Способ повышения виброустойчивости инклинометра

Изобретение относится к области измерительной техники и может быть использовано в нефтепромысловой геофизике для контроля пространственного положения траектории ствола скважин в процессе их строительства. Техническим результатом является виброустойчивость измерений при воздействии вибраций на инклинометр во время бурения скважины. Способ повышения виброустойчивости инклинометра заключается в том, что цифровой сигнальный процессор последовательно с заданным периодом опроса считывает с помощью аналого-цифрового преобразователя данные с трех магнитометрических и шести акселерометрических датчиков, образуя девять массивов накопленных измерений: Gx[0…N-1], Gy[0…N-1], Gz[0…N-1], Vx[0…N-1], Vy[0…N-1], Vz[0…N-1], Hx[0…N-1], Hy[0…N-1], Hz[0…N-1], также считывается текущая температура с датчика температуры. Затем цифровой сигнальный процессор вычисляет промежуточные средние значения Gxcp, Gycp, Gzcp, Vxcp, Vycp, Vzcp, максимальные и минимальные значения Gxмax, Gxmin, Gyмax, Gymin, Gzмax, Gzmin, и сравнивает разности (GxMax-Gxcp), (Gxcp-Gxmin), (Gyмax-Gycp), (Gycp-Gymin), (Gzмax-Gzcp), (Gzcp-Gzmin) с порогом «дрожания» измерений, который характеризуется верхним порогом отклонения максимального или минимального значения от среднего. При этом, если каждая из разностей меньше порога «дрожания», инклинометр переключается в режим «статика», в этом режиме процессор запоминает данное и еще два измерения с заданным промежутком, вычисляет инклинометрические углы, записывает их в память с пометкой «СТ1», «СТ2», «СТ3» для последующей передачи в скважинный прибор при возобновлении бурения. В случае, если любая из разностей больше порога «дрожания», то процессор сравнивает каждое измеренное значение с акселерометров Gxi, Gyi, Gzi [i=0…N-1] с заданным в установках пороговым значением «перегрузка». Причем, если величина модуля текущего i измерения меньше порогового значения «перегрузка», инклинометр переключается в режим «динамика», а если величина модуля текущего i измерения по любой координате больше или равна пороговому значению, то процессор переключается в режим «перегрузка». В режиме «перегрузка» все i измерения по всем трем координатам Gxi, Gyi, Gzi заменяются на i измерения Vxi, Vyi, Vzi. Причем, после того как процессор определил текущий режим измерения и произвел заполнение массивов, во всех режимах производится усреднение накопленных измерений по каждой координате акселерометров. Кроме того, процессор проводит усреднение по каждой координате магнитометров Нхср, Нyср, Hzcp из массивов Hx[0…N-1], Hy[0…N-1], Hz[0…N-1], после чего работа инклинометра продолжается в штатном режиме. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в нефтепромысловой геофизике для определения углового положения буровой скважины, а также в геомагнитной навигации для определения углов курса, крена и тангажа подвижного объекта. Изобретение предназначено для контроля пространственного положения траектории ствола скважин в процессе их строительства. Техническим результатом является повышение точности и виброустойчивости измерений, а также снижение стоимости инклинометра без потери точности измерения.

Известен инклинометр [Патент RU 2247942 C1], включающий трехкомпонентный магнитометрический датчик, трехкомпонентный акселерометр и корпус инклинометра, продольная ось которого коллинеарна одной из осей трехкомпонентного датчика и одной из осей трехкомпонентного акселерометра, снабженный немагнитной платформой, размещенной в корпусе инклинометра, и регулировочным устройством, при этом трехкомпонентный акселерометр размещен на немагнитной платформе, а регулировочное устройство выполнено с возможностью изменения углов крена и тангажа трехкомпонентного магнитометрического датчика относительно упомянутой платформы.

В известном инклинометре применена дорогостоящая немагнитная платформа, которая также увеличивает размеры корпуса инклинометра, а требуемая точность достигается путем регулировки платформы относительно корпуса инклинометра. Регулировочное устройство с платформой снижает виброустойчивость инклинометра за счет механического крепления платформы относительно корпуса. Также для перекрытия всего диапазона вибраций без потери точности требуются дорогостоящие акселерометры с большим током потребления.

Известен инклинометр [Патент RU 2348008 С2], который по совокупности существенных признаков наиболее близок к предлагаемому изобретению и принят за прототип. Инклинометр состоит из трехкомпонентного акселерометра 1 с диапазоном, достаточным для измерения вектора силы тяжести, трехкомпонентного акселерометра 2 с диапазоном, достаточным для измерения суммы ускорения свободного падения и виброускорения, действующего на инклинометр, трехкомпонентного магнитометра, датчика температуры, микроконтроллера. Акселерометр 1 высокостабильный имеет малый диапазон измерений. Акселерометр 2 имеет широкий диапазон, но обладает большим дрейфом смещения нуля, который корректируется по показаниям акселерометра 1.

В известном инклинометре в режиме «динамика» измерения проходят по «грубому» акселерометру 2, который имеет погрешность определения координат больше 0,2° по зенитному углу, а также акселерометр 2 корректируется по акселерометру 1 в скважине, что вносит дополнительную погрешность в измерение, особенно в условиях вибрации.

Задачей изобретения является повышение виброустойчивости инклинометра при обеспечении высокой точности измерений и невысокой стоимости инклинометра.

Поставленная задача решается предлагаемым способом повышения виброустойчивости инклинометра, состоящего из трех ортогональных магнитометрических датчиков, трех стабильных и точных ортогональных акселерометрических датчиков, трех акселерометрических датчиков большого диапазона ускорений, датчика температуры, аналого-цифрового преобразователя, цифрового сигнального процессора, преобразователя интерфейса и импульсного преобразователя напряжения, заключающимся в том, что цифровой сигнальный процессор последовательно с периодом опроса 1 мс считывает с помощью аналого-цифрового преобразователя данные с трех магнитометрических и шести акселерометрических датчиков в течение 4 секунд, образуя девять массивов накопленных измерений: Gx[4096], Gy[4096], Gz[4096], Vx[4096], Vy[4096], Vz[4096], Hx[4096], Hy[4096], Hz[4096], также считывается текущая температура с датчика температуры, затем цифровой сигнальный процессор вычисляет промежуточные средние значения Gxcp, Gycp, Gzcp, Vxcp, Vycp, Vzcp, максимальные и минимальные значения Gxмax, Gxmin, Gyмax, Gymin, Gzмax, Gzmin, затем сравнивает разности (Gxмax-Gxcp), (Gxcp-Gxmin), (Gyмax-Gycp), (Gycp-Gymin), (Gzмax-Gzcp), (Gzcp-Gzmin) с порогом «дрожания» измерений, который характеризуется верхним порогом отклонения максимального или минимального значения от среднего и если каждая из разностей меньше порога «дрожания», значит, в текущий момент нет бурения (например, при наращивании буровой колонны) и инклинометр переключается в режим «статика», в этом режиме процессор запоминает это и еще два измерения с промежутком 10 секунд, вычисляет инклинометрические углы, записывает их в память с пометкой «СТ1», «СТ2», «СТ3» для последующей передачи в скважинный прибор при возобновлении бурения, а если любая из разностей больше порога «дрожания», значит, в текущий момент нельзя замерять статику и процессор сравнивает каждое измеренное значение с акселерометров Gxi, Gyi, Gzi [i=0…4095] с заданным в установках пороговым значением «перегрузка» (для акселерометров это значение равно 95% от максимального рабочего диапазона). Например: для акселерометров диапазона ±4G пороговое значение равно 3,8G. Если величина модуля текущего i измерения меньше порогового значения «перегрузка», значит идет бурение и инклинометр переключается в режим «динамика», а если величина модуля текущего i измерения по любой координате больше или равна пороговому значению, то процессор переключается в режим «перегрузка», в этом режиме все i измерение по всем трем координатам Gxi, Gyi, Gzi заменяются на i измерение Vxi, Vyi, Vzi, причем после того как процессор определил текущий режим измерения и произвел заполнение массивов, во всех режимах производится усреднение накопленных измерений по каждой координате акселерометров, а также процессор проводит усреднение по каждой координате магнитометров Нхср, Hycp, Hzcp из массивов Нх[4096], Hy[4096], Hz[4096], после чего работа инклинометра продолжается в штатном режиме.

Предлагаемый способ повышения виброустойчивости работы инклинометра реализуется с помощью инклинометра, изображенного на блок-схеме.

Инклинометр содержит корпус 1, три ортогональных магнитометрических датчика 2, три стабильных и точных ортогональных акселерометрических датчика 3, три акселерометрических датчика большого диапазона ускорений 4, датчик температуры 5, аналого-цифровой преобразователь (АЦП) 6, цифровой сигнальный процессор (ЦСП) 7, преобразователь интерфейса (ПИ) 8 и импульсный преобразователь напряжения (ПН) 9.

Магнитометры (2) измеряют проекции магнитного поля Земли по трем осям Нх, Hy, Hz. Точные акселерометры (3) измеряют проекции линейного ускорения по трем осям Gx, Gy, Gz. Акселерометры большого диапазона ускорений (4) измеряют проекции линейного ускорения по трем осям Vx, Vy, Vz. Датчик температуры (5) измеряет текущую температуру Т. Аналоговые сигналы с магнитометров, акселерометров и датчика температуры поступают на аналого-цифровой преобразователь АЦП (6), где преобразуются в цифровой код для цифрового сигнального процессора ЦСП (7). Цифровой сигнальный процессор усредняет накопленные измерения по каждой координате акселерометров и магнитометров. Далее цифровой сигнальный процессор проводит температурную и геометрическую коррекцию компонентов акселерометров и магнитометров. После коррекции компонентов осуществляется расчет зенитного и визирного углов и азимута по известной методике (см., например, Исаченко В.Х. Инклинометрия скважин. М.: Недра, 1987). В режимах «динамика» и «перегрузка» рассчитанные зенитный угол, визирный угол и азимут передаются скважинному прибору по интерфейсу CAN, RS-232 либо RS-485 в зависимости от модификации скважинного прибора посредством преобразователя интерфейса ПИ (8). Питание всех блоков инклинометра осуществляется импульсным преобразователем напряжения ПН (9).

Точность и температурная стабильность измерений углов достигается при помощи калибровки датчика на предприятии изготовителе, введением поправочных коэффициентов в память инклинометра.

Сущность предлагаемого изобретения заключается в том, что, не зависимо от режима бурения, осуществляется считывание данных посредством аналого-цифрового преобразователя со всех датчиков: трех «точных» акселерометров Gx, Gy, Gz (например, диапазона ±2G, ±4G), трех «грубых» акселерометров Vx, Vy, Vz (например, диапазона ±12G, ±30G), трех магнитометров Нх, Hy, Hz и датчика температуры Т и в зависимости от величины разности любого текущего измерения от вычисленного промежуточного среднего значения текущее измерение «точных» акселерометров Gxi, Gyi, Gzi либо принимается, либо заменяется значением «грубых» акселерометров Vxi, Vyi, Vzi перед усреднением.

Способ повышения виброустойчивости измерений инклинометра осуществляется следующим образом:

1. ЦСП 7 последовательно с периодом опроса 1 мс считывает с помощью АЦП 6 данные с датчиков 2, 3, 4 (Нх, Hy, Hz, Gx, Gy, Gz, Vx, Vy и Vz) в течение 4 с. В итоге получаем девять массивов накопленных измерений: Gx[4096], Gy[4096], Gz[4096], Vx[4096], Vy[4096], Vz[4096], Hx[4096], Hy[4096], Hz[4096].

2. ЦСП считывает текущую температуру T с датчика 5.

3. ЦСП вычисляет: промежуточные средние значения Gxcp, Gycp, Gzcp, Vxcp, Vycp, Vzcp, максимальные и минимальные значения Gxмax, Gxmin, Gyмax, Gymin, Gzмax, Gzmin.

4. ЦСП сравнивает разности (Gxмax-Gxcp), (Gxcp-Gxmin), (Gyмax-Gycp), (Gycp-Gymin), (Gzмax-Gzcp), (Gzcp-Gzmin) с порогом «дрожания» измерений, который характеризуется верхним порогом отклонения максимального или минимального значения от среднего.

5. Если каждая из разниц меньше порога «дрожания», значит в текущий момент нет бурения (например, при наращивании буровой колонны) и инклинометр переключается в режим «статика». В этом режиме процессор запоминает это и еще два измерения с промежутком 10 секунд, вычисляет инклинометрические углы, записывает их в память с пометкой «СТ1», «СТ2», «СТ3» для последующей передачи в скважинный прибор при возобновлении бурения.

6. Если любая из разниц больше порога «дрожания», значит, в текущий момент нельзя замерять статику и процессор сравнивает каждое измеренное значение с акселерометров Gxi, Gyi, Gzi [i=0…4095] с заданным в установках пороговым значением «перегрузка» (для акселерометров это значение равно 95% от максимального рабочего диапазона). Например: для акселерометров диапазона ±4G пороговое значение равно 3,8G. Если величина модуля текущего i измерения меньше порогового значения «перегрузка», значит идет бурение и инклинометр переключается в режим «динамика».

7. Если величина модуля текущего i измерения по любой координате больше или равна пороговому значению, то процессор переключается в режим «перегрузка». В этом режиме все i измерения по всем трем координатам Gxi, Gyi, Gzi заменяются на i измерения Vxi, Vyi, Vzi.

8. После того как ЦСП определил текущий режим измерения и произвел заполнение массивов, во всех режимах производится усреднение накопленных измерений по каждой координате акселерометров.

9. ЦСП проводит усреднение по каждой координате магнитометров Нхср, Hycp, Hzcp из массивов Нх[4096], Hy[4096], Hz[4096].

10. Далее работа инклинометра продолжается в штатном режиме согласно описанию структурной схемы инклинометра.

Такой способ измерения, накопления и вычисления текущих проекций акселерометров позволяет в условиях вибрации достигать высокой точности за счет частичной замены измерений, вышедших за пределы диапазона измерения «точного» акселерометра, на показания «грубого» акселерометра, причем, чем ниже вибрация, тем меньше «грубых» измерений присутствуют в массиве для последующего усреднения и точность приближается к точности режима «статика» при отсутствии вибрации.

Предлагаемое изобретение позволяет повысить виброустойчивость и создать недорогой инклинометр с хорошей точностью измерений при воздействии вибрации во время бурения.

Способ повышения виброустойчивости инклинометра, состоящего из трех ортогональных магнитометрических датчиков, трех стабильных и точных ортогональных акселерометрических датчиков, трех акселерометрических датчиков большого диапазона ускорений, датчика температуры, аналого-цифрового преобразователя, цифрового сигнального процессора, преобразователя интерфейса и импульсного преобразователя напряжения, заключающийся в том, что цифровой сигнальный процессор последовательно с заданным периодом опроса считывает с помощью аналого-цифрового преобразователя данные с трех магнитометрических и шести акселерометрических датчиков, образуя девять массивов накопленных измерений: Gx[0…N-1], Gy[0…N-1], Gz[0…N-1], Vx[0…N-1], Vy[0…N-1], Vz[0…N-1], Hx[0…N-1], Hy[0…N-1], Hz[0…N-1], также считывается текущая температура с датчика температуры, затем цифровой сигнальный процессор вычисляет промежуточные средние значения Gxcp, Gycp, Gzcp, Vxcp, Vycp, Vzcp, максимальные и минимальные значения Gxмax, Gxmin, Gyмax, Gymin, Gzмax, Gzmin, затем сравнивает разности (GxMax-Gxcp), (Gxcp-Gxmin), (Gyмax-Gycp), (Gycp-Gymin), (Gzмax-Gzcp), (Gzcp-Gzmin) с порогом «дрожания» измерений, который характеризуется верхним порогом отклонения максимального или минимального значения от среднего и, если каждая из разностей меньше порога «дрожания», инклинометр переключается в режим «статика», в этом режиме процессор запоминает данное и еще два измерения с заданным промежутком, вычисляет инклинометрические углы, записывает их в память с пометкой «СТ1», «СТ2», «СТ3» для последующей передачи в скважинный прибор при возобновлении бурения, а если любая из разностей больше порога «дрожания», в этом случае процессор сравнивает каждое измеренное значение с акселерометров Gxi, Gyi, Gzi [i=0…N-1] с заданным в установках пороговым значением «перегрузка» и если величина модуля текущего i измерения меньше порогового значения «перегрузка», инклинометр переключается в режим «динамика», а если величина модуля текущего i измерения по любой координате больше или равна пороговому значению, то процессор переключается в режим «перегрузка», в этом режиме все i измерения по всем трем координатам Gxi, Gyi, Gzi заменяются на i измерение Vxi, Vyi, Vzi, причем, после того как процессор определил текущий режим измерения и произвел заполнение массивов, во всех режимах производится усреднение накопленных измерений по каждой координате акселерометров, а также процессор проводит усреднение по каждой координате магнитометров Нхср, Нyср, Hzcp из массивов Hx[0…N-1], Hy[0…N-1], Hz[0…N-1], после чего работа инклинометра продолжается в штатном режиме.



 

Похожие патенты:

Изобретение относится к устройствам для выверки и, в частности, к устройствам, которые могут быть использованы для выверки буровых установок с обеспечением правильного азимута бурения.

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях.

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа при бурении подземных формаций. Способ проведения измерений акустического каротажа включает группирование полученных форм акустических сигналов в одну из множества групп.

Изобретение относится к точному приборостроению и может быть использовано, например, для построения скважинных приборов (СП) непрерывных малогабаритных гироскопических инклинометров (ГИ) с автономной начальной выставкой (АНВ) в азимуте для определения координат оси симметрии скважин.

Изобретение относится внутрискважинной калибровке инструментов. Техническим результатом является устранение ограничений при калибровке скважинной аппаратуры температурного дрейфа и других ошибок датчика.

Предложенное изобретение относится к области бурения направленных скважин, в частности к методам управления направлением бурения скважин. Техническим результатом является повышение точности управления траекторией бурения и выравнивания одной скважины относительно другой скважины.

Изобретение относится к бурению скважины и может быть использовано для контроля забойных параметров и каротаже в процессе бурения. Техническим результатом является повышение качества исследования скважины за счет увеличения надежности передачи информации от забоя на поверхность.

Изобретение относится к исследованию нефтяных и газовых скважин, в частности к определению углов наклона и траектории ствола скважины. Техническим результатом является повышение точности определения траектории протяженных наклонных и горизонтальных скважин.

Предложенная группа изобретений относится к способу и устройству начального азимутального ориентирования скважинного прибора, в частности гироинклинометра. Техническим результатом является повышение точности начальной азимутальной ориентации, расширение области применения и повышение технико-экономических показателей гироинклинометра.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Изобретение относится к области геофизических исследований скважин и может быть использовано для наклонометрии пластов и трещин в разрезах нефтегазовых, угольных, рудных и других месторождений. Предложен наклономер, состоящий из герметичного диэлектрического корпуса с вращающимся внутри него сканирующим индукционным зондом, включающим излучающую, две компенсирующие и приемную дипольные катушки с взаимно перпендикулярными магнитными моментами, высокочастотный генератор, усилитель, фазочувствительный детектор, анализатор спектра и азимутальный датчик. При этом излучающая катушка выполнена из двух одинаковых секций, соединенных между собой последовательно через две запараллеленные квадрупольные компенсирующие катушки. Кроме того, излучающая катушка выполнена в виде сильно вытянутой вдоль оси зонда шестиугольной рамки с не менее чем 20-кратным отношением ее длины к ширине, сориентированной более острой вершиной в сторону приемной катушки и обеспечивающей наклон распределенного вдоль рамки вектора магнитного момента на заданный угол относительно оси зонда 82°. А квадрупольные компенсирующие катушки установлены на противоположных острых вершинах шестиугольной рамки соосно с зондом встречно направленными магнитными моментами. При этом магнитный момент приемной дипольной катушки находится в плоскости магнитного момента излучающей катушки и направлен под углом 8º к оси зонда. Техническим результатом является расширение диапазона чувствительности и избирательности наклономера. 3 ил.

Изобретение относится к области бурения наклонно-направленных скважин, преимущественно кустовым способом с использованием телеметрической системы. Техническим результатом является повышение точности определения относительного положения забоя бурящейся скважины (БС) относительно неограниченного количества эксплуатационных колонн (ЭК) ранее пробуренных скважин (ПС) с идентификацией номеров этих скважин. Предложена система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин, содержащая глубинную часть, включающую источник питания, генератор электромагнитных колебаний, выполненный в виде установленного в БС над долотом диполя, обеспечивающего электромагнитную связь между колонной БС и по меньшей мере одной ЭК ПБ, и наземную часть, включающую преобразователь параметра, являющегося функцией электрической характеристики участка цепи, образованной колонной БС и горной породой около дипольной области, в напряжение, и m преобразователей параметра, являющегося функцией электрической характеристики участка цепи, образованной ЭК ПС и участком горной породы, заключенной между долотом БС и ЭК ПС, в напряжение, где m - число ПС. При этом указанные преобразователи выполнены в виде тороидальной катушки индуктивности, расположенной коаксиально на устье (БС), и m таких же катушек, расположенных на устье (ПС), где m≥1, в качестве электрической характеристики участков горной породы выбрана величина наводимого тока в колоннах труб, определяемая по приведенному математическому выражению. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области бурения подземных буровых скважин и измерения в них. Техническим результатом является расширение функциональных возможностей и повышение информативности исследований. Предложен способ направления бурения буровой скважины в целевом подземном пласте, включающий этапы подготовки бурового оборудования, имеющего компоновку низа бурильной колонны, которая включает в себя управляемую подсистему наклонно-направленного бурения и направленный измерительный прибор каротажа во время бурения с возможностью кругового просмотра и упреждающего просмотра; определения наличия заданного типа особенности пласта в целевом пласте; и навигации траектории бурения в целевом пласте буровым оборудованием, включающей в себя прием сигналов измерений с направленного измерительного прибора, получение на основании принимаемых сигналов измерений показателей параметров пласта относительно особенности пласта в целевом пласте и управление подсистемой наклонно-направленного бурения для бурения в направлении, определяемом в зависимости от получаемых показателей параметров пласта. 3 н. и 20 з.п. ф-лы, 56 ил.

Изобретение относится к области геофизики, геологической разведки и может быть использовано при пробном, поисковом и эксплуатационном бурении скважин. Предложен способ зондирования, каротажа пород и позиционирования снаряда в буровой скважине, включающий генерацию электромагнитного и магнитного полей с помощью излучающей антенны и индуктора в виде постоянного магнита или электромагнита, дистанционные измерения параметров этих полей с помощью приемных антенн, трехосных магнитометров и градиентомеров, установленных в контрольных точках наблюдений (КТН) на поверхности Земли, и последующие вычисления на основе полученной при измерениях многомерной информации по соответствующим алгоритмам параметров идентифицируемых пород и параметров пространственного положения снаряда в буровой скважине. При этом излучающая антенна и индуктор размещены на снаряде в буровой скважине и изолированных от буровых труб с помощью немагнитной вставки. Предложенный способ обеспечивает упрощение технологии получения многомерной информации и ее обработки. 2 ил.

Изобретение относится к приборам для каротажа скважин. Техническим результатом является повышение надежности работы устройства и точности измерений за счет исключения систематических погрешностей прибора. Предложено устройство для шагового перемещения приспособления вокруг оси шагового перемещения, содержащее опору для поддержания приспособления для вращения вокруг оси шагового перемещения, причем опора содержит поворотное крепление, поддерживаемое на основании, для вращения вокруг поперечной оси, пересекающей ось шагового перемещения, и механизм привода шагового перемещения для шагового перемещения приспособления вокруг оси шагового перемещения. Причем механизм привода шагового перемещения содержит ведущую часть и ведомую часть. При этом ведущая часть выполнена на основании, а ведомая часть выполнена на поворотном креплении и соединена с возможностью передачи приводного усилия с приспособлением. Кроме того, ведомая часть способна входить в зацепление и выходить из зацепления с ведущей частью при вращении поворотного крепления вокруг поперечной оси, посредством чего, когда ведомая часть находится в зацеплении с ведущей частью, она может получать приводное усилие, приводящее к шаговому перемещению приспособления вокруг оси шагового перемещения. Раскрыты также прибор для каротажа, включающий указанное устройство шагового перемещения, и способ каротажа с использованием упомянутого прибора. 5 н. и 32 з.п. ф-лы, 26 ил.

Изобретение относится к кустовой разработке месторождений нефти и газа при использовании направленного бурения с применением скважинной телеметрической системы и станции геолого-технологических исследований (СГТИ). Задачей изобретения является раннее обнаружение опасности пересечения бурящейся скважины с уже существующей скважиной (скважинами) с возможностью выбора направления изменения траектории бурения для предотвращения встречи стволов. Для этого система содержит несколько устройств сбора данных (по одному на скважину, с которой имеется возможность пересечения), состоящих из датчика вибрации, усилителя-преобразователя, модуля беспроводной сети и антенны, а также ПЭВМ, подключенную к беспроводной сети и содержащую программное обеспечение, включающее в себя блок приема данных, многоканальный блок расчета кепстра, многоканальный блок хранения образцов кепстров, многоканальный блок расчета корреляции кепстров, многоканальный блок сравнения коэффициентов корреляции с порогом предупреждения и блок кодирования данных в формат СГТИ. 1 ил.

Предложенная группа изобретений относится к измерительной технике, в частности к технике создания скважинных инклинометрических систем, и может быть использована в горном деле для контроля деформационных процессов горных пород и закладочного массива. Техническим результатом является повышение точности измерения угла наклона субгоризонтальной скважины относительно горизонтальной плоскости и повышение точности определения местоположения зон локализации деформаций (критических зон). Предложен скважинный инклинометрический зонд, содержащий цилиндрический корпус со средствами измерения угла наклона субгоризонтальной скважины, помещенный в обсадной трубе для установки в указанной скважине с возможностью перемещения вдоль продольной ее оси. При этом средства измерения угла наклона субгоризонтальной скважины реализованы размещенными перпендикулярно друг другу измерительным датчиком угла наклона указанной скважины относительно горизонтальной плоскости, установленным в плоскости продольной оси корпуса, и датчиком контроля положения упомянутого измерительного датчика в вертикальной плоскости путем поворота зонда досылочными элементами корпуса. Указанные датчики связаны со входами блока согласования, соединенного с выходом указанного зонда. С внешней стороны корпус имеет по меньшей мере две опоры, закрепленные в нижней части корпуса на его концах, а в верхней части - по меньшей мере два подпружинивающих элемента для постоянного контакта опор в нижней части корпуса с внутренней поверхностью обсадной трубы. Предложена также система для определения вертикальных сдвижений горных пород и закладочного массива, включающая последовательно соединенные упомянутый зонд, электронный блок, выполненный на основе аналого-цифрового преобразователя с блоком питания, интерфейсную подсистему с прикладным программным обеспечением сбора и хранения информации. При этом электронный блок снабжен соединенным с аналого-цифровым преобразователем и блоком питания модулем передачи данных в цифровой форме в режиме реального времени в указанную интерфейсную подсистему, которая реализована в виде персонального компьютера с общим и прикладным программным обеспечением обработки и преобразования информации, дополнительно включающим блок предварительной обработки сигналов указанных датчиков и блок выбора режимов проведения эксперимента, соединенные со входами блока отображения текущей информации в графической форме и управления экспериментом, выход которого соединен со входом блока представления данных и хранения файлов. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к способам и оборудованию, применяемым в технологических процессах, связанных с эксплуатацией подземной скважины, в частности к ориентированию обсадных или заливочных колонн. Техническим результатом является повышение точности ориентирования скважинных средств. Предложено устройство для ориентирования приспособления в наклонном стволе скважины по изменению давления флюида на предварительно определенную величину при известном расходе потока, протекающего через ориентирующий переводник, содержащее указанный ориентирующий переводник, соединенный с наружным корпусом с возможностью разъединения и имеющий втулку, вращаемую вместе с наружным корпусом, и ориентирующий механизм, соединенный с втулкой и вращаемый совместно с ней. При этом ориентирующий механизм содержит: наружную гильзу, соединенную с втулкой и вращаемую совместно с ней, и внутреннюю гильзу, вращаемую вместе с наружной гильзой. Причем ориентация внутренней гильзы относительно приспособления постоянна, а изменение давления происходит при повороте внутренней гильзы до некоторого положения, соответствующего заданной ориентации в скважине. Кроме того, ориентирующий механизм содержит поршень, перемещаемый в осевом направлении относительно внутренней гильзы. Причем в первом положении поршня задана первая траектория движения потока, соответствующая нежелательному положению приспособления, а во втором положении поршня задана вторая траектория движения потока, которая характеризуется большим сопротивлением потоку и соответствует требуемому положению и желательной ориентации приспособления, что сопровождается увеличением давления. При этом устройство содержит свободно перемещающийся шарик, расположенный в канавке, выполненной в наружной поверхности поршня, причем во внутренней гильзе имеется приемник для свободно перемещающегося шарика, а приспособление занимает положение, соответствующее требуемой ориентации в скважине, когда положение приемника выровнено по местоположению свободно перемещающегося шарика. Кроме того, ориентирующий переводник выполнен с возможностью отсоединения от наружного корпуса, когда приспособление находится в положении, соответствующем требуемой ориентации. Раскрыты также способы ориентирования приспособления в колонне труб в наклонной скважине с применением указанного устройства. 4 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к картированию и бурению скважин. Техническим результатом является повышение точности определения траектории скважины между пунктами инклинометрии и расчета положения скважины. Предложен способ определения траектории скважины, формируемой бурильной колонной. Указанный способ содержит: прием данных, характеризующих один или более параметров бурения между, по меньшей мере, двумя точками инклинометрии; усреднение полученных данных за заданные шаги приращения между указанными, по меньшей мере, двумя точками инклинометрии; расчет исходя из, по меньшей мере, указанных усредненных данных прогнозируемой реакции бурильной колонны для каждого из заданных шагов приращения; определение исходя из, по меньшей мере, указанной прогнозируемой реакции бурильной колонны изменения угла наклона и азимута для каждого из заданных шагов приращения; формирование прогнозируемой траектории скважины исходя из указанного изменения угла наклона и азимута; сравнение указанной прогнозируемой траектории скважины с измеренной траекторией скважины; и если результаты указанного сравнения приемлемы, определение вероятного положения скважины исходя из указанного изменения угла наклона и азимута для каждого из заданных шагов приращения. Раскрыты также машиночитаемый носитель и система для реализации указанного способа. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Предложен тренажер, состоящий из кожуха, источника света, угломерной шкалы в виде полукруга с отвесом, и пластины. При этом тренажер дополнительно снабжен имитатором буровой машины, включающим буровую штангу с буровым молотком и присоединенную к нему шарнирно опору, соединенную с основанием. Причем оси источника света, бурового молотка и буровой штанги расположены в одной вертикальной плоскости, а на пластине размещена угловая шкала, проградуированная по приведенному математическому выражению. Кроме того, буровая штанга выполнена телескопической, с возможностью соединения с шаровой пятой шарового шарнира, закрепленного на плоскости забоя. Опора бурового молотка выполнена телескопической, а пластина выполнена в виде дуги. Технический результат заключается в возможности обучения глазомерному расположению буровой машины относительно плоскости забоя. 3 з.п. ф-лы, 7 ил.
Наверх