Турбина для геотермальной электростанции

Изобретение относится к теплоэнергетике, в частности к установкам, использующим теплоту геотермальных источников в виде газопароводяной смеси с повышенным солесодержанием. Предлагается турбина, в которой корпус, вал и рабочие лопатки выполнены полыми и сообщающимися между собой. При этом вершины рабочих лопаток выполнены в виде овальной формы, а толщина их стенок не превышает толщину стенки корпуса турбины. В полости корпуса турбины и рабочих лопаток проходит холодная вода, снижающая температуру их стенок, благодаря чему удается предотвратить отложения карбоната кальция на поверхности турбины. Изобретение позволяет повысить эффективность использования энергии геотермальных источников за счет исключения потерь механического и некоторого теплового потенциала геотермальных вод, а также исключения затрат на очистку геотермального теплоносителя от растворенных в нем солей жесткости. 2 ил.

 

Изобретение относится к теплоэнергетике, в частности к установкам, использующим теплоту геотермальных источников в виде газопароводяной смеси с повышенным солесодержанием.

Наличие в геотермальной воде большого количества растворенных солей и газов ограничивает возможности широкого использования традиционных видов турбин на геотермальных электростанциях (ГеоТЭС). При выходе на поверхность Земли парциальное давление углекислого газа в воде уменьшается. При этом в растворе геотермальной воды возможно нарушение углекислотного равновесия с образованием твердой фазы карбоната кальция как в толще воды в виде взвешенных частиц, так и на поверхности оборудования в виде отложений. При использовании высокопотенциальных вод (температура воды свыше 100°С) эти процессы протекают с большой скоростью. В расширителях и дегазаторах ГеоТЭС возможны интенсивные отложения карбоната кальция. Для исключения этих отложений на лопатках самой турбины и на ее корпусе необходима высокая очистка геотермального теплоносителя от содержащихся в нем растворенных солей жесткости.

Известно, что для геотермального теплоносителя на любой скважине в эксплуатируемом оборудовании можно создавать такие условия, при которых в нем не образуются отложения карбоната кальция. Этого можно добиться путем охлаждения стенки оборудования до температуры, ниже которой при данном давлении из раствора геотермальной воды не выделяется твердая фаза карбоната кальция [1-5].

Однако, если стенку оборудования, в котором находится турбина, или стенку расширителя, дегазатора геотермальной воды можно защитить охлаждением ее до температуры, ниже которой не идут отложения [5], то турбину ГеоТЭС можно защитить только предварительной очисткой геотермального теплоносителя от растворенных в нем солей жесткости. В то же время, в расширителях и дегазаторах ГеоТЭС имеет место некоторое снижение механического и теплового потенциала геотермального теплоносителя (уменьшается давление и температура воды). Вследствие этого, а также из-за наличия затрат на очистку геотермального теплоносителя от растворенных в нем солей жесткости, в общем, снижается эффективность использования энергии геотермального источника.

Технической задачей, на решение которой направлено предлагаемое изобретение, является повышение эффективности использования энергии геотермальных источников за счет исключения затрат на очистку геотермального теплоносителя от растворенных в нем солей жесткости, а также исключения потерь механического и некоторого теплового потенциала геотермальных вод.

Технический результат достигается тем, что в турбине для геотермальной электростанции, содержащей корпус на валу, рабочие лопатки и сопло для подачи рабочего тела, корпус, вал и рабочие лопатки выполнены полыми и сообщающимися между собой, при этом толщина стенок рабочих лопаток не превышает толщину стенки корпуса, а вершины лопаток имеют овальный профиль.

На фиг.1 показана принципиальная схема предлагаемой турбины для геотермальной электростанции, а на фиг.2 - вид фиг.1 по А-А.

Турбина для геотермальной электростанции состоит из полого корпуса 1, соединенного по обоим торцам с валом 2 в виде полой трубы, рабочих лопаток 3 в виде полых выступов на корпусе 1 с овальным профилем верхушек 4, сопла 5 для подачи геотермального теплоносителя на лопатки 3. При этом полости корпуса 1, вала 2 и рабочих лопаток 3 сообщаются между собой.

Турбина работает следующим образом.

Геотермальный теплоноситель 6 в виде газопароводяной смеси подается на рабочие лопатки 3 через сопло 5. Под действием сил давления струи газопароводяной смеси турбина приходит во вращение. Одновременно с одного торца турбины через вал 2 подается холодная вода 7 во внутрь корпуса 1. При этом холодная вода 7 заполняет корпус 1 турбины только на половину его емкости. Вода 7, проходя внутри корпуса 1, попадает в полость лопаток 3 турбины и выводится из корпуса 1 через противоположный торец турбины по валу 2.

Вращение турбины и заполнение емкости корпуса 1 только наполовину интенсифицирует процесс турбулизации потока воды внутри полости корпуса 1 и рабочих лопаток 3. Этому способствует также и периодическое перетекание холодной воды из корпуса 1 в полость лопаток 3 и обратно. В то же время, выполнение стенок рабочих лопаток 3 толщиной не более толщины стенки корпуса 1 уменьшает термическое сопротивление их стенок. В итоге все это приводит к охлаждению стенок корпуса 1 и рабочих лопаток 3 турбины со стороны геотермального теплоносителя до температуры, при которой отсутствует выделение из раствора геотермальной воды твердой фазы карбоната кальция [1, 2]. Дополнительным условием охлаждения стенок корпуса и лопаток является еще тот факт, что время контакта с ними холодной воды больше, чем время контакта газопароводяной смеси. Овальный профиль верхушек 4 со стенкой не более толщины стенки корпуса 1 позволяет равномерно охлаждать всю их поверхность.

Благодаря охлаждению стенок корпуса турбины и ее лопаток предлагаемое техническое решение позволяет непосредственно подавать геотермальный теплоноситель из скважины без промежуточного оборудования (дегазаторы, расширители), где возможна потеря некоторого энергетического потенциала (давление, температура). В то же время, после прохождения через турбину холодная вода может быть подана во вторичный контур теплообменника для дальнейшей утилизации тепла геотермального теплоносителя, подведенного в первичный контур того же теплообменника. А утилизация горючих газов из геотермального теплоносителя может быть осуществлена на любой стадии после прохождения им предлагаемой турбины.

Таким образом, благодаря выполнению в турбине корпуса, вала и рабочих лопаток полыми и сообщающимися между собой, а рабочих лопаток с овальной формой их вершин и со стенками толщиной не более толщины стенки корпуса турбины, удается повысить эффективность использования энергии геотермальных источников в виде газопароводяной смеси с повышенным солесодержанием.

Источники информации

1. Ахмедов Г.Я. Проблемы солеотложения при использовании геотермальных вод для горячего тепловодоснабжения // Промышленная энергетика.- №9.- 2009.

2. Ахмедов Г.Я. Защита геотермальных систем водоподготовки от карбонатных отложений // Энергосбережение и водоподготовка. - №6. - 2010.

3. Ахмедов Г.Я. Устройство для очистки жидкости. А.с. СССР №1583135. МКИ В01D 21/24, С02F 5/00. Заявл. 26.10.88., опубл.07.08.90. Бюл. №29.

4. Ахмедов Г.Я. Геотермальная установка. Патент №91384. МПК F03G 7//00. Заявл. 04.05.2008. опубл. 10.02.2010. Бюл. №4.

5. Ахмедов Г.Я. Геотермальное устройство. Патент №2406944. МПК F24J 3/08. Заявл. 06.04.2009., опубл. 20.12.2010. Бюл. №35.

Турбина для геотермальной электростанции, содержащая корпус на валу, рабочие лопатки, сопло для подачи рабочего тела, отличающаяся тем, что корпус, вал и рабочие лопатки выполнены полыми и сообщающимися между собой, при этом толщина стенки рабочих лопаток не превышает толщину стенки корпуса, а вершины лопаток имеют овальный профиль.



 

Похожие патенты:

Изобретение относится к получению тепловой и электрической энергии и обработке отходов производства на основе использования высокотемпературных гидротермальных систем, в частности к использованию пароводяных смесей из геотермальных скважин.

Изобретение относится к выработке энергии посредством водяного пара, а точнее к модульной энергетической установке, работающей от источника геотермального пара. .

Изобретение относится к энергетике. Система управления циклом Калины контролирует один или несколько рабочих параметров цикла Калины.

Способ преобразования тепловой энергии в электричество, теплоту повышенного потенциала и холод включает следующие этапы. Выпаривают хладагент из крепкого раствора.

Изобретение относится преимущественно к автономным системам и установкам энергообеспечения, использующим как различные виды топлива, так и возобновляемые источники энергии, например энергию солнца, и предназначено для обеспечения отопительным теплом, горячей водой, холодом и электроэнергией различных объектов, имеющих неравномерную энергетическую нагрузку.

Изобретение относится к машиностроению. В предложенных прямых и обратных термохимических циклах между основными сорбционными процессами введены процессы регенерации теплоты в цикле на базе регенераторов теплоты с теплоаккумулирующей набивкой.

Изобретение относится к способу преобразования теплоты в работу в тепловом двигателе. Способ включает выполнение рабочего тела теплового двигателя в виде смеси веществ, между которыми протекает обратимая химическая реакция.

Изобретение относится к области энергетики и может быть использовано в двигателестроении, в частности в двигателях. В качестве рабочего тела применяется окись углерода, которое в рабочем цикле используется в жидкой и газовой фазах и в виде двухфазной смеси.

Изобретение относится к способу функционирования термодинамического контура согласно родовому понятию пункта 1 формулы изобретения, а также к термодинамическому контуру согласно родовому понятию пункта 7 формулы изобретения, подобный контур описан, например, в ЕР 1 613 841 В1.

Изобретение относится к области преобразования тепловой энергии в механическую с использованием рабочей жидкости, в частности, с целью генерирования электроэнергии, однако не ограничивается этим применением.

Изобретение относится к устройствам, преобразующим тепловую энергию в механическую, а более конкретно к тепловому приводу, обеспечивающему утилизацию тепла отводящих газов котельной и использование их энергии для привода, например конвейера удаления шлама. Тепловой привод содержит последовательно расположенные в парожидкостном тракте испаритель, заполненный кипящей жидкостью, парожидкостный патрубок, тепловую трубу, гидрорукав, гидродвигатель и холодильник. Холодильник совмещен с гидростатическим гидроаккумулятором, где последний расположен над тепловой трубой и парожидкостным патрубком, соосно с ним и отделен от него перегородкой, имеющей сквозное отверстие с клапаном, выполненным в виде подвижного золотника, расположенного на штоке, закрепленном к дну тепловой трубы, и снабженного свободно установленными и охватывающими золотник, поплавком и пружиной, размещенными между клапаном и буртом, которые связаны с золотником, а верхняя часть тепловой трубы сообщена с испарителем наклонно установленным патрубком, сечение которого значительно больше сечения проектируемого потока жидкости, поступающей самотеком от тепловой трубы в испаритель. 1 ил.

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем направляют в теплообменник, в котором вырабатывают тепловую энергию, по меньшей мере часть сжатого воздуха, отбираемого из компрессора, используют для проведения паровоздушной конверсии природного газа в адиабатическом реакторе конверсии, при которой получают газообразное топливо, при этом по меньшей мере часть тепловой энергии, вырабатываемой в теплообменнике, используют для получения водяного пара, смешиваемого со сжатым воздухом перед паровоздушной конверсией природного газа, а другую часть тепловой энергии, вырабатываемой в теплообменнике, используют для отпуска потребителям водяного пара или горячей воды. Изобретение позволяет повысить эффективность преобразования энергии. 10 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к энергетике. Система сжатия диоксида углерода включает компрессорные ступени, расположенные последовательно, для последовательного сжатия газообразного потока, содержащего диоксид углерода. Между по меньшей мере некоторыми из последовательно расположенными компрессорными ступенями расположены межстадийные теплообменники для удаления отходящего тепла из сжатого газообразного потока и переноса указанного тепла в блок преобразования энергии, в котором по меньшей мере часть отходящего тепла рекуперируют и превращают в механическую энергию. Изобретение позволяет повысить эффективность сжатия диоксида углерода. 2 н. и 19 з.п. ф-лы, 7 ил.

Изобретение относится к теплоэнергетике. Способ работы воздушно-аккумулирующей газотурбинной электростанции характеризуется тем, что уходящие газы после газовой турбины поступают в котел-утилизатор, который входит в состав дополнительно установленного утилизационного контура. Одну часть выработанного котлом-утилизатором пара подают для расширения и совершения работы в паровую турбину в составе дополнительно установленного утилизационного контура, отработанный после паровой турбины пар направляют в конденсатор, конденсат из конденсатора конденсатным насосом перекачивают в котел-утилизатор. Другую часть пара, выработанного котлом-утилизатором, подают для впрыска в камеру сгорания газовой турбины, тем самым увеличивают расход продуктов сгорания через проточную часть газовой турбины. Уходящими газами после котла-утилизатора подогревают сжатый воздух в регенераторе. Изобретение позволяет повысить электрическую мощность воздушно-аккумулирующей газотурбинной электростанции за счет повышения электрической мощности паровой турбины в составе дополнительно установленного утилизационного контура, использующего избыточное тепло уходящих газов газовой турбины, а также за счет повышения мощности газовой турбины, осуществляемого путем впрыска части пара, произведенного котлом-утилизатором в составе дополнительно установленного утилизационного контура, использующего избыточное тепло уходящих газов газовой турбины. 1 ил., 1 табл.
Наверх