплатой, для повышения их текущей температуры, отличающийся тем, что контролируют текущее напряжение аккумуляторов, а термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой, проводят путем выборочного принудительного нагрева вершин полусфер аккумуляторов электронагревателями исходя из их текущих зарядных и разрядных напряжений.

2. Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата по п.1, отличающийся тем, что термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой, проводят для аккумуляторов, имеющих повышенное зарядное напряжение или пониженное разрядное напряжение.

3. Автономная система электропитания космического аппарата для реализации способа по п.1, содержащая солнечную батарею, подключенную к нагрузке через преобразователь напряжения, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку, отличающаяся тем, что дополнительно введен стабилизатор тока, входом подключенный к входным или выходным шинам автономной системы электропитания, а выходом - к электронагревателям, соединенным в последовательную цепь, причем каждый электронагреватель в исходном состоянии шунтируют управляемыми коммутаторами, связанными с устройствами контроля аккумуляторных батарей.



 

Похожие патенты:

Изобретение относится к двум вариантам литий-ионной перезаряжаемой батареи, в которой в одном из вариантов электролит содержит по меньшей мере 1 мас.% циклического карбоната, содержащего винильную группу, и от 3 до 70 мас.% фторированного циклического карбоната от общей массы раствора электролита.

Изобретение относится к электролиту для фотоэлектрических устройств, содержащему полимерную сетку, которая содержит соединение, представленное формулой 2 или продукт его поперечной сшивки, и которая сшита с помощью соединения, представленного формулой 1,где R представляет собой атом водорода или алкильную группу, содержащую от 1 до 4 атомов углерода, А представляет собой алкиленовую группу, содержащую от 1 до 8 атомов углерода, или алкилиденовую группу, содержащую от 1 до 8 атомов углерода, R1 представляет собой водород или алкильную группу, содержащую от 1 до 4 атомов углерода, n представляет собой число от 1 до 17, и m представляет собой число от 2 до 19.

Изобретение относится к композиции смолы, используемой в качестве герметика, применению такой композиции, герметику для батареи с органическим электролитом, батарее с органическим электролитом и функциональному химическому продукту, содержащему вышеуказанную композицию смолы.

Предложенное изобретение относится к аккумуляторной батарее, в которой пакетированный электродный узел (20) с катодом, анодом и сепаратором (22) заключен вместе с раствором электролита между наружными элементами (30).

Заявляемая группа изобретений относится к электротехнике и может быть использована при создании и эксплуатации никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА).
Изобретение относится к электротехнике, в частности к устройствам, преобразующим химическую энергию в электрическую, и может найти применение при восстановлении никель-кадмиевых аккумуляторов, входящих в батареи, предназначенные для питания радиостанций, радиотелефонов и т.п.

Заявленное изобретение относится к области электротехники, а именно, к способу получения материала для положительного электрода литий-ионного аккумулятора и к самому аккумулятору.

Заявленное изобретение относится к области электротехники, а именно к биполярному электроду биполярной аккумуляторной батареи и к способу ее изготовления. Биполярный электрод состоит из первого слоя активного материала, который представляет собой, например, слой активного материала положительного электрода, сформированный из первого активного материала на одной стороне токоотвода, и второго слоя активного материала, который представляет собой слой активного материала отрицательного электрода, сформированный из второго активного материала с меньшей прочностью на сжатие, чем у первого активного материала, на другой стороне токоотвода.

Изобретение относится к кожухам аккумуляторов. Технический результат заключается в поддержании низкой температуры элемента путем уменьшения приема тепла во время неиспользования (без генерирования электроэнергии), обеспечении рассеяния тепла во время использования (при генерировании энергии) и сдерживании уменьшения емкости элемента из-за тепловой деградации.

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с низкой зимней температурой.

Изобретение относится к активирующему устройству с блоком автоматического выключателя для сдвоенной батарейной системы, которая содержит систему батарей питания, соединенную с электрической системой, содержащей стартерный двигатель и схему замка зажигания для транспортного средства, и систему стартерных батарей, выполненную с возможностью параллельного соединения с системой батарей питания посредством блока автоматического выключателя, который выполнен с возможностью переключения между разомкнутым состоянием и замкнутым состоянием, при этом в последнем состоянии система стартерных батарей способна питать электрическую систему энергией. Активирующее устройство содержит блок управления, сигнальный блок, выполненный с возможностью генерирования сигнала yi напряжения и передачи сигнала у напряжения в схему замка зажигания, блок контроля, выполненный с возможностью контроля сигнала у напряжения от соединения замка зажигания и с возможностью генерирования сигнала контроля на основании контролируемого сигнала у напряжения, и блок процессора, выполненный с возможностью сравнения сигнала контроля по меньшей мере с одним заранее определенным критерием детектирования и с возможностью генерирования на основе этого сравнения сигнала управления, который передается в блок управления. Изобретение также содержит способ активации блока автоматического выключателя в сдвоенной батарейной системе. Повышение надежности активирования устройства является техническим результатом изобретения 3 н. и 11 з.п.ф-лы, 5 ил., 3 табл.

Изобретение относится к композиции неводного электролита, включающей: фоновый электролит; органический растворитель; и химическое соединение (а1), представленное общей формулой (1): причем в формуле (1) О представляет собой кислород, Y и Z независимо друг от друга представляют собой один вид элемента, выбранного из группы 14 расширенного варианта Периодической таблицы, т.е. один вид элемента, выбранного из группы, состоящей из углерода (С), кремния (Si), германия (Ge) и олова (Sn), R1 и R2 независимо друг от друга представляют собой по меньшей мере один вид группы, выбранной из группы, состоящей из одновалентных алифатических углеводородных групп, одновалентных алициклических углеводородных групп и одновалентных ароматических углеводородных групп, и по меньшей мере какой-то один представляет собой группу с по меньшей мере одним видом галогена, выбранного из группы, состоящей из фтора (F), хлора (Сl), брома (Br) и йода (I), в качестве составляющего элемента. При этом содержание соединения (а1) составляет не менее чем 0,01 массовой части и не более чем 10 массовых частей по отношению к 100 массовым частям суммарного содержания фонового электролита и органического растворителя. Также изобретение относится к аккумуляторной батарее с неводным электролитом. Предлагаемая композиция обладает превосходной высокотемпературной устойчивостью. 2 н. и 4 з.п. ф-лы, 14 пр., 1 табл.

Изобретение относится к литий-ионным аккумуляторным батареям. Технический результат - увеличение циклов заряд/разряд без усложнения конструкции батареи. Литий-ионная аккумуляторная батарея включает в себя: наружный покровный материал, который заполнен электролитом; токоотвод, который заключен в наружном покровном материале, сформирован с электродным слоем, содержащим активный материал, и электрически соединен с этим электродным слоем; изоляционный слой, который предусмотрен на токоотводе; и элемент с низким потенциалом, который предусмотрен на изоляционном слое, имеет меньший окислительно-восстановительный потенциал, чем активный материал электродного слоя, и обладает восстановительной способностью по отношению к активному материалу.5 н.и 9 з.п. ф-лы, 8 ил.

Изобретение относится к аккумуляторному блоку, сформированному из нескольких аккумуляторных оболочек, уложенных одна поверх другой. Техническим результатом является повышение эффективности обогрева аккумуляторного модуля. Результат достигается тем, что в установленном в транспортном средстве аккумуляторе тонкие обогревательные модули размещаются таким образом, что они обращены к боковой поверхности, включающей в себя сторону вдоль направления укладки аккумуляторных оболочек (12), для аккумуляторного модуля (13), включающего в себя несколько аккумуляторных оболочек (12), уложенных одна поверх другой и имеющих форму прямоугольного параллелепипеда, имеющего три стороны. 4 з.п. ф-лы, 5 ил.

Данное изобретение относится к энергетической системе, использующей двигатель-генератор или общую сеть с источником переменного тока. Технический результат заключается в повышении энергосбережения системы. Энергетическая система, в частности, имеет характеристики, в соответствии с которыми ее максимальный выходной ток ограничен электромагнитными эффектами, и/или выходной постоянный ток или почти постоянный ток установлен ниже максимального выходного тока, для питания нагрузки и зарядки аккумуляторной батареи, или совместного питания нагрузки вместе с аккумуляторной батареей; когда установленный двигатель-генератор используется в качестве источника питания, в процессе своей работы, двигатель работает с лучшим значением удельного расхода топлива при торможении, и/или диапазоном частоты вращения и вращающим моментом для лучшего энергосбережения. 9 з.п. ф-лы, 7 ил.

Изобретение относится к нагревательному модулю, эффективному при управлении температурой аккумуляторного модуля, изготовленного посредством пакетирования определенного числа аккумуляторных элементов. Нагревательный модуль (22L, 22R) предоставляется вдоль нагреваемой поверхности (13CLa) объекта (13CL, 13CR), который должен быть нагрет и включает в себя пластинчатый основной элемент (34) нагревателя, который обращен к нагреваемой поверхности объекта, который должен быть нагрет; Г-образный элемент (31), включающий в себя основную поверхность (31m) модуля, на которой предоставляется пластинчатый основной элемент нагревателя, и фрагмент (31c) изогнутого плеча, изогнутый относительно основной поверхности модуля, и клемму (35) подключения источника питания, предоставляемую в фрагменте изогнутого плеча и соединенную с пластинчатым основным элементом нагревателя. Изобретение повышает эффективность нагрева за счет обеспечения размещения нагревательного элемента и подключения его источника питания без увеличения его толщины и размера. 4 з.п. ф-лы, 6 ил.

Изобретение относится к аккумулятору транспортного средства. Аккумулятор транспортного средства содержит один аккумуляторный модуль, размещенный под панелью пола транспортного средства; другой аккумуляторный модуль, размещенный рядом с одним аккумуляторным модулем и имеющий высоту, превышающую высоту одного аккумуляторного модуля. Также аккумулятор содержит нагревательные модули, расположенные спереди и сзади одного аккумуляторного модуля таким образом, что они обращены к боковым поверхностям одного аккумуляторного модуля и нагревают один аккумуляторный модуль. Один из нагревательных модулей размещен между одним аккумуляторным модулем и другим аккумуляторным модулем и имеет высоту, меньшую высоты другого аккумуляторного модуля. Аккумулятор может содержать третий аккумуляторный модуль, расположенный под задним сиденьем, причем все три модуля последовательно размещены от передней стороны транспортного средства, а нагревательный модуль, расположенный позади второго аккумуляторного модуля, размещен между вторым аккумуляторным модулем и третьим аккумуляторным модулем и имеет высоту, меньшую высоты третьего аккумуляторного модуля. Повышается эффективность нагрева. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к электрическим транспортным средствам. Технический результат - обеспечение возможности подогрева батареи. Во встроенной в транспортное средство аккумуляторной батарее по настоящему изобретению второй аккумуляторный модуль и третий аккумуляторный модуль, более высокий, чем второй аккумуляторный модуль, расположены под панелью пола транспортного средства. Третий аккумуляторный модуль предусмотрен смежным с задней стороной второго аккумуляторного модуля в направлении перед-зад транспортного средства. Встроенная в транспортное средство аккумуляторная батарея также включает в себя тонкий нагревательный модуль, предусмотренный в каждой из двух концевых областей, которые расположены над третьим аккумуляторным модулем в направлении верх-низ транспортного средства и не включают в себя среднюю область в направлении ширины транспортного средства, и выполненный с возможностью нагревать третий аккумуляторный модуль. 2 н. и 4 з.п. ф-лы, 5 ил.

Устройство контроля плотности электролита аккумуляторной батареи относится к электротехнической промышленности, а именно к области измерения и контроля технологических параметров. Техническим результатом изобретения является повышение точности и достоверности контроля плотности электролита аккумуляторной батареи в полевых условиях эксплуатации и создание усовершенствованного датчика показателя преломления электролита и измерения его плотности. Согласно изобретению устройство состоит из корпуса пробки с размещенными внутри него датчиком температуры и датчиком показателя преломления электролита, погруженными в электролит. Пробка ввинчивается в корпус аккумуляторной батареи. Датчик показателя преломления электролита содержит подключенный к генератору импульсов полупроводниковый монохроматический излучатель и согласованный с ним по оптическим характеристикам многоэлементный приемник излучения, кювету клиновидной формы, состоящую из двух клиновидных камер, одна из которых выполнена герметичной и заполнена дистиллированной водой, а другая заполнена электролитом аккумуляторной батареи через отверстия в донной части, оптические системы, формирующие потоки оптического излучения от излучателя через кювету к приемнику излучения. Устройство также дополнительно содержит многоканальный формирователь сигналов, электрически соединенный со всеми чувствительными элементами приемника излучения, мультиплексор, приемный регистр, микропроцессор и устройство отображения информации. 4 ил.

Изобретение относится к регулированию температуры батареи гибридного транспортного средства. Способ регулирования температуры тяговой батареи гибридного транспортного средства с двигателем внутреннего сгорания и электродвигателем включает обеспечение первого контура регулирования температуры для двигателя внутреннего сгорания; обеспечение второго контура регулирования температуры для тяговой батареи; осуществление нагрева тяговой батареи нагревателем, установленным во втором контуре регулирования температуры последовательно с насосом, радиатором и тяговой батареей. Дополнительно способ содержит этап передачи электрической мощности в нагреватель через преобразователь в первом контуре регулирования температуры от электродвигателя, когда температура батареи ниже заданного диапазона. Система для реализации способа содержит два контура регулирования температуры. Нагреватель первого контура является частью второго контура. Нагреватель обеспечивается электрической мощностью через преобразователь от электродвигателя. Достигается упрощение конструкции системы регулирования температуры. 2 н. и 7 з.п. ф-лы, 2 ил.
Наверх