Способ регулирования осевого компрессора в системе газотурбинного двигателя



Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя
Способ регулирования осевого компрессора в системе газотурбинного двигателя

 


Владельцы патента RU 2535186:

Письменный Владимир Леонидович (RU)

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной температуры газа на входе в компрессор. Температура газа на входе в компрессор поддерживается постоянной, равной температуре торможения воздуха на крейсерской скорости полета летательного аппарата. Расход воздуха через двигатель и перепад давления на сопле (при сохранении постоянной температуры газа на входе в компрессор) изменяются пропорционально изменению полного давления воздуха на входе в двигатель, что обеспечивает лучшие, чем в известных ГТД, тягово-экономические характеристики двигателя на сверхзвуковых скоростях полета. Применение способа решает проблему топливной эффективности ГТД на больших скоростях полета, создает условия для возрождения сверхзвуковой гражданской авиации. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится авиадвигателестроению.

При эксплуатации авиационных газотурбинных двигателей (ГТД) внешние условия (температура и давление воздуха на входе в двигатель) меняются, что ведет к изменению режима работы компрессора и двигателя в целом.

Известны способы регулирования осевых компрессоров:

применение двухкаскадных компрессоров (Теория воздушно-реактивных двигателей. Под ред. С.М. Шляхтенко. М.: «Машиностроение», 1975. С. 97);

изменение угла установки направляющих аппаратов (там же, с. 98÷99);

перепуск воздуха из средних ступеней (там же, с. 99÷101).

Общим недостатком перечисленных способов является то, что их применение не позволяет сохранить расчетный режим работы осевого компрессора в системе ГТД при изменении внешних условий.

Целью изобретения является устранение указанного недостатка.

Известна установка для испытания газотурбинного двигателя с подогревом воздуха на входе, в которой подогрев воздуха осуществляется путем подмешивания выхлопных газов испытуемого двигателя (Э.Л. Солохин. Испытания воздушно-реактивных двигателей. Учебник для вузов по специальности «Авиационные двигатели». М.: «Машиностроение», 1975. С. 132, рис. 3.16а).

Известен способ регулирования осевого компрессора в системе газотурбинной установки, заключающийся в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной температуры газа на входе в компрессор (патент SU 2002043063 А1, МПК F02C 6/18, 18.04.2002).

Сущность изобретения заключается в том, что температура газа на входе в осевой компрессор ГТД поддерживается постоянной, равной температуре торможения воздуха на крейсерской скорости полета летательного аппарата, что обеспечивает постоянство режима работы компрессора независимо от внешних условий.

Поставленная цель достигается тем, что в ГТД с осевым компрессором горячий газ (продукты сгорания) забирается из канала, расположенного за турбиной, и подводится в канал, расположенный между входным устройством и компрессором, в количестве, необходимом для поддержания постоянной температуры газа на входе в компрессор, равной температуре торможения воздуха на крейсерской скорости полета летательного аппарата, которая как правило является максимальной скоростью полета.

Степень повышения давления газа в компрессоре определяется из условия прочности лопаток компрессора по формуле

где Тк* - допустимая температура газа за компрессором;

Тн* - температура торможения воздуха на крейсерской скорости полета ЛА;

ηк - коэффициент полезного действия компрессора.

На фиг. 1 изображена схема ГТД с осевым компрессором;

на фиг. 2 изображена характеристика осевого компрессора;

на фиг. 3 изображена скоростная характеристика ГТД;

на фиг. 4 изображена скоростная характеристика ГТД.

ГТД с осевым компрессором (фиг. 1) состоит из входного устройства 1, щелевого клапана 2, турбокомпрессора 3, выходного устройства 4. Щелевой клапан 2 представляет собой цилиндр с отверстиями, внутри которого находится другой цилиндр (с продольными щелями), поворот которого позволяет перекрывать (за счет изменения расположения щелей относительно отверстий) отверстия наружного цилиндра. Турбокомпрессор 3 состоит из осевого компрессора, камеры сгорания и турбины привода компрессора.

Способ регулирования осевого компрессора осуществляется следующим образом.

На крейсерской скорости полета ЛА клапан 2 закрыт (отверстия перекрыты), температура газа на входе в компрессор равна температуре торможения воздуха (исходная температура). При уменьшении скорости полета ЛА температура воздуха на входе в компрессор становится меньше исходной, что формирует сигнал на открытие клапана 2 (поворот внутреннего цилиндра). Горячий газ из канала, расположенного за турбиной, через открытые отверстия клапана 2 поступает в канал, расположенный между входным устройством и компрессором. В результате смешения воздуха и продуктов сгорания температура газа на входе в компрессор восстанавливается, но уже при новом положении клапана 2.

Аналогичным образом (за счет изменения количества подмешиваемого газа) происходит поддержание исходной температуры газа на входе в осевой компрессор при любом другом изменении внешних условий.

Сохранение исходной температуры газа Тв* на входе в осевой компрессор при неизменной частоте вращения n обеспечивает независимо от внешних условий неизменный (расчетный) режим работы компрессора: nпр=const; Gпр=const, и двигателя в целом: πк=const; πт=const; Tг*=const. Здесь:

- приведенная частота вращения ротора;

- приведенный расход воздуха.

На фиг. 2 показана характеристика осевого компрессора в системе ГТД. При данном способе регулирования компрессора рабочая линия вырождается в точку (РТ).

Преимуществом данного способа регулирования является то, что расход воздуха через двигатель и перепад давления на сопле изменяются пропорционально изменению полного давления воздуха на входе в двигатель, что обеспечивает лучшие, чем в известных ГТД, тягово-экономические характеристики двигателя на сверхзвуковых скоростях полета.

На фиг. 3 и фиг. 4 показаны скоростные характеристики ГТД (фиг. 1). Здесь R ¯ = R / R o - относительная тяга (тяга, отнесенная к стартовой тяге); ηо - общий коэффициент полезного действия двигателя; М - число Маха. При расчете характеристик заданы рабочие параметры ГТД: Тв*=485 К; Тг*=1800 К; πк=6,8; πт=2,85; n ¯ = 1 , потери в элементах двигателя - стандартные.

Анализ характеристик показывает: а) двигатель способен выполнять бесфорсажный полет на скоростях М>2÷2,5; б) общий к.п.д. двигателя на крейсерской скорости полета М=2,5 составляет 43%, что выше, чем у лучших ТРДД (ηо~36%).

Применение способа решает проблему топливной эффективности ГТД на больших скоростях полета, создает условия для возрождения сверхзвуковой гражданской авиации.

1. Способ регулирования осевого компрессора в системе газотурбинного двигателя, заключающийся в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной температуры газа на входе в компрессор, отличающийся тем, что температура газа на входе в компрессор поддерживается постоянной, равной температуре торможения воздуха на крейсерской скорости полета летательного аппарата.

2. Способ регулирования осевого компрессора в системе газотурбинного двигателя по п.1, отличающийся тем, что крейсерская скорость полета равна максимальной скорости полета летательного аппарата.

3. Способ регулирования осевого компрессора в системе газотурбинного двигателя по п.1, отличающийся тем, что степень повышения давления газа в компрессоре определяется по формуле

где Тк* - допустимая температура газа за компрессором;
Тн* - температура торможения воздуха на крейсерской скорости полета летательного аппарата;
ηк - коэффициент полезного действия компрессора.



 

Похожие патенты:

Изобретение относится к установкам для выработки пара и может быть использовано в энергетике, например, для парогенерирующих установок с агрегатами наддува, обеспечивающих паром конденсационные паровые турбины, в том числе турбины с давлением пара на входе, превышающем критическое давление, и высокой температурой питательной воды, вплоть до критической.

Изобретение относится к энергетике и может быть использовано на тепловых электростанциях с комбинированным парогазовым циклом. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к энергетике и может быть использовано на тепловых электростанциях, сжигающих органическое топливо и оборудованных газотурбоэлектрогенераторами.

Изобретение относится к газотурбинным установкам (ГТУ), в частности, реализующим полузамкнутую схему рабочего процесса и утилизацию тепла выхлопных газов. .

Изобретение относится к двигателям внутреннего сгорания, а конкретно к газотурбинным двигателям. .

Изобретение относится к энергетике и может найти применение в газотурбинных силовых установках, в частности в установках, предназначенных для приводов наземных транспортных средств.

Изобретение относится к энергетике. Способ продувки магистрали рециркуляции отработавших газов газовой турбины, при котором используется выпускаемый поток из компрессора, причём первую часть выпускаемого воздуха направляют в магистраль рециркуляции отработавших газов для продувки, а вторую часть сжатого воздуха подают через вторую выпускную магистраль в парогенератор, работающий на вторичном топливе. Также представлена газовая турбина с продувочной магистралью согласно изобретению. Изобретение позволяет обеспечить надежную продувку магистралей рециркуляции отработавших газов без использования дополнительных нагнетательных вентиляторов. 2 н. и 13 з.п. ф-лы, 2 ил.

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом. Электролизер-кавитатор установлен в обособленном корпусе герметично, соединенном с камерой сгорания и с возможностью подачи газовой смеси под давлением за компрессором, через электролизер-кавитатор с центральным телом в камеру сгорания с воспламеняющим устройством. На выходе из камеры сгорания установлено устройство для разделения газового потока, содержащее сверхзвуковое сопло, внешнюю трубу, внутреннюю трубу, коаксиально расположенные друг относительно друга, канал рециркуляции дозвукового потока обратно в камеру сгорания. Изобретение направлено на увеличение КПД газотурбинного двигателя. 2 ил.

Изобретение относится к области рециркуляции дымового газа в газотурбинных установках, а именно к элементам для смешивания дымового газа с окружающим воздухом выше по потоку от компрессора. Всасывающая секция (2) выше по потоку от впуска компрессора (1) газотурбинной установки (1-7) с рециркуляцией дымового газа содержит по меньшей мере одну секцию (22) с протоком (31), образованным боковыми стенками (28-30), в котором поток свежего всасываемого воздуха протекает вдоль главного направления (33) потока воздуха. Секция содержит по меньшей мере две смесительные трубки (32), продолжающиеся в проток (31) от по меньшей мере одной боковой стенки (28-30). Каждая смесительная трубка (32) содержит впуск (34) на указанной по меньшей мере одной боковой стенке (28-30) для приема подвергнутого рециркуляции дымового газа (41), а также содержит по меньшей мере одно выпускное отверстие (37), расположенное на расстоянии от указанной боковой стенки (28-30), для продувания подвергнутых рециркуляции дымовых газов (41) из смесительной трубки (32) в поток воздуха. По меньшей мере две смесительных трубки (32) расположены в ряд, причем указанный ряд выровнен по существу вдоль направления (33) потока воздуха, а самая верхняя по потоку смесительная трубка (32) образует передний край этого ряда. Достигается равномерность перемешивания и повышается отказоустойчивость устройства. 3 н. и 21 з.п. ф-лы, 7 ил.

Изобретение относится к способу управления рециркуляцией отработавших газов газотурбинной электростанции (38) и к газотурбинной электростанции для осуществления способа. Упомянутая газотурбинная электростанция (38) содержит газовую турбину (6), контроллер (39), парогенератор (9) с рекуперацией тепла и делитель (29) отработавших газов, который разделяет отработавшие газы (8, 19) газотурбинной электростанции на первый частичный поток (21) отработавших газов для рециркуляции во всасываемый поток газовой турбины (6) и на второй частичный поток (20, 24) отработавших газов для выброса в окружающую среду, и элемент (11, 29) управления для управления первым потоком (21) отработавших газов и вторичный охладитель (27) отработавших газов. Заданную концентрацию одного компонента (Сс) определяют из заданного значения концентрации одного компонента (Ccl) газа из контура управления для рабочей переменной, относящейся к горению в газовой турбине (6), значения упреждающего управления заданной концентрацией компонента газа (Cmap) и значения коррекции заданной концентрации (Ccor) компонента газа, получаемого с помощью схемы обратной связи. Контроллер (39) упомянутой газотурбинной электростанции (38) содержит три уровня контроллера для определения заданной концентрации (Сс) одного компонента, где первый уровень контроллера содержит замкнутый контур управления для заданной концентрации (Сс) одного компонента, второй уровень контроллера содержит упреждающее управление для заданной концентрации (Сс) одного компонента, и третий уровень контроллера содержит цепь обратной связи, посредством которой заданные значения упреждающего управления корректируются в соответствии фактическим рабочим поведением газотурбинной электростанции. Обеспечивается надежная защита работы упомянутой газотурбинной электростанции за счет управления содержанием по меньшей мере одного компонента рабочей среды. 2 н. и 14 з.п. ф-лы, 4 ил.

Описан способ работы газотурбинной электростанции, при котором свежий воздух (2) подается на вход (3) компрессора и ускоряется во входе (3) компрессора, и рециркулируемый подпоток (21) отработавших газов подается в область входа (3) компрессора, в которой свежий воздух (2) ускоряется до такой степени, что разница между общим давлением и статическим давлением свежего воздуха (2) больше или равна разнице давлений, требуемой для всасывания целевого массового расхода рециркулируемого первого подпотока (21) отработавших газов во вход (3) компрессора. Также описана газотурбинная электростанция с газовой турбиной (6), вход компрессора в которой разделен на два сектора (3′, 3″), к которым примыкает тракт компрессора (1), устройство подачи для свежего воздуха сообщается с первым сектором (3′), и линия рециркуляции для рециркуляции первого подпотока (21) отработавших газов сообщается со вторым сектором (3″), и второй сектор (3″) подходит так близко к компрессору (1), что при работе газовой турбины (6) статическое давление на выходе из второго сектора (3″) является настолько низким, что разница между общим давлением и статическим давлением больше или равна разнице давлений, требуемой для всасывания целевого массового расхода рециркулируемого первого подпотока (21) отработавших газов во вход (3) компрессора. Достигается надежная работа газотурбинного двигателя с рециркуляцией отработавших газов без использования вентиляторов для преодоления потерь давления в линиях рециркуляции. 2 н. и 13 з.п. ф-лы, 8 ил.
Наверх