Установка для исследования явления самоиндукции

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений. Датчик Холла расположен рядом с криостатом так, чтобы магнитные силовые линии, выходящие из торца катушки индуктивности, входили в плоскость, в которой расположены токовые выводы T-T и выводы напряжения X-X датчика Холла. Токовые выводы T-T через первый реостат соединены с клеммами источника постоянного тока, а выводы напряжения X-X соединены с вводами вольтметра. Вводы счетчика времени соединены с клеммами источника постоянного тока. Общий контакт переключателя на три положения соединен через второй реостат со вторым вводом катушки индуктивности. Контакт первого положения переключателя на три положения - свободный, а контакты второго и третьего положений его соединены соответственно с отрицательной и положительной клеммами источника постоянного тока. Техническим результатом изобретения является расширение функциональных возможностей и повышение точности измерений. 5 ил.

 

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних специальных учебных заведениях по курсу физики для получения и углубления знаний физических законов и явлений.

Известно устройство для исследования явления самоиндукции (Шахмаев Н.М. и Каменецкий С.Е. Демонстрационные опыты по электродинамике. Издание 2-е, переработанное. Пособие для учителей. М.:Просвещение», 1973 г., с.256, рис.227). Оно состоит из последовательно соединенных катушек индуктивности с величиной индуктивности L, амперметра, источника постоянного тока и ключа. Замкнув ключом цепь, можно продемонстрировать рост тока в цепи до установившегося значения I0=ε/R, где - ε - ЭДС источника постоянного тока, R - общее сопротивление цепи.

Особое впечатление на обучающихся производит процесс медленного изменения тока, тогда можно точно измерить постоянную времени цепи τ=L/R. Нарастание тока происходит тем медленнее, чем больше постоянная времени цепи τ. Большую τ можно получить за счет увеличения L или уменьшения R. Однако с увеличением L за счет числа витков катушки индуктивности происходит увеличение сопротивления провода самой катушки. Таким образом, известное устройство предназначено только для демонстрации явления самоиндукции, но на нем нельзя точно определить постоянную времени цепи τ.

Известно также устройство для исследования явления самоиндукции (там же на с.257, рис.229 и 230). Оно содержит последовательно соединенные источник постоянного тока, катушку индуктивности и лампочку. Параллельно лампочке подключен вход электронного осциллографа. В качестве ключа используют поляризационное реле РП-4. Данное устройство позволяет наблюдать

на экране осциллографа экспоненциальное нарастание тока в цепи. На нем можно демонстрировать влияние индуктивности L и общего сопротивления R на скорость нарастания тока в цепи. На экране осциллографа можно приблизительно измерить постоянную времени цепи τ. Однако на нем нельзя увидеть впечатляющий процесс медленного изменения тока в цепи и точно измерить τ в зависимости от R и L.

Наиболее близкой к предлагаемой установке является экспериментальная установка со сверхпроводящей электрической цепью (Патрунов Ф.Г. Холод и техника. М.: Московский рабочий, 1981 г., с.17, рис.4). Она представлена на фиг.1 и содержит криостат, источник постоянного тока, катушку индуктивности, расположенную внутри криостата, и первый вывод ее соединен с положительной клеммой источника постоянного тока. На этой установке можно реализовать явление самоиндукции за счет замыкания и размыкания цепи, содержащей катушку индуктивности. За счет терморегулирования в криостате можно создать требуемую температуру и, соответственно, стремящегося к нулю сопротивления катушки индуктивности r и стремящейся к бесконечности постоянной времени τ цепи.

Однако на этой установке нельзя наблюдать медленный процесс нарастания или убывания тока соответственно за счет замыкания и размыкания цепи с индуктивностью и при этом точно измерить постоянную времени цепи τ в зависимости от общего сопротивления R. Введением дополнительного регулируемого сопротивления R2 в цепь катушки индуктивности можно получать различные общие сопротивления R=R2+rk и проводить исследования зависимости постоянной времени τ=L/(R2+rk) от общего сопротивления цепи. Таким образом, на данной установке можно продемонстрировать кроме наличия тока сверхпроводимости также явление самоиндукции по созданному током магнитному полю катушки индуктивности.

Техническим результатом изобретения является расширение функциональных возможностей прототипа и повышение точности измерения.

Указанный технический результат достигается тем, что в известную установку для исследования явления самоиндукции, содержащую криостат, источник постоянного тока, катушку индуктивности, расположенную внутри криостата, и первый вывод ее соединен с положительной клеммой источника постоянного тока, согласно изобретению введены первый и второй реостаты, вольтметр датчик Холла, расположенный рядом с криостатом так, чтобы магнитные силовые линии, выходящие

из торца катушки индуктивности, входили в плоскость, в которой расположены токовые выводы Т-Т и выводы напряжения Х-Х датчика Холла, при этом токовые выводы Т-Т через первый реостат соединены с клеммами источника постоянного тока, а выводы напряжения Х-Х соединены с вводами вольтметра, электронный счетчик времени, вводы которого соединены с клеммами источника постоянного тока, переключатель на три положения, общий контакт которого соединен через второй реостат со вторым вводом катушки индуктивности, контакт первого положения переключателя на три положения - свободный, а контакты второго и третьего положений его соединены соответственно с отрицательной и положительной клеммами источника постоянного тока.

На фиг.1 изображен прототип; на фиг.2 - общий вид предлагаемой установки; на фиг.3-5 - чертежи, поясняющие принцип работы установки.

Предлагаемая установка (фиг.2) содержит следующие элементы: 1 - криостат; 2 - источник постоянного тока; 3 - катушка индуктивности; 4 - датчик Холла; 5 - первый реостат; 6 - вольтметр; 7 - второй реостат; 8 - переключатель на три положения; 9 - электронный счетчик времени.

Рассмотрим теоретические положения, которые легли в основу предлагаемой установки. Текущий в каком-либо контуре с индуктивностью L электрический ток создает пронизывающий этот контур магнитный поток. Изменение силы тока сопровождается изменением магнитного потока, вследствие чего в контуре индуцируется ЭДС. Это явление называется самоиндукцией.

По правилу Ленца индукционный ток, возникающий вследствие самоиндукции, направлен так, чтобы противодействовать изменению тока в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывании тока при размыкании цепи происходит не мгновенно, а постепенно. Закон изменения силы тока при включении и отключении источника постоянного тока ε в цепи, содержащей катушку индуктивности L и общее сопротивление цепи R=R2+rk, где R2 - сопротивление реостата, а rk - сопротивление самой катушки, можно исследовать на схеме, представленной на фиг.3.

В случае включения в цепь источника ЭДС (фиг.3, положение «в» ключа К) ток в цепи изменяется по следующему закону:

I = I 0 ( 1 e R t L . ) ,                                                                                      (1)

где I 0 = ε R - максимальное значение силы тока в цепи. Внутренним сопротивлением источника постоянного тока пренебрегаем.

Из выражения (1) видно, что при включении в цепь источника ЭДС ток в цепи не сразу достигает значения I0, но достигает его постепенно (фиг.4). Нарастание силы тока происходит тем быстрее, чем больше отношение R/L, т.е. чем меньше индуктивность цепи L и больше ее общее сопротивление R.

При выключении источника ЭДС (фиг.5, положение «с» ключа К) ток в цепи изменяется по следующему закону:

I = I 0 e R t L .                                                                                      (2)

Выражение (2) показывает, что сила тока при выключении источника ЭДС спадает по экспоненциальному закону (фиг.5). Сила тока в цепи постепенно уменьшается от начального значения I0 до нуля, причем тем быстрее, чем больше сопротивление цепи R и чем меньше ее индуктивность L.

Скорость убывания определяется имеющей размерность времени величиной τ=L/R, которую называют постоянной времени цепи. Принято считать, что τ=I0/e, то есть это время, в течение которого сила тока уменьшается в е раз. Из фиг.4 и 5 видно, что чем больше постоянная времени τ, тем медленнее изменяется ток в цепи.

ЭДС самоиндукции в начальный момент после разрыва цепи значительно превосходит ЭДС источника тока, действующую в цепи до ее разрыва. Если разорвать простую (последовательную) цепь, то место разрыва будет обладать очень большим сопротивлением. В цепи возникает высокое индуцированное напряжение, создающее искру или дугу в месте разрыва. Поэтому применяют двойной ключ, позволяющий отключать источник ЭДС от цепи без ее размыкания. Это достигается тем, что промежуток между неподвижными контактами (а, в, с) ключа К (фиг.3) несколько уже ширины подвижного контакта. Поэтому при передвижении подвижного контакта из положения «в» в положение «с» цепь не размыкается, а источник ЭДС отключается от цепи.

Согласно закону Био-Савара-Лапласа магнитная индукция В поля катушки индуктивности пропорциональна силе тока I, создающего поле. Магнитная индукция поля В может быть измерена с помощью датчика Холла, напряжение U на выходе которого пропорционально магнитной индукции В. Отсюда следует, что ток I в катушке индуктивности и созданное напряжение U на выходе датчика Холла пропорциональны друг другу: U=кI. Пропорциональность напряжения U силе тока I имеет место при отсутствии ферромагнетиков, окружающих катушку индуктивности. Таким образом, по закону изменения напряжения U можно судить о законе изменения тока I в цепи катушки индуктивности. Шкалу вольтметра датчика Холла можно проградуировать в значениях тока в цепи катушки индуктивности. Рассмотрим взаимодействие элементов в предлагаемой установке (фиг.2). Она включает в себя криостат 1, источник постоянного тока 2, катушку индуктивности 3, расположенную внутри криостата 1, и первый вывод ее соединен с положительной клеммой источника постоянного тока 2. При протекании тока через катушку индуктивности 3 она создает магнитное поле с индукцией B. Для регистрации магнитного поля установка содержит датчик Холла 4, который расположен рядом с криостатом 1 так, чтобы магнитные силовые линии, создаваемые катушкой индуктивности 3, выходили из торца и входили в плоскость, в которой расположены токовые выводы T-T и выводы напряжения X-X датчика Холла, при этом токовые выводы T-T датчика Холла через первый резистор 5 соединены с клеммами источника постоянного тока 2, а выводы напряжения X-X датчика Холла соединены с вводами вольтметра 6.

Первый реостат 5 предназначен для установки величины тока, проходящего от источника постоянного тока 2 через токовые выводы T-T датчика Холла. Второй реостат 7 предназначен для установки требуемой величины сопротивления в цепи катушки индуктивности 3.

Для исследования явления самоиндукции при включении и отключении источника постоянного тока 2 в цепи служит переключатель на три положения 8, общий контакт которого соединен через второй реостат 7 со вторым вводом катушки индуктивности 3. Контакт первого положения переключателя 8 должен быть свободным. В этом положении переключателя 8 исследуемая цепь отключена. Контакты второго и третьего положений переключателя 8 соединены соответственно с отрицательной и положительной клеммами источника постоянного тока 2.

Для определения постоянной времени цепи τ при включении и отключении источника постоянного тока 2 служит электронный счетчик времени 9, вводы которого соединены с клеммами источника постоянного тока 2.

Рассмотрим работу предлагаемой установки (фиг.2). Пусть в исходном состоянии криостат 1, входящий в состав установки, включен. С помощью терморегулятора устанавливаем требуемую температуру криостата 1, при этом устанавливается соответствующее сопротивление rk катушки индуктивности 3. Если переключатель на три положения 8 находится в первом положении «а», то внешняя цепь установки отключена.

С помощью первого реостата 5 устанавливаем требуемый ток в датчике Холла 4. Напряжение на выходе датчика Холла 4 должно равняться нулю. Устанавливаем с помощью реостата 7 требуемое сопротивление R2, а электронный счетчик времени 9 - в нулевое положение.

Переводим переключатель на три положения 8 во второе положение «в», в цепь катушки индуктивности 3 включается источник постоянного тока 2, наблюдается медленный рост тока в цепи по закону (1) до величины I0=ε/(R2+rк). Это соответствует максимальному значению U0 на вольтметре 6 датчика Холла 4.

Устанавливаем переключатель на три положения 8 в третье положение «с» и одновременно запускаем электронный счетчик времени 9, наблюдаем медленное убывание тока по закону (2). Когда ток достигает величины I0/е и, соответственно, напряжение на вольтметре 6 датчика Холла 4 будет U0/е, снимаем показание счетчика времени 9. Это и будет постоянная времени τ.

С помощью второго реостата 7 устанавливаем различные сопротивления R2 и проводим опыты для получения разных τ. По измеренным τ строим зависимости I=f(t), как показано на фиг.5.

Если принять величину R2=0, то можно снять зависимость сопротивления rk катушки индуктивности 3 от температуры T криостата 1 и построить график зависимости rk=f(T).

Установка для исследования явления самоиндукции, содержащая криостат, источник постоянного тока, катушку индуктивности, расположенную внутри криостата, и первый вывод ее соединен с положительной клеммой источника постоянного тока, отличающаяся тем, что в нее введены первый и второй реостаты, вольтметр, датчик Холла, расположенный рядом с криостатом так, чтобы магнитные силовые линии, выходящие из торца катушки индуктивности, входили в плоскость, в которой расположены токовые выводы Т-Т и выводы напряжения Х-Х датчика Холла, при этом токовые выводы Т-Т через первый реостат соединены с клеммами источника постоянного тока, а выводы напряжения Х-Х соединены с вводами вольтметра, электронный счетчик времени, вводы которого соединены с клеммами источника постоянного тока, переключатель на три положения, общий контакт которого соединен через второй реостат со вторым вводом катушки индуктивности, контакт первого положения переключателя на три положения - свободный, а контакты второго и третьего положений его соединены соответственно с отрицательной и положительной клеммами источника постоянного тока.



 

Похожие патенты:

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. На противоположных сторонах подвижной муфты первыми концами шарнирно соединены две тяги.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений.

Изобретение относится к области образования и наглядных учебных пособий, в частности к наглядным пособиям для демонстрации принципа работы одиночного стержневого молниеотвода.

Изобретение относится к учебным приборам по физике. Малые листы электропроводящей бумаги создают сопротивления R/2, R, 2R и уложены на планшете.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по физике. На противоположных сторонах прямоугольного листа электропроводящей бумаги (ЭПБ) установлены два электрода прямоугольной формы.

Изобретение относится к области исследования электростатических полей в различных средах и условиях, преимущественно в области жидких углеводородных горючих в условиях их естественной конвекции.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Лист электропроводящей бумаги уложен на планшет.

Изобретение относится к учебным приборам по физике. Учебный прибор имеет штатив, немаркированный магнит, компас, подставку для магнитов, вольтметр, амперметр, миллиамперметр, источник питания учебный ВУ-4.

Изобретение относится к лабораторным приборам по разделу физики "Магнетизм". Сердечник выполнен составным из двух автономных элементов, каждый из которых выполнен в виде металлической пластины с закрепленным на ней вертикальным стержнем.

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический зонд размещен на изолированном штативе с возможностью касания с каждым шариком при повороте диска, выполнен в виде заостренной иглы и соединен через вольтметр и реостат с источником питания. Техническим результатом изобретения является обеспечение возможности создания распределенного заряда с контролируемой величиной заряда. 2 н.п. ф-лы, 1 ил. 1 табл.

Изобретение относится к обучающим приспособлениям для демонстрации электромагнитных явлений. На одном конце плоского стержня закреплена катушка-моток, а на другом выполнено подвесное отверстие для подвеса стержня и магнит. Концы намоточного провода соединены с удлиняющими проводами. Свободные концы удлиняющих проводов снабжены штекерами. Катушка-моток снабжена охватывающим ее корпусом, снабженным диаметрально расположенными полуосями, каждая из которых соединена с одним из концов обмотки катушки. Каждая полуось вставлена в отверстие, выполненное в концевой зоне одной из ступеней соответствующего ступенчатого кронштейна. Другая ступень каждого кронштейна снабжена концевым прямоугольным хвостовиком, посредством которого кронштейны элементами крепления закреплены с разных сторон к боковым поверхностям стержня. Удлиняющие провода соединены с элементами крепления. На стержне выполнено центральное отверстие, равноудаленное как от центра полуосей, так и от центра подвесного отверстия, выполненного на конце стержня. Стержень снабжен вырезами с зацепами для укладки удлиняющих проводов. Нижний обрез ступенчатых кронштейнов и нижний обрез стержня находятся в одной горизонтальной плоскости. Техническим результатом изобретения является расширение демонстрируемых экспериментов для исследования явления электромагнитной индукции. 2 з.п. ф-лы, 2 ил.

Изобретение относится к учебным пособиям по физике. Стержень с грузом установлен с возможностью совершать колебательные движения в вертикальной плоскости. Вал соединен с помощью стержня с грузом, и на него насажены колеса, которые имеют возможность совершать колебательные движения в горизонтальной плоскости. На направляющих закреплены ограничители колебания колес. Изобретение обеспечивает возможность моделирования сложного колебательного движения системы. 3 ил.

Изобретение относится к электродинамике и и может быть использовано для экспериментальной проверки эффекта возбуждения вихревого электрического поля при движении магнитного поля, создаваемого движением постоянного магнита. Технический результат состоит в обеспечении возможности проверки возбуждения униполярной индукции. Мостовая схема для проверки возбуждения униполярной индукции содержит соленоид, внутри которого движется намагниченный ферромагнетик, образующий вихревое электрическое поле вдоль траектории его движения. Схема содержит ферромагнитный тороид, четыре одинаковых катушки из проводника, включенные последовательно между собой и образующие мостовую схему, к одной диагонали которой подключен регулируемый источник постоянного тока, а другая диагональ мостовой схемы подключена к усилителю постоянного тока. Ферромагнитный тороид приводится во вращательное движение синхронным двигателем через прижимной ролик. Электропитание синхронного двигателя подается от многофазного генератора переменного тока с регулируемой частотой колебаний. Управление регулируемым источником постоянного тока и многофазным генератором по частоте переменного тока, а также измерение величин тока и частоты колебаний осуществляется с помощью компьютера. 3 ил.

Изобретение относится к стендам для лабораторных работ, применяемым при обучении студентов, изучающих дисциплину «Электротехнология». Автоматизированный тепловой пункт (устройство преобразования электрической энергии в тепловую), содержит параллельно соединенные между собой тэновый, электродный и вихревой подогреватели воды, отопительный прибор, бойлер со змеевиком, насос, термодатчики, щит управления, расходомер, систему трубопроводов, при этом в него введены электромагнитные клапаны, программируемый контроллер для управления и регулирования режимами нагрева, бойлер выполнен сообщающимся с атмосферой для осуществления процесса тепломассообмена, сборка всех элементов выполнена с использованием резьбовых соединений предусматривающее возможность введения в процесс новых элементов. Это позволяет уменьшить габариты устройства, а также упростить его обслуживание. 5 ил.

Изобретение относится к области образования и наглядных учебных пособий, в частности, к наглядным пособиям для демонстрации принципа работы одиночного тросового молниеотвода. Для повышения качества обучения за счет улучшения наглядности принципа работы и определения высоты одиночного тросового молниеотвода модель молниеотвода включает две вертикальные телескопические оси одинаковой высоты, вершины которых связаны горизонтальной нитью, а модель зоны защиты содержит две плоские грани и два полуконуса, вертикальные оси которых совпадают с осями телескопических стержней и находятся на расстоянии S друг от друга, а плоскости граней являются общими касательными к полуконусам и пересекаются по горизонтальной прямой, проходящей через вершины конусов. 1 ил.

Изобретение относится к физике магнитного поля, создаваемого магнитными системами, полюсы которых взаимно перемещаются. Технический результат состоит в исследовании распределения угловых скоростей вращающегося магнитного поля в различных сечениях магнитного зазора при взаимном перемещении магнитных полюсов относительно друг друга. Устройство для исследования вращательного движения магнитного поля при взаимном перемещении магнитных полюсов, в частности при их взаимном вращении с разной угловой скоростью и в различных направлениях без изменения расстояния между этими полюсами, состоит из пары тороидов, намагниченных на их плоских гранях и ориентированных друг к другу соосно с противоположными магнитными полюсами, которые механически связаны с двумя синхронными реверсируемыми двигателями с подключенными к ним двумя перестраиваемыми по частоте генераторами переменного тока. Одна или несколько прямоугольных рамок из тонкого проводника помещены в магнитный зазор между магнитными полюсами одной из сторон прямоугольной рамки так, что проводники этой стороны ортогональны вектору магнитной индукции в магнитном зазоре, а также ортогональны вектору угловой скорости взаимно вращающихся намагниченных тороидов. Выводы рамок включены последовательно к регистрирующему возникающую э.д.с. в этих частях проводников рамок измерительному прибору, например вольтметру постоянного тока. 4 ил.

Изобретение относится к электротехнике. Технический результат состоит в возможности выявления физической структуры и поведения магнитного поля между магнитными полюсами, один из которых вращается относительно другого. Устройство содержит ротор и статор, выполненные в виде отрезков концентрически расположенных цилиндров из ферромагнетика. Обмотка подмагничивания ротора подключена к регулируемому источнику постоянного тока, закреплена на статоре бесконтактно к расположенной в ней части магнитопровода ротора. В тороидальном магнитном зазоре размещена часть рабочей обмотки в виде рамки из проводника, механически связанной с управляемым приводом ее перемещения внутри магнитного зазора с измерением величины перемещения. Выводы рамки подключены к входу усилителя постоянного тока. Замыкание магнитной цепи «ротор-статор» осуществлено с помощью цилиндрического элемента ротора на его противоположном конце относительно обмотки подмагничивания ротора, близко расположенного к трубчатому магнитопроводу статора, являющемуся корпусом устройства, в котором через подшипниковую пару закреплена ось вращения ротора, механически связанная с синхронным двигателем. На его электрические входы подано переменное напряжение от перестраиваемого по частоте генератора переменного тока. Информационные выходы измерителя перемещения рамки, регулируемого источника постоянного тока и перестраиваемого по частоте генератора переменного тока, а также выход усилителя постоянного тока подключены к входам устройства обработки и отображения информации. 3 ил.

Изобретение относится к импульсной технике и может быть использовано для воспроизведения импульсного магнитного поля разрядов молнии при испытаниях технических систем на воздействие близких ударов молнии. Устройство содержит емкостный накопитель энергии, первый вывод которого соединен через последовательно соединенные индуктивность разрядного контура и первый коммутатор к первому выводу второго коммутатора и к первому выводу взрывающегося проводника прерывателя тока, второй вывод которого соединен с первым выводом резистивной нагрузки и со вторым выводом емкостного накопителя энергии. Также введен преобразователь электрического тока в магнитное поле, состоящий из двух параллельных между собой электродов, образующих межэлектродный промежуток. При этом каждый электрод выполнен в виде плоской проводящей пластины или набора линейных параллельных проводников, либо один из электродов выполнен в виде плоской проводящей пластины, а другой электрод выполнен в виде набора линейных параллельных проводников. Первые выводы первого и второго электродов преобразователя соединены соответственно со вторым выводом второго коммутатора и вторым выводом взрывающегося проводника прерывателя тока, а вторые выводы первого и второго электродов соединены между собой через резистивную нагрузку. Технический результат заключается в повышении достоверности имитации магнитного поля разрядов молнии при испытаниях технических систем на воздействие близких ударов молнии. 2 ил.

Изобретение относится к наглядным пособиям для изучения электронного состояния поверхности металлов. Пластину из исследуемого металла приводят в контакт с ионной жидкостью, изменяют потенциал пластины относительно электрода сравнения, регистрируют первую и вторую производные поверхностного натяжения исследуемого металла по поверхностной плотности заряда. Определяют потенциал, соответствующий нулю первой производной поверхностного натяжения, а по второй производной поверхностного натяжения находят безразмерный наклон зависимости первой производной поверхностного натяжения от потенциала. Находят максимальное значение модуля указанного безразмерного наклона. В катодном направлении от нуля первой производной поверхностного натяжения находят потенциал, соответствующий половине спада модуля безразмерного наклона от максимального значения до единицы. Различие между потенциалом нуля первой производной поверхностного натяжения и найденным потенциалом перехода является следствием спонтанного дефицита электронов проводимости в поверхностном слое металла при потенциале нулевого заряда. Техническим результатом изобретения является расширение диапазона изменения концентрации электронов в металле, обеспечение возможности регистрации перехода металл-изолятор в поверхностном слое металла, несущем избыточный заряд. 16 з.п. ф-лы, 12 ил.
Наверх