Агломерированный флюс 48аф-70

Изобретение может быть использовано для сварки низколегированных теплоустойчивых сталей перлитного класса, применяемых в нефтехимической промышленности. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд (19,0-25,0), синтетический шлак (14,0-18,0), плавиковый шпат (23,0-25,65), титаномагнетитовый концентрат (0,50-1,0), фтористый барий (0,40-1,5), марганец металлический (1,0-2,50), ферротитан (0,30-0,60), ферросилиций (0,20-0,50), обожженный магнезит (23,0-34,30), силикат натрия (5,0-8,0). Отношение суммарного содержания обожженного магнезита, плавикового шпата и 1/3 синтетического шлака, 1/3 силиката натрия к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда и 2/3 силиката натрия находится в пределах 2,25-3,18. Синтетический шлак имеет следующий химический состав, мас.%: SiO2 (15-35), СаО (45-60), Al2O3 (5-10), CaF2 (8-16). Флюс обеспечивает высокую ударную вязкость металла сварных швов, выполненных с использованием сварочной проволоки марки Св-15Х3ГМ1ФТА, после проведения высокого отпуска, при температуре испытаний от минус 30°C и одновременно высокую прочность металла шва при температурах до +454°C. 3 табл.

 

Изобретение относится к сварочным материалам, а именно к агломерированным флюсам, и может быть использовано для сварки низколегированных теплоустойчивых сталей перлитного класса, применяемых в нефтехимической промышленности. Данный агломерированный флюс разработан для сварки стали 2,25Cr-1Mo-0,25V композиции.

Известен ближайший по составу и области применения агломерированный флюс (прототип) для автоматической сварки низколегированных сталей (Патент России RU 2313435, В23К 35/362), содержащий обожженный магнезит, электрокорунд, плавиковошпатовый концентрат, сфеновый концентрат, марганец металлический, ферротитан, ферросилиций, титаномагнетит, ферробор, диоксид титана синтетический и связующую добавку силикат натрия-калия, при следующем соотношении компонентов, мас. %:

Обожженный магнезит 26,40-30,0
Электрокорунд 18,60-22,0
Плавиковый шпат 20,0-20,50
Сфеновый концентрат 12,20-14,50
Диоксид титана синтетический 5,0-0,80
Марганец металлический 2,0-3,0
Ферротитан 0,25-0,50
Ферросилиций 0,50-0,80
Титаномагнетит 0,50-0,80
Ферробор 0,20-0,37
Силикат натрия-калия 6,55-8,10

При этом отношение суммарного содержания обожженного магнезита, плавикого шпата и 1/3 сфенового концентрата к суммарному содержанию 2/3 сфенового концентрата, 2/3 силиката натрия-калия, 1/2 электрокорунда и 1/2 диоксида титана выбрано в пределах 1,8-2,1, отношение ферротитана к ферробору - в пределах 0,67-2,5, а отношение диоксида титана синтетического к плавиковому шпату выбрано в пределах 0,24-0,32.

Недостатком данного флюса является сильная загрязненность металла шва фосфором, из-за его высокого содержания в сфеновом концентрате. Фосфор способствует снижению механических свойств металла шва после термической обработки. Также содержание бора во флюсе приводит к образованию боридных фаз в металле шва, способствующих его тепловому охрупчиванию при рабочих температурах.

Техническим результатом данного изобретения является повышение ударной вязкости металла сварных швов, выполненных с использованием флюса предлагаемого состава после проведения высокого отпуска, при температуре от минус 30°C до минус 18°C с одновременным повышением прочности металла шва при температурах до +454°C и улучшением сварочно-технологических свойств.

Технический результат достигается тем что:

предлагаемый состав агломерированного флюса, содержащий: электрокорунд, плавиковый шпат, титаномагнетитовый концентрат, ферротитан, ферросилиций, обожженный магнезит, марганец металлический, также дополнительно содержит синтетический шлак и фтористый барий, а в качестве связующей добавки - силикат натрия, при следующем соотношении компонентов, мас.%:

Электрокорунд 18,65-25,0;
Синтетический шлак 14,0-18,0;
Плавиковый шпат 23,0-25,65;
Титаномагнетитовый концентрат 0,50-1,0;
Фтористый барий 0,40-1,5;
Марганец металлический 1,0-2,50;
Ферротитан 0,30-0,60;
Ферросилиций 0,20-0,50;
Обожженный магнезит 23,0-34,30;
Силикат натрия 5,0-8,0,

при этом отношение суммарного содержания магнезита, плавикового шпата 1/3 синтетического шлака и 1/3 силиката натрия к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда и 2/3 силиката натрия находится в пределах 2,25-3,18, при этом синтетический шлак имеет следующий состав, мас.%: SiO2 (15-35), CaO (45-60), Al2O3 (5-10), CaF2 (8-16).

В состав флюса введен синтетический шлак взамен сфенового концентрата и синтетического диоксида титана, что способствует снижению остаточного содержания кислорода в металле шва, негативным образом влияющего на его ударную вязкость;

- в состав флюса введен фтористый барий, обеспечивающий уменьшение количества и размера неметаллических включений за счет улучшения отделимости шлаковой корки;

- в качестве связующей добавки введен силикат натрия, обеспечивающий снижение диффузионного водорода в наплавленном металле, что уменьшает склонность металла шва к водородному охрупчиванию.

При превышении содержания электрокорунда сверх указанных пределов отмечается повышенная загрязненность металла шва алюмосиликатными включениями, из-за чего происходит снижение ударной вязкости металла шва. При содержании электрокорунда ниже указанного предела происходит ухудшение сварочно-технологических свойств флюса.

Пределы содержания синтетического шлака выбраны с точки зрения повышения ударной вязкости и увеличения прочности металла шва.

Пределы содержания плавикового шпата выбраны с точки зрения обеспечения наилучших сварочно-технологических свойств и отделимости шлаковой корки. При превышении содержания плавикового шпата выше указанного предела наблюдается ухудшение отделимости шлаковой корки. При содержании плавикового шпата ниже указанного предела наблюдается нестабильное горение дуги.

Введение в состав флюса добавок титаномагнетита и фтористого бария в указанных пределах приводит к улучшению сварочно-технологических свойств флюса за счет улучшения смачиваемости жидкого металла расплавленным шлаком.

Содержание марганца металлического, ферротитана и ферросилиция выбраны с учетом обеспечения сочетания высоких прочностных и пластических свойств металла сварного шва, а также его высокой ударной вязкости. При содержании указанных элементов ниже указанных пределов отмечается снижение предела текучести и временного сопротивления металла шва после проведения высокого отпуска. При привышении указанных пределов снижается пластичность и ударная вязкость металла шва.

Указанные пределы содержания химических соединений в синтетическом шлаке выбраны с учетом обеспечения возможности его выплавки в электрической печи, так как в этих пределах выбранный состав попадает в область тройной эвтектики на диаграмме плавкости.

Изготовление данного флюса возможно на промышленных автоматизированных линиях по производству агломерированных флюсов.

Были изготовлены опытные партии агломерированных флюсов, составы которых приведены в таблице 1.

Проведена сварка стыковых соединений из стали 2,25Cr-1Mo-0,25V композиции с использованием проволоки марки Св-15Х3ГМ1ФТА ⌀4 мм в сочетании с изготовленными вариантами флюса.

Таблица 1
Состав опытных партий агломерированного флюса, мас.%
Наименование компонента № партии
I II III IV прототип
Магнезит обожженный 23,0 34,30 27,6 30,0
Электрокорунд 25,0 18,65 19,0 20,0
Синтетический шлак 16,65 14,0 18,0 -
Плавиковый шпат 23,0 23,0 25,65 20,0
Титаномагнетитовый концентрат 1,0 0,50 0,50 0,60
Фтористый барий 1,50 1,0 0,40 -
Диоксид титана синтетический - - - 6,50
Сфеновый концентрат - - - 12,20
Ферробор - - - 0,20
Марганец металлический 2,50 1,0 1,50 3,10
Ферротитан 0,60 0,60 0,30 0,35
Ферросилиций 0,20 0,50 0,50 0,50
Силикат натрия 6,55 6,55 6,55 -
Силикат натрия-калия - - - 6,55
В* 2,25 3,18 2,73 2,10
* В - соотношение суммарного содержания, магнезита, плавикового шпата, 1/3 синтетического шлака, 1/3 сфенового концентрата и 1/3 силиката натрия (силиката натрия-калия) к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда, 2/3 сфенового концентрата и 2/3 силиката натрия (силиката натрия-калия). При этом синтетический шлак имеет следующий состав, мас.%: SiO2 (15-35), CaO(45-60), Al2O3 (5-10), CaF2 (8-16).
Режимы сварки: Сила тока: 500-550 А
Напряжение: 28-32 В
Скорость: 25-27 м/ч

Сварка проводилась на постоянном токе обратной полярности.

Сварочная проволока Св-15Х3ГМ1ФТА имеет следующий состав, % по мас.:

Углерод 0,14-0,16
Кремний 0,15-0,22
Марганец 0,70-0,90
Хром 2,10-2,50
Молибден 0,90-1,20
Ванадий 0,15-0,40
Железо основа

Результаты определения химического состава металла шва приведены в таблице 2.

Таблица 2
Химический состав металла шва, мас.%
Варианты флюса Химический элемент
С Si Mn Cr Mo V Ni S P
I 0,07 0,18 0,98 1,98 1,01 0,15 0,01 0,009 0,009
II 0,11 0,25 1,22 2,15 1,02 0,20 0,01 0,003 0,007
III 0,09 0,22 1,18 2,12 1,01 0,18 0,01 0,003 0,009
IV - прототип 0,07 0,56 1,35 2,10 1,00 0,16 0,01 0,005 0,014

Результаты определения механических свойств металла шва после проведения термической обработки по режиму 660±10°C/2 ч 5 мин + 705-710°C/7 ч 55 мин, а также результаты проверки сварочно-технологических свойств приведены в таблице 3.

Таблица 3
Результаты определения механических свойств металла шва, а также сварочно-технологических свойств
Варианты флюса R m + 20
МПа
R p 0,2 + 20
МПа
А+20, % Z+20, % R m + 454
МПа
KV-18,
Дж/см2
KV-30,
Дж/см2
Сварочно-технологи-
ческие свойства
Требования
заказчика
585-760 415-620 ≥18 ≥45 ≥461 ≥55 ≥55 удовл.
I 630-650 545-550 19-23 69-74 475-500 38-64 25-68 удовл.
II 640-660 560-575 20-24 71-78 515-530 55-80 15-37 удовл.
III 640-650 540-570 23,5-25 74-75 490-495 194-215 71-240 удовл.
IV 550-560 520-540 12,5-14 66-72 440-460 10-142 10-21 удовл.

Были проведены дополнительные исследования, которые показали что при повышении соотношения В>3,18 не удается обеспечить удовлетворительные сварочно-технологические свойства, из-за чего в металле шва образуется большое количество дефектов (шлаковые включения, побитость и т.д.), что отрицательным образом сказывается на значениях ударной вязкости.

При использовании прототипа не удалось получить требуемые значения механических свойств металла шва вследствие его теплового охрупчивания из-за высокого содержания в нем бора и фосфора.

При соотношении В < 2,25 не обеспечиваются требуемые значения ударной вязкости металла шва из-за загрязненности его неметаллическими включениями вследствие высокой окислительной способности шлака.

При соблюдении предлагаемого соотношения компонентов обеспечиваются прочностные и пластические свойства металла шва, а также высокий уровень его ударной вязкости.

Ожидаемый технико-экономический эффект от использования нового состава сварочного флюса для изготовления корпусов нефтехимического оборудования с высокими рабочими параметрами выразится в повышении срока службы оборудования при обеспечении его повышенной безопасности.

Агломерированный флюс для сварки низколегированных сталей, содержащий электрокорунд, плавиковый шпат, титаномагнетитовый концентрат, ферротитан, ферросилиций, обожженный магнезит, марганец металлический, отличающийся тем, что он дополнительно содержит синтетический шлак, фтористый барий и силикат натрия в качестве связующей добавки, при следующем соотношении компонентов, мас.%:

Электрокорунд 18,65-25,0;
Синтетический шлак 14,0-18,0;
Плавиковый шпат 23,0-25,65;
Титаномагнетитовый концентрат 0,50-1,0;
Фтористый барий 0,40-1,5;
Марганец металлический 1,0-2,50;
Ферротитан 0,30-0,60;
Ферросилиций 0,20-0,50;
Обожженный магнезит 23,0-34,30;
Силикат натрия 5,0-8,0,

при этом отношение суммарного содержания обожженного магнезита, плавикового шпата и 1/3 синтетического шлака, 1/3 силиката натрия к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда и 2/3 силиката натрия находится в пределах 2,25-3,18, а синтетический шлак имеет следующий состав, мас.%:
SiO2 15-35
CaO 45-60
Al2O3 5-10
CaF2 8-16



 

Похожие патенты:

Изобретение может быть использовано для сварки нержавеющих сталей или наплавки антикоррозионного покрытия, например, оборудования атомных энергетических установок.
Изобретение может быть использовано для нанесения высоколегированных плакирующих слоев путем автоматической наплавки ленточным электродом под слоем флюса в электрошлаковом режиме рабочих поверхностей современных корпусов атомных реакторов и других сосудов высокого давления.
Изобретение может быть использовано при автоматической сварке или наплавке под флюсом изделий из высоколегированных коррозионно-стойких сталей аустенитного класса.
Изобретение может быть использовано при сварке изделий, работающих при отрицательных температурах. Флюс содержит компоненты в следующем соотношении, мас.%: пылевидные отходы производства извести 33,9-44,5, пылевидные отходы производства ферросилиция 20,5-31,1, пылевидные отходы производства алюминия 22-27, жидкое стекло 8-13.

Изобретение относится к электродуговой сварке сталей под флюсом, в частности к флюсам, предназначенным для примешивания к плавленым флюсам. .

Изобретение относится к сварочным материалам, в частности к керамическим флюсам для механизированной наплавки и сварки низкоуглеродистых и низколегированных сталей.
Изобретение относится к сварке, конкретно к электродуговой сварке под флюсом, в частности к флюсам, предназначенным для примешивания к плавленым флюсам. .

Изобретение относится к электродуговой сварке под флюсом и может быть использовано при сварке листовых металлоконструкций и резервуаров, работающих при отрицательных температурах.
Изобретение относится к сварочной отрасли, а именно к составам шихты для получения сварочного плавленого флюса, и может быть использовано при механизированной сварке и наплавке углеродистых сталей общего назначения низколегированной сварочной проволокой.

Изобретение относится к сварочным материалам, а именно к агломерированным флюсам, и может быть использовано для автоматической сварки низколегированных хладостойких сталей высокой прочности на высоких скоростях низколегированными проволоками в различных отраслях промышленности, например в производстве труб, судостроительной и нефтехимической промышленности.
Изобретение относится к электродуговой сварке сталей под флюсом, в частности к флюсам. Флюс-добавка, предназначенный для примешивания к сварочным флюсам, на основе жидкого стекла содержит пыль электрофильтров алюминиевого производства и натриевого жидкого стекла при соотношении компонентов, мас.%: пыль электрофильтров алюминиевого производства 40-60, натриевое жидкое стекло 60-40. Изобретение позволяет повысить общий уровень механических свойств сварного шва и стабилизировать уровень твердости сварного соединения. 1 табл.

Изобретение может быть использовано при электродуговой сварке и наплавке легированных сталей под флюсом. Флюс содержит компоненты в следующем соотношении, мас.%: пылевидный ковшевой шлак производства рельсовой стали 30,0-50,0, пылевидные отходы производства алюминия 5,0-30,0, жидкое стекло 40,0-65,0. Пылевидный ковшевой шлак производства рельсовой стали содержит, мас.%: FeO 0,3-1,5, MnO 0,1-2,0, СаО 50,8-53,8, SiO2 24,5-26,2, CaF2 0,01-1,0, Al2O3 3,4-5,0, MgO 7,8-8,7, Собщ 0,1-0,6, S 0,1-0,4, Р 0,3-0,6. Пылевидные отходы производства алюминия имеют следующий химический состав, мас.%: Al2O3 21-43,27, F 18-27, Na2O 8-13, K2O 0,4-6, СаО 0,7-2,1, SiO2 0,5-2,48, Fe2O3 2,1-2,3, Собщ 12,5-28,2, MnO 0,03-0,9, MgO 0,04-0,9, S 0,09-0,46, Р 0,1-0,18. Флюс обеспечивает снижение стоимости при его производстве, повышение прочности флюса и устойчивости горения дуги за счет оптимизации концентрации жидкого стекла, снижение угара легирующих элементов при сварке и наплавке за счет снижения окисленности и уменьшение уровня загрязненности стали экзогенными неметаллическими включениями. 1 табл.

Изобретение может быть использовано при электродуговой сварке и наплавке легированных сталей под флюсом. Флюс содержит компоненты в следующем соотношении, мас. %: пылевидный ковшевой шлак производства рельсовой стали 30,0-50,0 и жидкое стекло 50,0-70,0. Ковшевой шлак производства рельсовой стали содержит, мас. %: SiO2 20,7-28,6, MnO 0,01-2,0, СаО 45,6-54,8, MgO 0,1-10, Al2O3 0,1-7,0, К2О 0,1-4, Na2O 0,1-4, FeO 0,01-1,5, CaF2 0,01-1,5, Собщ 0,1-0,6. Флюс обеспечивает улучшение качественных характеристик сварного шва и наплавляемого металла за счет снижения загрязненности стали неметаллическими включениями, снижения угара легирующих элементов при сварке и наплавке и повышения устойчивости горения дуги, а также позволяет уменьшить себестоимость сварки за счет утилизации отходов производства. 1 табл.

Изобретение может быть использовано при изготовлении электродуговой сваркой под флюсом металлоконструкций из низкоуглеродистых сталей, стойких к электрохимической коррозии, например корпусов морских судов, нефте- и газопроводов. Зазор стыкового соединения заполняют металлохимической присадкой. Присадка содержит смесь рубленой металлической крупки фракцией 1,0-2,0 мм, изготовленной из обрези кромок обеих свариваемых заготовок в соотношении 1:1 с очисткой ее от окислов, а также соединения отрицательно активных элементов в количестве 0,5-0,8 мас.% и алюминий в количестве 0,2-0,34 мас.%. Ширину зазора устанавливают 0,6-0,8 толщины свариваемых деталей. Осуществляют одностороннюю или двухстороннюю сварку в несколько проходов на постоянном токе прямой полярности из условия обеспечения минимального перемешивания сварочной ванны. Заполнение зазора крупкой осуществляют путем ее предварительной засыпки или подачи в зону дуги с использованием дозатора. Приведенные приемы способа позволяют снизить градиент потенциала поперек сварного шва и обеспечивают повышение стойкости металлоконструкции к электрохимической коррозии. 2 з.п. ф-лы, 1 ил., 3 табл., 1 пр.

Флюс может быть использован для сварки низко- и среднелегированных сталей. Флюс содержит компоненты в следующем соотношении, мас. %: шлак производства силикомарганца 88,0-98,0, пылевидные отходы производства алюминия 1,0-6,0, жидкое стекло 1,0-6,0. Шлак производства силикомарганца содержит, мас. %: SiO2 25-49, Al2O3 4-28, СаО 15-32, CaF2 0,1-1,5, MgO 1,7-9,8 MnO 3-17, FeO 0,1-3,5, S≤0,20, P≤0,05. Пылевидные отходы производства алюминия имеют следующий химический состав, мас. %: Al2O3 21-38,27; F 18-27; Na2O 8-13; K2O 0,4-6,6, СаО 0,7-2,1; SiO2 0,5-2,48; Fe2O3 2,1-2,3; Собщ 12,5-27,2, MnO 0,03-0,9, MgO 0,04-0,9, S 0,09-0,46, P 0,1-0,18. Применение флюса при сварке обеспечивает повышение уровня механических свойств сварных конструкций за счет уменьшения уровня загрязненности стали оксидными неметаллическими включениями путем снижения концентрации FeO в шлаке и проведения углеродного раскисления, а также повышение устойчивости горения дуги и улучшение качества сварного шва.
Изобретение может быть использовано при электродуговой механизированной сварке и наплавке низколегированных сталей. Флюс состоит из шлака производства силикомарганца, который содержит компоненты в следующем соотношении, мас. %: диоксид кремния 25-49, оксид алюминия 4-28, оксид кальция 15-32, фторид кальция 0,1-1,5, оксид магния 1,7- 9,0 оксид марганца 3-17, оксид железа 0,1-3,5. В качестве примесей флюс может содержать серу не более 0,12 мас.% и фосфора не более 0,02 мас.%. Флюс обеспечивает уменьшение стоимости сварочного процесса за счет утилизации отходов производства и снижение загрязненности стали неметаллическими включениями, а также позволяет снизить угар легирующих элементов при сварке и наплавке, что способствует повышению механических свойств сварного соединения.
Наверх