Способ хирургического лечения глаукомы

Изобретение относится к области медицины, а именно к офтальмохирургии. Осуществляют разрез конъюнктивы. Отсепаровывают поверхностный лоскут склеры прямоугольной формы на 1/3 толщины роговицы основанием к лимбу до прозрачных слоев стромы роговицы. Отсепаровывают глубокий склеральный лоскут до склеральной шпоры. Иссекают глубокий склеральный лоскут с наружной стенкой шлеммова канала. Отсепаровывание всех склеральных лоскутов, иссечение глубокого склерального лоскута с наружной стенкой шлеммова канала и воздействие на трабекулу и десцеметову мембрану производят с помощью ультрафиолетового лазера с плоским сечением пучка, подведенного к операционному полю при помощи световода. Длина волны излучения 308 нм, длительность импульса 10-20 нс, частота 2-20 Гц, плотность энергии 300-800 мДж/см2, диаметр фокального пятна 0,2-1 мм. Способ позволяет уменьшить травматичность и повысить гипотензивный эффект операции за счет возможности дозировано и равномерно выполнять разрезы и сепаровку склеральной ткани, абляцию трабекулы и десцеметовой мембраны, снизить риск перфорации глаза и осложнения, связанных с возникновением воспаления и рубцевания. 2 пр.

 

Изобретение относится к области медицины, конкретнее к офтальмохирургии, и может быть использовано для хирургического лечения больных глаукомой.

Известен способ хирургического лечения глаукомы путем микроинвазивной непроникающей глубокой склерэктомии (Клинико-патогенетическое обоснование микроинвазивной непроникающей глубокой склерэктомии в хирургии первичной открытоугольной глаукомы. Тахчиди Е.X. - 14.00.08. - Москва, 2009), заключающийся в следующем. Выполняют разрез конъюнктивы длиной не более 1,5 мм на расстоянии 1,0 мм от лимба. При помощи алмазного ножа формируют поверхностный и глубокий склеральный лоскут размером 2,0×2,5 мм, удаляют наружные слои трабекулы при помощи пинцета. Затем при помощи алмазного ножа удаляют глубокий склеральный лоскут с роговичной тканью. Поверхностный склеральный лоскут укладывается без шовной фиксации. Конъюнктиву стягивают над склеральным лоскутом непрерывным швом.

Недостатком данного способа является необходимость хирургической ножевой сепаровки склеральных лоскутов.

Известен способ лечения глаукомы путем трабекулэктомии с помощью ультрафиолетового эксимерного лазера с длиной волны 193 нм, плотностью энергии 600 мДж/см2, частотой следования импульсов 20 Гц, длительностью импульсов излучения 400-600 нс (Aron-Rosa D et al. Preliminary study of argon fluoride (193) eximer laser traeclectomy. Scanning electron microscopy et five months. // J. Cataract Refract. surg 1990, vol.16, N 5, p.617-620), к недостаткам которого следует отнести вскрытие глаза, что увеличивает риск интраоперационных и послеоперационных осложнений.

Известен способ хирургического лечения глаукомы, заключающийся в том, что формируют конъюнктивальный, поверхностный корнеосклеральный лоскут, проводят глубокую склерэктомию и воздействуют на десцеметову мембрану с помощью ультрафиолетового лазера с длиной волны 193 нм, частотой от 10 до 50 Гц, плотностью энергии от 1 до 20 мДж/см2, при этом сначала послойно испаряют глубокие слои склеры до появления сосудов цилиарного тела, затем шлеммов канал закрывают протектором, непроницаемым для УФ-излучения, и воздействуют на глубокие слои стромы роговицы до десцеметовой мембраны только в области, лежащей впереди линии Швальбе, до появления влаги передней камеры, затем убирают протектор и накладывают швы (патент RU 2192230 C1, опубл. 10.11.2002).

Недостатками известного способа являются очень низкая плотность энергии лазерного излучения 193 нм, при которой абляция склеры очень не эффективна, так как находится вблизи порога абляции. При появлении внутриглазной жидкости лазерное излучение 193 нм будет сильно ей поглощаться и абляция прекратится. Кроме этого, к недостаткам можно отнести отсутствие активации наиболее значимого и естественного пути оттока внутриглазной жидкости - трабекулярной мембраны и шлеммова канала, большую площадь хирургического вмешательства, приводящую к более выраженной послеоперационной реакции.

Ближайшим к заявляемому способу прототипом является способ лечения глаукомы путем эксимерлазерной непроникающей глубокой склерэктомии (патент RU 2072817 C1, опубл. 10.02.97), заключающийся в следующем. После выкраивания поверхностного лоскута склеры 5,0×5,0 мм основанием к лимбу удаляют глубокие слои склеры и роговицы до кольца Швальбе в виде треугольного лоскута основанием к лимбу. Далее воздействием эксимерного лазера с длиной волны 222-308 нм дозировано удаляют наружную стенку шлеммова канала.

К недостаткам известного способа следует отнести большую площадь и травматичность хирургического вмешательства и, как следствие, более выраженное послеоперационное воспаление и рубцевание в зоне операции.

Задачей изобретения является создание способа хирургического лечения глаукомы, позволяющего дозировано и равномерно выполнять разрезы и сепаровку склеральной ткани, абляцию трабекулы и десцеметовой мембраны и снизить риск перфорации глаза, снизить послеоперационные осложнения, связанные с воспалением и рубцеванием.

Техническим результатом является уменьшение травматичности хирургического вмешательства и минимизация побочных осложнений.

Технический результат достигается предлагаемым способом, заключающимся в следующем. Производят эпибульбарную анестезию раствором алкаина. Проводят разрез конъюнктивы длиной 4,0-5,0 мм. Выполняют гемостаз. Далее с помощью излучения эксимерного лазера с длиной волны 308 нм с плоским сечением пучка, подведенного к операционному полю при помощи световода, отсепаровывают поверхностный лоскут склеры прямоугольной формы размером 4,0×4,0 мм на 1/3 толщины роговицы основанием к лимбу до прозрачных слоев стромы роговицы. Затем отсепаровывают глубокий склеральный лоскут до склеральной шпоры, оставляя на дне склерального ложа полупрозрачный слой склеры. Далее иссекают глубокий склеральный лоскут с наружной стенкой шлеммова канала. При этом обнажается трабекула и десцеметова мембрана. При помощи лазерного излучения обрабатывают трабекулу и десцеметову мембрану с целью истончения и получения более интенсивной фильтрации, используя следующие параметры лазерного воздействия: длительность импульса 10-20 нс, частота импульсов 2-20 Гц, плотность энергии 300-800 мДж/см2, диаметр фокального пятна 0,2-1 мм. Поверхностный лоскут склеры укладывают на склеральное ложе. Конъюнктиву ушивают непрерывным обвивным швом.

Определяющим отличием заявляемого способа от прототипа является то, что формирование всех склеральных лоскутов, иссечение глубокого склерального лоскута с наружной стенкой шлеммова канала и воздействие на трабекулу и десцеметову мембрану производят с помощью ультрафиолетового лазера с длиной волны 308 нм с плоским сечением пучка, подведенного к операционному полю при помощи световода с длительностью импульса 10-20 нс, частотой 2-20 Гц, плотностью энергии 300-800 мДж/см2, диаметром фокального пятна 0,2-1 мм, что позволяет производить разрезы склеральной ткани равномерно и дозировано в любом направлении (в глубину и по плоскости), что уменьшает травматичность и побочные осложнения (например, исключает перфорацию трабекулы). Используемая длина волны практически не поглощается внутриглазной жидкостью, поэтому воздействие эксимерного лазера не прекращается при появлении фильтрации внутриглазной жидкости, что позволяет работать в зоне операции, не подсушивая постоянно область трабекулы, а также снизить степень послеоперационной воспалительной реакции.

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1

Больной X., 69 лет, поступил в Новосибирский филиал МНТК «Микрохирургия глаза» с диагнозом: первичная открытоугольная глаукома IIIC правого глаза, IIA глаукома левого глаза. Миопия слабой степени правого глаза.

Визус правого глаза 0,1 с корр. sph (-) 2,5 Д 0,4.

Визус левого глаза 1,0. Поле зрения правого глаза суммарно по 8 меридианам 149 градусов, левого глаза 490 градусов. Показатели тонометрии: на правом глазу ВГД=38 мм рт.ст.; на левом глазу ВГД=24 мм рт.ст. Результаты тонографии: Р на правом глазу составляло 11,8 мм рт.ст. С=0,03 мм мин/мм рт.ст. КБ-75. На левом глазу Р было 17,3 мм рт.ст. С=0,23 мм мин/мм рт.ст. КБ - 393.

Офтальмоскопический: справа диск зрительного нерва сероватого цвета, краевая глаукоматозная экскавация, сдвиг сосудов на диске зрительного нерва. Область макулы без особенностей. Слева побледнение диска зрительного нерва, расширение физиологической экскавации, Э/Д 0-5. Макулярная область не изменена.

Биомикрогониоскопия: угол передней камеры с обеих сторон открыт на всем протяжении, широкий, пигментация III ст. справа, II ст. слева.

Больному выполнена лазерная непроникающая глубокая склерэктомия на правом глазу заявляемым способом.

После эпибульбарной анестезии раствором алкаина, произвели разрез конъюнктивы длиной 4,0 мм, выполнили гемостаз. Далее с помощью лазерного эксимерного излучения с длиной волны 308 нм, подведенного к операционному полю от места генерации излучения при помощи гибкого световода, отсепаровали поверхностный лоскут склеры прямоугольной формы размером 4,0×4,0 мм на 1/3 толщины роговицы основанием к лимбу до прозрачных слоев стромы роговицы. Затем отсепаровали глубокий склеральный лоскут до склеральной шпоры, оставляя на дне склерального ложа полупрозрачный слой склеры. Далее иссекли глубокий склеральный лоскут с наружной стенкой шлеммова канала, обнажили трабекулу и десцеметову мембрану и при помощи лазерного излучения с диаметром пятна 0,2 мм обработали трабекулу и десцеметову мембрану. Поверхностный лоскут склеры уложили и ушили одним узловым швом, конъюнктиву ушили узловым швом. Использовали следующие параметры лазерного излучения: длина волны 308 нм, длительность импульсов 20 нс, частота 20 Гц, плотность энергии 800 мДж/см2. Осложнений во время операции и в послеоперационном периоде не было.

Через 1,5 месяца после операции: тонометрические показатели справа Р=18 мм рт.ст., слева Р=23 мм рт.ст. Гидродинамические показатели: на правом глазу Р=9,6 мм рт.ст. С=0,36 мм мин/мм рт.ст. КБ 65. На левом глазу Р=16,2 мм рт.ст. С=0,22 мм мин/мм рт.ст. КБ 71. Изменения зрительных функций после операции не отмечалось. Гониоскопически: депигментация, истончение трабекулы в области вмешательства.

Пример 2

Больной У., 58 лет, поступил в Новосибирский филиал МНТК «Микрохирургия глаза» с диагнозом: первичная эксфолиативная глаукома IA правого глаза, IIIB левого глаза. Псевдоэксфолиативный синдром обоих глаз. Неполная осложненная катаракта обоих глаз.

Острота зрения справа 0,9.

Острота зрения слева 0,4 н/к. Поле зрения правого глаза суммарно по 8 меридианам 510 градусов, левого глаза 65 градусов. Тонометрия по Маклакову: ВГД справа = 18 мм рт.ст., слева 29 мм рт.ст. Показатели тонографической пробы: Р на правом глазу составляло 18,8 мм рт.ст. С=0,32 мм мин/мм рт.ст. КБ-312. На левом глазу Р было 7,6 мм рт.ст. С=0,12 мм мин/мм рт.ст. КБ 63.

Офтальмоскопически: справа диск зрительного нерва бледно-розовый, соотношение Э/Д=0,3. Сосуды правильного хода и калибра. Область макулы без изменений. Слева диск зрительного нерва серый, краевая эксковация, смещение сосудистого пучка в височную сторону. Макулярная область не изменена.

Биомикрогониоскопия: угол передней камеры с обеих сторон открыт на всем протяжении, широкий, пигментация II ст. справа, III ст. слева. Отложение псевдоэксфолиативного материала слева.

Больному выполнена лазерная непроникающая глубокая склерэктомия на правом глазу заявляемым способом аналогично примеру 1 за исключением того, что использовали следующие параметры лазерного излучения: длина волны 308 нм, длительность импульсов 10 нс, частота 2 Гц, плотность энергии 300 мДж/см2, диаметр пятна 1 мм. Осложнений во время операции и в послеоперационном периоде не было.

Через 2 месяца после операции: тонометрические показатели справа: Р=18 мм рт.ст., слева Р=16 мм рт.ст. Гидродинамические показатели: Р на правом глазу составляло 16 мм рт.ст. С=0,41 мм мин/мм рт.ст. КБ-320. На левом глазу Р было 9,6 мм рт.ст. С=0,29 мм мин/мм рт.ст. КБ 181.

Изменений зрительных функций после операции не отмечалось. Гониоскопически: депигментация, истончение трабекулы в области вмешательства.

Использование заявляемого способа позволит уменьшить травматичность операции и побочные осложнения, работать в зоне трабекулы в присутствии внутриглазной жидкости, а также сохранить целостность трабекулы и десцеметовой мембраны при их максимальном истончении и повысить гипотензивный эффект операции.

Способ хирургического лечения глаукомы путем глубокой непроникающей склерэктомии, включающий разрез конъюнктивы, отсепаровывание поверхностного лоскута склеры прямоугольной формы на 1/3 толщины роговицы основанием к лимбу до прозрачных слоев стромы роговицы, отсепаровывание глубокого склерального лоскута до склеральной шпоры, иссечение глубокого склерального лоскута с наружной стенкой шлеммова канала и лазерное воздействие на трабекулу и десцеметову мембрану с целью истончения и получения более интенсивной фильтрации влаги с последующим наложением швов на склеру и коньюнктиву, отличающийся тем, что отсепаровывание всех склеральных лоскутов, иссечение глубокого склерального лоскута с наружной стенкой шлеммова канала и воздействие на трабекулу и десцеметову мембрану производят с помощью ультрафиолетового лазера с плоским сечением пучка, подведенного к операционному полю при помощи световода, с длиной волны 308 нм длительностью импульса 10-20 нс, частотой 2-20 Гц, плотностью энергии 300-800 мДж/см2, с диаметром фокального пятна 0,2-1 мм.



 

Похожие патенты:
Изобретение относится к медицине и может быть использовано в офтальмологии и офтальмоонкологии для обработки склерального ложа после эндорезекции внутриглазного новообразования.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования регресса II и III стадии ретинопатии недоношенных детей после лазерной коагуляции сетчатки.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для лазерного лечения непроходимости слезоотводящих путей (СОП). Расширяют вход в слезный каналец.

Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для малоинвазивного лечения ретиноваскулярного макулярного отека. Вводят интравитреально (pars plana) ингибитор вазоэндотелиального фактора роста.
Изобретение относится к медицине, а именно к офтальмологической хирургии, и может быть использовано при лечении косоглазия. Для этого проводят конъюнктивальный разрез.
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано в лазерном лечении диабетического макулярного отека. Воздействуют на все поле диабетического макулярного отека, находящегося внутри сосудистых аркад.

Группа изобретений относится к медицине. Лазерное устройство для обработки материала содержит лазер для формирования пучка импульсного лазерного излучения, измерительные средства для получения измеренных значений мощности основной гармоники лазерного пучка и мощности по меньшей мере одной высшей гармоники, полученной посредством умножения частоты лазерного пучка, и блок оценки, подключенный к измерительным средствам и выполненный с возможностью оценивать качество лазерного пучка, основываясь на измеренной мощности основной гармоники, на измеренной мощности высшей гармоники и на установленной мощности излучения лазера.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для индивидуального выбора параметров лазерной энергии при транссклеральной диод-лазерной циклофотокоагуляции (ТДЦК) у пациентов с терминальной болящей глаукомой.

Изобретение относится к оптике. Подвес для подвижной подвески с компенсацией веса фокусирующего объектива (12) лазера лазерной системы (10) содержит: генератор усилия для генерирования усилия (G), уравновешивающего вес фокусирующего объектива (12), передаточный механизм, обеспечивающий приложение к фокусирующему объективу (12) противодействующего усилия (G) и возможность компенсирующего движения фокусирующего объектива вверх/вниз.

Изобретение относится к области медицинской техники. Устройство содержит контактную поверхность, прилегающую к подлежащему воздействию глазу с приданием ему требуемой формы; первый источник излучения для генерации воздействующего лазерного пучка; оптические компоненты для направления воздействующего лазерного пучка через контактную поверхность на глаз; измерительное устройство для измерения глубины передней камеры глаза, прилегающей к контактной поверхности, выполненное с возможностью предоставления данных измерений, представляющих глубину передней камеры глаза, по меньшей мере, в одной его точке; электронную вычислительно-контрольную установку, подключенную к измерительному устройству и сконфигурированную с возможностью устанавливать, не оказалась ли глубина передней камеры, представляемая данными измерений, меньше хотя бы одного из предопределенных значений, и осуществлять предусмотренное действие, если указанная глубина оказалась меньше предопределенного значения.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для определения показаний к повторной лазерной коагуляции кист сетчатки. Для этого через 3 месяца после коагуляции кисты проводят эхографическое исследование сетчатки. Измеряют высоту выстояния кисты и величину ее основания. Считают повторную коагуляцию показанной при уменьшении величины высоты кисты и ее основания менее чем на 0.1 и 1 мм соответственно. Способ предотвращает неоправданные многократные повторные сеансы лазерной коагуляции за счет разработки четких критериев к повторному лазерному воздействию, что, в свою очередь, значительно снижает риск развития грубого рубцевания в зоне кисты и риск непрямого повреждения макулы. 2 пр.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для комбинированной обработки склерального ложа после эндорезекции внутриглазного новообразования. Для этого после эндорезекции внутриглазного новообразования на поверхность склерального ложа наносят фотосенсибилизирующий гель (ФС гель), содержащий 0,1% адипината моноэтилендиаминмоноамида хлорина е6. Экспозиция ФС геля составляет 3 минуты. После этого остатки остатков геля удаляют. Интраокулярно накладывают активную часть одного игольчатого электрода на склеральное ложе параллельно краю ретинотомии, отступя 0,5-0,7 мм. Второй электрод накладывают параллельно первому, отступя 3-4 мм в направлении к центру склерального ложа. Затем проводят электрохимический лизис (ЭХЛ) с силой тока 5 мА в течение 10 секунд. При этом постепенно перемещают электроды по поверхности склерального ложа вначале по кругу, параллельно краю ретинотомии, затем от периферии к центру. ЭХЛ проводят на всей площади склерального ложа с силой тока 5 мА в течение 10-15 секунд в каждом положении электродов. После этого выполняют интраокулярную фотодинамическую терапию (ФДТ) по всей поверхности склерального ложа с захватом окружающих тканей на 1,5 мм. Воздействие осуществляют лазерным излучением с длиной волны 662 нм, с плотностью энергии 60 Дж/см2, полями диаметром 4 мм, по кругу, от периферии к центру, с перекрытием соседних полей на 5% площади. Способ обеспечивает исключение оставления жизнеспособных опухолевых клеток на склеральном ложе после эндорезекции внутриглазного новообразования, отсутствие рецидивов опухоли и метастазов в отдаленном послеоперационном периоде. 1 пр.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для фотодинамической обработки склерального ложа после эндорезекции внутриглазного новообразования. Для этого после эндорезекции внутриглазного новообразования на поверхность склерального ложа наносят фотосенсибилизирующий гель (ФС гель), содержащий 0,1% адипината моноэтилендиаминмоноамида хлорина е6. Экспозиция ФС-геля составляет 3 минуты. После этого в воздушной среде облучают склеральное ложе с захватом окружающих тканей на 1,5 мм лазерным излучением с длиной волны 662 нм, с плотностью энергии 60 Дж/см2, полями диаметром 4 мм. Воздействие осуществляют по кругу, от периферии к центру, с перекрытием соседних полей на 5% площади. Способ обеспечивает исключение оставления жизнеспособных опухолевых клеток на склеральном ложе после эндорезекции внутриглазного новообразования, отсутствие рецидивов опухоли и метастазов в отдаленном послеоперационном периоде. 1 пр.
Изобретение относится к медицине, офтальмологии и предназначено для определения показаний к проведению лазерной коагуляции при миопии различной степени у беременных. Способ включает исследование глазного дна, выявление ретинальной дистрофии. При этом проводят цифровую фотосъемку глазного дна в первый, второй и третий триместры беременности, определяя площадь и объем распределения макулярного пигмента. При уменьшении значений этих показателей во втором или третьем триместре по сравнению с показателями первого триместра на 10% и 8%, соответственно, и более рекомендуют проведение лазерной коагуляции. При значении показателей в третьем триместре после проведенной лазерной коагуляции во втором триместре равных или меньше показателей второго триместра рекомендуют повторную лазерную коагуляцию. Способ обеспечивает достоверный скрининг-контроль переходных состояний глазного дна, своевременное выявление группы риска по развитию ретинальной дистрофии у беременных женщин, позволяет определить раннее патогенетически обоснованное профилактическое лечение, не прибегая к контакту с глазом и внутренними средами организма, даже в тех случаях, когда нет четких офтальмологических изменений при традиционном офтальмологическом обследовании, способствуя тем самым снижению частоты оперативного родоразрешения, увеличению количества самостоятельных родов. 2 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для предотвращения дегидратации роговичного лоскута при проведении LASIK по поводу различных аномалий рефракций. Для этого после завершения этапа формирования роговичного лоскута с его внутренней стороны располагают микротупфер. При этом микротупфер размером 6-7×2-3 мм увлажняют сбалансированным раствором. Микротупфер укладывают между двумя половинами сложенного пополам лоскута параллельно его основанию. Способ обеспечивает одновременную адекватную гидратацию роговичного лоскута и его защиту от лазерного излучения в условиях ограниченного операционного поля, что в свою очередь предотвращает формирование микроострий, некачественную репозицию и нарушение процесса адаптации краев лоскута. 1 пр., 2 ил.

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для лечения открытоугольной глаукомы. Воздействуют лазерным излучением на зону трабекулы в два этапа. Один этап - рассечение трабекулы импульсным неодимовым YAG-лазером с длинной волны 1064 нм импульсами 6-36 мВт. Воздействуют в проекциях выхода одного или нескольких эмиссариев до появления крови из шлеммова канала. Другой этап - воздействуют с помощью коагулирующего неодимового YAG-лазера с длиной волны 532 нм, диаметром пятна 50 мкм и экспозицией 0,2 сек. Выполняют коагуляцию трабекулярной ткани по внутренней стенке шлеммова канала до ее сморщивания по всей протяженности трабекулы количеством 90-120 коагулятов. Способ обеспечивает быстрое снижение внутриглазного давления, высокий гипотензивный эффект и устойчивое сохранение внутриглазного давления на уровне нормы за счет деблокады тока жидкости в эмиссариях и шлеммовом канале. 3 ил., 3 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при лечении катаракты у пациентов с сопутствующими заболеваниями. Через месяц после факоэмульсификации осложненной катаракты и внутрикапсульной имплантации интраокулярной линзы по краю переднего капсулорексиса наносят 3-4 насечки длиной 2 мм. Воздействие осуществляют с помощью YAG-лазера с длиной волны 1064 мощностью 1-2 мДж. Необходимость нанесения насечек определяют с помощью ультразвукового биомикроскопического исследования при наличии доклинических признаков контрактуры капсулы хрусталика. Способ позволяет повысить эффективность профилактики указанной патологии за счет обеспечения достоверного своевременного выявления контрактуры капсульного мешка хрусталика, причем заявленное воздействие осуществляют выборочно - только у пациентов с наличием доклинических признаков контрактуры по данным ультразвукового биомикроскопического обследования, а так же исключается травмирование капсулы, обусловленное воздействием хирургических инструментов, предотвращается ухудшение зрения у пациентов с сопутствующими заболеваниями. 3 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования развития синдрома пигментной дисперсии у пациентов с имплантированной добавочной интраокулярной линзой Sulcoflex. Для этого определяют содержание простагландина Е2 в слезной жидкости до имплантации и на 7-10 сутки после имплантации добавочной ИОЛ. Рассчитывают соотношение показателя концентрации простагландина после и до операции. При значении этого соотношения, равном 3,5-4 ед. прогнозируют развитие синдрома пигментной дисперсии. Способ позволяет своевременно предупредить развитие синдрома пигментной дисперсии у данной категории пациентов, а, следовательно, предупредить развитие пигментной глаукомы, за счет достоверного прогнозирования развития данного синдрома в раннем послеоперационном периоде. 3 пр.
Изобретение относится к медицине, в частности офтальмологии, и может быть использовано для лечения фиброваскулярной мембраны низкой степени активности в макулярной области. Способ включает субтотальную витрэктомию, удаление фиброваскулярной мембраны, тампонаду сетчатки перфторорганическим соединением, с последующей заменой на воздух и газ SF6 в объеме 2 мл, эндолазеркоагуляцию сетчатки. Предварительно проводят иридотомию, производят отделение пигментного слоя диаметром 1 мм. Затем готовят суспензию из 0,2 мл 0,85% NaCl и пигментного слоя. Полученную суспензию вводят на место удаленной фиброваскулярной мембраны перед тампонадой сетчатки перфторорганическим соединением и эндолазеркоагуляцией. Использование изобретения обеспечивает частичное восстановление морфологической структуры и функциональной полноценности области сетчатки, пораженной в результате развития фиброваскулярной ткани. 1 пр.

Группа изобретений относится к медицинской технике. Офтальмологическая лазерная система включает источник лазерного излучения для генерирования импульсного лазерного луча; XY-сканер для приема импульсного лазерного луча и для испускания сканирующего по направлениям XY луча, производящего сканирование по двум направлениям, по существу поперечным оптической оси; и многофункциональный Z-сканер, предназначенный для приема сканирующего по направлениям XY луча и для испускания сканирующего по направлениям XYZ луча, причем сканер имеет числовую апертуру NA и фокальное пятно в целевой области и предназначен для модификации числовой апертуры NA, по существу независимо от сканирования фокальной глубины Z фокального пятна по оптической оси. Группа изобретений обеспечивает выполнение хирургических вмешательств на хрусталике глаза. 3 н. и 33 з.п. ф-лы, 19 ил., 12 табл.

Изобретение относится к области медицины, а именно к офтальмохирургии. Осуществляют разрез конъюнктивы. Отсепаровывают поверхностный лоскут склеры прямоугольной формы на 13 толщины роговицы основанием к лимбу до прозрачных слоев стромы роговицы. Отсепаровывают глубокий склеральный лоскут до склеральной шпоры. Иссекают глубокий склеральный лоскут с наружной стенкой шлеммова канала. Отсепаровывание всех склеральных лоскутов, иссечение глубокого склерального лоскута с наружной стенкой шлеммова канала и воздействие на трабекулу и десцеметову мембрану производят с помощью ультрафиолетового лазера с плоским сечением пучка, подведенного к операционному полю при помощи световода. Длина волны излучения 308 нм, длительность импульса 10-20 нс, частота 2-20 Гц, плотность энергии 300-800 мДжсм2, диаметр фокального пятна 0,2-1 мм. Способ позволяет уменьшить травматичность и повысить гипотензивный эффект операции за счет возможности дозировано и равномерно выполнять разрезы и сепаровку склеральной ткани, абляцию трабекулы и десцеметовой мембраны, снизить риск перфорации глаза и осложнения, связанных с возникновением воспаления и рубцевания. 2 пр.

Наверх