Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях.

Образец нанопорошка металла облучают потоком ускоренных электронов с энергией не более 6 МэВ в вакууме с обеспечением положительного заряда внутренней части частицы металла. Толщина образца не превышает длину пробега электронов. Обеспечивается повышение запасенной энергии на 10-15%. 1 ил., 1 табл., 1 пр.

 

Изобретение относится к технологии получения нанопорошков с повышенной запасенной энергией, в частности нанопорошков металлов, и может использоваться для повышения реакционной способности нанопорошков металлов при спекании, горении, в энергосберегающих технологиях.

Известен способ запасания энергии нанопорошком алюминия при его пассивировании небольшими добавками воздуха (Ильин А.П. Особенности энергонасыщенной структуры малых металлических частиц, сформированных в сильнонеравновесных условиях // Физика и химия обработки материалов. 1997. №4. С.93-97).

Недостатком данного способа является низкая запасенная энергия, не превышающая 80-100 кДж/моль, что в 2-3 раза ниже энергии химической связи.

Наиболее близким по техническому эффекту является «Способ повышения запасенной энергии в нанопорошках металлов» (Патент РФ №2461445, опубл. 20.09.2012, бюл. №26) путем облучения нанопорошков металлов (железа, никеля, молибдена и меди) потоком ускоренных электронов с энергией не более 6 МэВ в вакууме, причем толщина образца превышает длину пробега электронов в нанопорошке.

Недостатком данного способа является относительно невысокая запасенная энергия: при пробеге электронов менее толщины слоя образца нанопорошка часть нанопорошка остается необлученной и это снижает запасенную энергию в нанопорошке (фиг.).

Основной технической задачей изобретения является повышение запасенной энергии в нанопорошках металлов за счет уменьшения толщины образца, при которой облучение электронами происходит «на прострел».

Основная техническая задача достигается тем, что в заявленном способе повышения запасенной энергии в нанопорошках металлов, согласно которому, так же как и в прототипе, энергия повышается за счет положительного заряда внутренней части частицы металла, в соответствии с предложенным решением нанопорошки металлов облучают потоком ускоренных электронов с энергией не более 6 МэВ в вакууме (без доступа воздуха), причем толщина образца нанопорошка не превышает длину пробега электронов в нанопорошке.

В таблице приведена зависимость запасенной энергии в нанопорошках железа, никеля, молибдена и меди от дозы облучения потоком ускоренных электронов (4 МэВ) при толщине образца менее пробега электронов.

На фиг. представлена схема облучения нанопорошка металла (1 - нанопорошок металла, подвергающийся действию потока электронов, при толщине образца более длины пробега электронов; 2 - нанопорошок металла, не подвергающийся действию потока электронов, при толщине образца более длины пробега электронов; 3 - образец нанопорошка металла с толщиной менее длины пробега электронов, полностью подвергающийся действию потока электронов): а) толщина образца нанопорошка металла превышает длину пробега электронов; б) толщина образца нанопорошка металла не превышает длину пробега электронов.

Пример исполнения. Образцы нанопорошка железа получают с помощью распыления железного проводника диаметром 0,3 мм мощными импульсами электрического тока (500 кА). Распределение частиц по диаметру соответствует нормально-логарифмическому. Максимум в распределении соответствует диаметру частиц, равному 100 нм.

После получения нанопорошков металлов распылением в аргоне металлических проводников при пропускании мощных импульсов электрического тока (500 кА) все металлические нанопорошки пирофорны и требуют нанесения защитных покрытий: оксидно-гидроксидных или других функциональных. При облучении потоком электронов частиц металлов в них происходит ионизация, вследствие чего повышается положительный заряд, за счет которого в частице увеличивается энергия.

Для повышения запасенной энергии две навески нанопорошка железа помещают в алюминиевую фольгу толщиной 40 мкм, придавая образцам плоскую форму. Толщина первого образца в фольге (5000 мкм) больше длины пробега электронов (2768 мкм), второго - меньше длины пробега электронов (2000 мкм). Образцы помещают в охлаждаемую ячейку и облучают потоком ускоренных электронов с энергией 4 МэВ (без доступа воздуха). Учитывая мощность ускорителя для получения образцами доз 1, 5, 10 Мрад, время облучения составляет 14, 70, 140 с, соответственно. При большей энергии ускоренных электронов возможно протекание ядерных реакций и появление наведенной радиоактивности.

При облучении потоком электронов образцов нанопорошков металлов с толщиной слоя более длины пробега электронов в образце не весь нанопорошок подвергается облучению (фиг., а), в связи с чем не весь нанопорошок запасает энергию.

После облучения образцы подвергают термическому анализу с помощью термоанализатора Q 600 SDT: масса навески 10 мг, скорость нагрева 10 град/мин, диапазон температур 20-1000°C. Результаты экспериментов приведены в таблице. При нагревании необлученного образца тепловой эффект слагается из теплоты окисления и из запасенной энергии, величину которой принимают за единицу. При нагревании облученных образцов фиксируют теплоту окисления и запасенную энергию. Учитывая, что степень окисленности необлученных и облученных нанопорошков одинакова, теплота окисления металлов также примерно одинакова. Повышение теплоты, выделившейся при окислении облученных образцов, составляет запасенную энергию.

Аналогичным образом облучают и анализируют нанопорошки никеля, молибдена, меди (таблица). После облучения потоком электронов, в соответствии с результатами термического анализа запасенная энергия повышается в нанопорошках: железа - на 15%; никеля - на 12%; молибдена - на 10%; меди - на 14%. Таким образом, заявленный способ дает существенно более высокую энергию, превышающую прототип на 10-15%.

Таблица
№ п/п Нанопорошок Доза облуче
ния, Мрад
Энергия, выделяющаяся при окислении, Дж/г Запасенная энергия, отн. ед. Примечание
Толщина образца больше длины пробега электронов Толщина образца меньше длины пробега электронов Толщина образца больше длины пробега электронов Толщина образца меньше длины пробега электронов
1 Fe 1 14474 16645 2,13 2,44
2 Ni 10 12358 13841 1,50 1,68
3 Mo 10 7798 8577 1,18 1,30
4 Cu 1 3324 3789 2,27 2,59

Способ получения нанопорошка металла с повышенной запасенной энергией, включающий облучение образца нанопорошка металла потоком ускоренных электронов с энергией не более 6 МэВ в вакууме с обеспечением положительного заряда внутренней части частицы металла, отличающийся тем, что облучению подвергают образец нанопорошка металла, толщина которого на превышает длину пробега электронов.



 

Похожие патенты:

Изобретение относится к способу получения лекарственного средства на основе хлорина Е6, включенного в фосфолипидные наночастицы, для применения в качестве средства для фотодинамической терапии.

Изобретение относится к фармацевтической и косметологической промышленности, в частности к наноэмульсиям типа вода в масле для трансдермального применения с биологически активными соединениями.

Изобретение относится к многослойному защитному барьерному покрытию для конструкционного сплава V-4Cr-4Ti, которое может быть использовано для нанесения на конструкционные элементы термоядерных установок, имеющие контакт с водородсодержащими средами, и препятствовать накоплению водорода в элементах конструкций, а также утечке через элементы конструкций трития путем диффузии через металл.

Изобретение относится к сварке, в частности к изготовлению порошков, используемых для плазменно-порошковой наплавки антифрикционных упрочняющих покрытий при изготовлении износостойких деталей.
Изобретение относится к порошковой металлургии, в частности к получению нанопорошка. Порошкообразное сырье в виде микрогранул с размером 20-60 мкм, состоящих из частиц сырья с размером 0,1-3 мкм и связующего компонента, имеющего температуру испарения не более 300°C, в количестве 5-25 мас.%, вводят в поток термической плазмы.

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий.

Группа изобретений может быть использована при изготовлении материалов для электротехнической и химической промышленности. Графитсодержащий компонент смешивают с наполнителем на основе каолина, проводят сухое перемешивание с одновременным диспергированием последовательно в барабанном и центробежном смесителях.
Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака.

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой. Способ получения аморфного мезопористого аэрогеля гидроксида алюминия со слоисто-волокнистой ориентированной наноструктурой включает проведения реакции синтеза аэрогеля гидроксида алюминия в герметичной емкости путем обработки бинарного расплава парогазовым потоком на основе смеси инертных и (или) малоактивных газов с водяным паром при температуре расплава 280-1000°С.

Группа изобретений относится к получению нанодисперсного порошка оксида алюминия. Способ включает подачу в предкамеру порошкообразного алюминия и первичного активного газа, их смешивание, воспламенение металлогазовой смеси в предкамере с обеспечением перевода алюминия в газовую фазу за счет самоподдерживающейся экзотермической реакции, подачу образовавшейся смеси в основную камеру сгорания с дожиганием металла в газовой фазе при подаче вторичного активного газа - воздуха и образованием конденсированных продуктов сгорания.

Изобретение относится к порошковой металлургии, в частности получению порошка интерметаллида NdNi5. Cинтез порошка осуществляется в герметичном сосуде в среде аргона, при температуре 850 К.
Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов на основе системы железо-хром-кобальт. Готовят шихту, содержащую порошки железа, хрома, кобальта и легирующих элементов, и проводят ее механоактивацию в планетарной шаровой мельнице в среде этилового спирта в течение 2-15 минут, с последующей сушкой.
Изобретение относится к порошковой металлургии, в частности к получению ультрадисперсных металлических порошков. Может использоваться для производства металлических порошков, применяемых в электронной промышленности, приборостроении, машиностроении, ракетной технике, авиастроении и других отраслях промышленности.
Изобретение относится к порошковой металлургии, в частности к изготовлению скользящих контактов. Может использоваться в электротехнике, в узлах токосъема, в частности щеток электромашин и контактных вставок железнодорожного и городского транспорта.

Изобретение относится к порошковой металлургии, в частности к получению скользящих контактов. Может использоваться в электротехнике для изготовления щеток электромашин, контактных вставок для устройств токосъема городского и железнодорожного транспорта.

Изобретение относится к порошковой металлургии, в частности к получению изделий на основе железа, пригодных для обработки резанием. Порошковая композиция на основе железа содержит порошок на основе железа и улучшающую обрабатываемость резанием добавку, содержащую по меньшей мере один силикат из группы глинистых минералов.

Изобретение относится к порошковой металлургии, в частности к изготовлению сварочной порошковой проволоки. Может использоваться при производстве любых видов порошковых проволок.
Изобретение относится к порошковой металлургии, в частности к приготовлению шихты для формирования матрицы алмазного инструмента из твердосплавной порошковой смеси с упрочняющими наночастицами из сверхтвердых материалов.

Изобретение относится к порошковой металлургии, в частности к порошковой композиции на основе железа, и способу получения диффузионно-легированного порошка. Диффузионно-легированный порошок получен смешиванием порошка железа или на основе железа с частицами легирующего порошка, содержащими медь и никель, и нагрев смеси порошков в неокислительной или восстановительной атмосфере до температуры 500-1000°С в течение 10-120 минут для связывания частиц легирующего порошка с поверхностью базового порошка.

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы.

Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием. Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов состоит из загрузочного бункера, вакуумной камеры, внутри которой размещены электронагреватели и питатель, и форвакуумной камеры, внутри которой размещены механизм для вибрации и вибростол для капсулы. Питатель снабжен дефлекторами в виде плоских пластин из газопоглощающего металла, установленных под углом наклона к горизонтали 17-18°, причем пластины выполнены с возможностью вибрации и нагрева независимым источником нагрева. Осуществляется равномерный и полный нагрев гранул до требуемой температуры, что способствует более полному удалению газов с их поверхности. Улучшается качество изделий за счет повышения эффективности процесса дегазации. 1 ил., 1 табл.
Наверх