Биогибридный композиционный материал



Владельцы патента RU 2535227:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" (RU)

Изобретение относится к безотходной очистке от аварийных разливов нефти и нефтепродуктов природных и искусственных водоемов, сточных вод, жидких отходов производств, твердых поверхностей, а также в качестве превентивной меры. Сорбент включает термопластичный полимер с волокнообразующими свойствами, полученный аэродинамическим формованием. Наполнитель представляет собой нестерильные растения рода Сфагнум (Sphagnum), инкорпорированный в термопластичный полимер в процессе его аэродинамического формования в количестве 10-50% от массы термопластического полимера, и иммобилизованные клетки ассоциаций бактерий-нефтедеструкторов. Изобретение заключается в упрощении состава материала при сохранении высоких эксплуатационных характеристик. 1 з.п. ф-лы.

 

Изобретение относится к биогибридному материалу на основе сорбентов нефти и нефтепродуктов и ассоциации углеводородокисляющих культур микроорганизмов и может быть использовано при безотходной очистке от аварийных разливов нефти и нефтепродуктов природных и искусственных водоемов, сточных вод, жидких отходов производств, твердых поверхностей, а также в качестве превентивной меры. Указанный материал возможно использовать на всех объектах, связанных с добычей, транспортировкой (в том числе по подводным трубопроводам) и хранением нефти и нефтепродуктов.

Нефть и нефтепродукты относятся к высокотоксичным загрязняющим веществам, воздействие которых может нарушать равновесие экосистем, особенно при локализации в донных отложениях. В связи с этим совершенствование методов очистки акваторий от нефтяных загрязнений безусловно является важной задачей с точки зрения снижения экономических затрат при ликвидации последствий аварий, а также возможности устранения наиболее труднодоступных и опасных локализаций нефти на дне акваторий. В последнее время созданы инновационные биогибридные материалы, предназначенные для эффективного сбора и деструкции нефти, нефтепродуктов и продуктов химической промышленности при экологических загрязнениях акваторий и суши, очистке промышленных и бытовых отходов. Важным преимуществом данных материалов является способность к саморегенерации и медленному биоразложению (биодеградации). Бактерии-нефтедеструкторы, адсорбированные в биогибридных материалах, способны разрушать углеводороды нефти и нефтепродуктов как при контакте системы с загрязнителем, так и в составе нетканого полимерного сорбента. В результате исключается необходимость отделения нефти и нефтепродуктов от материала, а также последующая утилизация отработанных материалов.

Известен экобиопрепарат для очистки воды от нефтепродуктов (RU №2393215, 2005 г.). Биопрепарат представляет собой культуру клеток биодеструктора, искусственно иммобилизованную на сорбенте-носителе, содержащем полые сферические частицы, внутренняя полость которых заполнена, в основном, азотом и двуокисью углерода. В качестве биодеструктора нефтепродуктов используют штамм Pseudomonas fluorescens ВКПМ 6844.

Данный экобиопрепарат обладает высокой нефтепоглощающей способностью. Однако сложная технология получения экобиопрепарата, в том числе необходимость изготовления сферических частиц, последующее заполнение их газообразными веществами приводит к высоким материальным затратам. Кроме того, несмотря на высокую плавучесть и сохранение этого свойства после сорбции нефтяной пленки с водной поверхности, указанному экобиопрепарату свойственна низкая степень утилизации значительной части тяжелых фракций нефти и нефтепродуктов, осевших на дно после аварийного разлива. Таким образом, данный сорбент для очистки водной поверхности не является достаточно эффективным.

Известна сорбирующая система, состоящая из сорбента с высокой сорбционной емкостью (более 30 г сорбата на 1 г сорбента) и бактерий, способных к потреблению нефти (US №5,492,881, 1996).

Основным достоинством сорбента является его экологичность. Однако его порошкообразное и гранулированное структурные состояния приводят к сложностям сбора и в дальнейшем отжима сорбента. Кроме того, обязательным условием создания сорбента является его гидрофобизация (добавление воска, парафина и др.), что усложняет и делает более дорогостоящей технологию изготовления данной сорбирующей системы.

Известен биопрепарат для очистки почвы и воды от нефти и нефтепродуктов, включающий аэробные нефтеокисляющие микроорганизмы, минеральный питательный субстрат, нормальные парафины от С12 до С18 и твердый субстрат носитель. При этом в качестве аэробных нефтеокисляющих микроорганизмов биопрепарат содержит ассоциацию бактерий, в качестве субстрата носителя - сферолозу и дополнительно содержит глюкозу (RU 2361686, 2007).

Использование сферозолы в качестве сорбента-носителя предопределяет возможность сорбции нефти и нефтепродуктов только с поверхности воды, что значительно снижает эффективность действия указанного препарата особенно при очистке дна от тяжелых фракций нефти и нефтепродуктов, так как сферы действий биопрепарата и субстрата разобщены. При этом, как следствие, объем сорбируемого продукта недостаточно высок.

Известен сорбент для биодеградации поверхностных и донных отложений нефтепродуктов (RU №2356856, 2007). Сорбент содержит основу для культивирования нефтеразрушающих микроорганизмов, сухую культуру нефтеразрушающих микроорганизмов и растворимые соли азота и фосфора. Указанный сорбент получают путем выдерживания основы, представляющей собой текстильное полотно из синтетического материала с разветвленной структурой типа синтепон, в питательном водном растворе, содержащем 0,3 кг аммофоса или диаммофоса и не более 2 кг сухой культуры нефтеразрушающих микроорганизмов в 1 м3 воды, в течение 15-24 ч, при температуре 25-30°C и обеспечении насыщения раствора кислородом.

При этом, однако, выдерживание синтепоновой основы в водно-солевом растворе обеспечивает микроорганизмы питательными элементами лишь на начальном этапе культивирования. После извлечения сорбента из питательного раствора синтепоновая основа содержит только остаточные концентрации питательных веществ, что приводит к снижению активности микроорганизмов в сорбенте и, как следствие, снижает процесс разложения углеводородов нефти бактериями.

Кроме этого, активное размножение микроорганизмов приводит к увеличению их биомассы и в дальнейшем к утяжелению сорбента, что, в свою очередь, не позволяет сорбенту всплыть со дна, и, следовательно, биодеградация находящихся на поверхности воды более легких фракций нефти и нефтепродуктов происходит частично.

Наиболее близким к изобретению является биогибридный материал для сорбции и деградации нефти и нефтепродуктов поверхностных и донных отложений, представляющий собой сорбирующий композиционный материал, включающий внешние слои из полиэфирных волокон и промежуточный слой из полипропиленовых волокон, содержащие инкорпорированные фосфоросодержащие катиониты и/или азотсодержащие аниониты, клеточные стенки водных растений семейства Рясковые (Lemnaceae) и иммобилизованные клетки бактерий-нефтедеструкторов (RU №2011145698, 20.05.2013).

Данный биогибридный материал обладает высокой сорбционной емкостью нефти и нефтепродуктов с твердых поверхностей или с поверхности акваторий в количестве, превышающем не менее чем в 25 раз собственный, а также высокой степенью биодеградации углеводородов нефти биологической составляющей биогибридного материала - бактериальными культурами (биодеградация нефти в воде составляет 85% вес.). Недостаток известного биогибридного материала заключается в его сложном, многокомпонентном составе. Использование многослойного, комбинированного сорбирующего композиционного материала, включающего внешние слои из полиэфирных волокон и промежуточный слой из полипропиленовых волокон, усложняет и делает более дорогостоящей технологию получения данного материала.

Кроме того, трудоемкая и длительная процедура приготовления целых каркасов клеточных стенок водных растений семейства Рясковые (Lemnaceae) - выдерживание в серии спиртов, сушка, измельчение - приводит к высоким материальным затратам.

Вышеописанные факторы обуславливают недостаточную эффективность известного биогибридного материала.

Задача изобретения заключается в создании биогибридного композиционного материала, имеющего несложный компонентный состав, предназначенного для эффективного сбора и деструкции нефти, нефтепродуктов и продуктов химической промышленности при экологических загрязнениях акваторий и суши, очистке промышленных и бытовых отходов, соответствующего как требованиям, предъявляемым к нефтяным сорбентам (таким как высокие емкостные характеристики по отношению нефти и нефтепродуктам, высокая удерживающая способность), так и способного к эффективной биодеградации углеводородов нефти и нефтепродуктов и биоразложению.

Поставленная задача достигается описываемым биогибридным композиционным материалом для сбора и деструкции нефти и нефтепродуктов, содержащим термопластичный полимер с волокнообразующими свойствами, полученный методом аэродинамического формования, наполнитель, представляющий собой нестерильные растения рода Сфагнум (Sphagnum), инкорпорированный в термопластичный полимер в процессе его аэродинамического формования в количестве 10-50% от массы термопластического полимера, и иммобилизованные клетки ассоциаций бактерий-нефтедеструкторов.

Предпочтительно термопластичный полимер имеет объемную плотность 50-220 кг/м3, диаметр волокон 4-41 мкм и выбран из группы, содержащей полипропилен или сополимеры пропилена, сополимер акрилонитрила с метилакрилатом.

Технический результат заключается в упрощении состава материала при сохранении высоких эксплуатационных характеристик.

Сущность изобретения заключается в следующем.

Для извлечения нефти и нефтепродуктов из водных сред описываемый биогибридный композиционный материал укладывают на поверхность нефтяной пленки, пленки нефтепродуктов или водно-органической эмульсии. В результате волнения водной среды сорбирующее полотно нетканого материала погружается в толщу эмульсии, где происходит избирательная адсорбция нефтяного субстрата - нефти, нефтепродуктов - из смешанной среды как высокопористым межволоконным пространством, так и структурами дополнительной аккумуляции на полимерных волокнах нефтяного субстрата - растения рода Сфагнум (Sphagnum). Биодеградация нефти осуществляется ассоциациями бактерий-нефтедеструкторов как при контакте системы с водо-нефтяной эмульсией, так и в матрице-сорбенте, адсорбировавшей нефтепродукты. При этом биогибридный материал может быть помещен в любое соответствующее место для долгосрочного осуществления процесса биодеструкции нефти.

Получение нетканых полимерных волокон, содержащих в качестве наполнителя нестерильные растения рода Сфагнум (Sphagnum), осуществляют методом аэродинамического формования. Метод аэродинамического формования описан, например, в Роговин З.А. Основы химии и технологии производства химических волокон т.II, М.: Химия, 1965. С.186-195. При этом исходное полимерное сырье в виде гранул расплавляют в плавильном устройстве - экструдере - либо растворяют в растворителе, например, диметилформамиде и фильтруют для удаления примесей. К расплаву или раствору полимера добавляют предварительно подготовленные нестерильные растения рода Сфагнум (Sphagnum) и продавливают через фильерный блок. Выходящие из фильеры струи с помощью соплового устройства вытягивают и направляют на поверхность приемного устройства. Одновременно на поверхность приемного устройства из форсунок подают осадительную ванну. В результате чего происходит отверждение волокон и формируется структура волокнистого полимерного холста, в который инкорпорированы нестерильные растения рода Сфагнум (Sphagnum). Сформованный холст полимерного нетканого материала снимают с приемной поверхности, отмывают от растворителя в промывном устройстве и высушивают в сушилке при температуре 70÷100°C.

Полимерные волокна формуют из расплавов полипропилена или сополимеров пропилена. Сополимер акрилонитрила с метилакрилатом формуют из его раствора в диметилформамиде. Возможно использование также других видов термопластичного полимера, в частности полиэфирных полимеров. В данном случае волокна формуют из расплавов различных полимеров, в частности из расплава полиэтилентерефталата, полибутилентерефталата, поликарбоната, полиакрилата и других.

Процедура предварительной подготовки нестерильного растения рода Сфагнум (Sphagnum) заключается в следующем. Сначала исходное растительное сырье, например нестерильный сфагновой мох (Sphagnum) различных видов, сушат либо в естественных условиях при комнатной температуре, либо в сушильном шкафу при температуре 50-70°C до постоянного веса, контролируемого с помощью электронных весов. Время сушки зависит от содержания влаги в исходном материале и может варьироваться от нескольких дней до нескольких часов. Далее высушенный сфагновый мох измельчают в виброшаровой мельнице с электроприводом. Помол осуществляют в стальном стакане с крышкой, частично заполненном шариками диаметром около 5-6 мм из того же материала, что и стакан. Количество шариков - 2 или 3 штуки. Дисперсность материала после измельчения составляет 50-60 мкм. Инкорпорирование измельченных нестерильных растений рода Сфагнум (Sphagnum) проводят в процессе получения полимерных волокон из расплавов или растворов методом аэродинамического формования. Количество вводимого наполнителя может составлять от 10 до 50% от массы термопластичного полимера. Оптимальное количество наполнителя составляет 30% масс.

Используемые в качестве наполнителя растения рода Сфагнум (Sphagnum), в частности сфагнум дубравный (Sphagnum nemoreum), сфагнум компактный (Sphagnum compactum), сфагнум оттопыренный (Sphagnum squarrosum), благодаря волокнисто-пористой структуре и высоким адсорбционным свойствам играют роль как структур дополнительной аккумуляции нефти и нефтепродуктов, так и источника биогенных элементов для заселения данных материалов аборигенными бактериями-нефтедеструкторами окружающей среды. Кроме этого пористая структура используемого наполнителя способствует накоплению в своих порах кислорода, тем самым повышая скорость окисления нефти и нефтепродуктов аборигенными бактериями-нефтедеструкторами.

При этом введение достаточного количества нестерильного растения рода Сфагнум (Sphagnum) на стадии формования нетканого полимерного материала аэродинамическим методом позволяет получить неожиданный дополнительный эффект, а именно повышение пористости адсорбента, и, как следствие, увеличение адсорбционных показателей, а также более высокой степени заселения данного материала бактериями-нефтедеструкторами и аборигенными микроорганизмами за счет повышения сродства синтетического нетканого полимерного материала к биологическим объектам. Измельченные нестерильные растения рода Сфагнум (Sphagnum) служат основой для прикрепления и иммобилизации клеток аборигенных бактерий-нефтедеструкторов, а также обеспечивают иммобилизованные бактерии-нефтедеструкторы необходимыми биогенными питательными элементами для поддержания физиолого-биохимического потенциала бактериальной клетки.

Кроме того, данные измельченные нестерильные растения рода Сфагнум (Sphagnum) (клеточные структуры) способствуют разложению полимерного нетканого волокна микроорганизмами на короткие фрагменты, тем самым делая данный материал биоразлагаемым. В результате исключается необходимость утилизации отработанных материалов.

Иммобилизованные в нетканый полимерный материал (матрицу) клетки бактерий-нефтедеструкторов закреплены как на поверхности полимерных волокон диаметром 4-60 мкм, так и в клеточных структурах растений рода Сфагнум (Sphagnum).

В качестве ассоциаций бактерий-нефтедеструкторов используют, например, р. Pseudomonas, p. Rhodococcus, p. Bacillus, облигатные нефтедеградирующие бактерии родов Alcanivorax, Marinobacter, Thallassdituus, Cycloclasticus, Oleispira.

Возможно использовать материал с объемной плотностью 50-220 кг/м3, содержащий в своей структуре поры (межволоконное пространство) оптимального размера, позволяющие сорбенту не только насыщаться за минимально короткий срок, но и удерживать сорбируемый продукт в течение длительного времени.

Биогибридный материал с указанным выше содержанием бактериальных клеток, растений рода Сфагнум (Sphagnum), благоприятствующих развитию и питанию иммобилизованных бактериальных клеток и аборигенных микроорганизмов, способен как к быстрой сорбции, так и к высокой деградации нефти и нефтепродуктов.

Под термином «нефть и нефтепродукты» в рамках данной заявки понимают такие, в частности, продукты, как нефти различного происхождения, продукты ее первичной и вторичной переработки, как, например, топлива, горючесмазочные материалы, остаточные нефтепродукты, отходы нефтепереработки, углеводородное сырье.

Ниже приведены примеры, иллюстрирующие, но не ограничивающие применение изобретения.

Пример 1.

Для сбора и деградации пленок нефти и нефтепродуктов с водной поверхности используют биогибридный композиционный материал на основе полипропилена или сополимера пропилена с этиленом (термопластичный полимер). Указанный композиционный сорбент содержит 30% высушенного и измельченного растения рода Сфагнум (Sphagnum) - Сфагнума дубравного (Sphagnum nemoreum) от массы термопластичного полимера и 100% от массы термопластичного полимера иммобилизованных клеток ассоциаций бактерий-нефтедеструкторов, в качестве которых используют двухкомпонентную биологическую ассоциацию, основу которой составляют грамположительные бактерии рода Rhodococcus sp. шт.7 и подвижные грамотрицательные бактерии рода Pseudomonas.

Указанный материал помещают на участок загрязненной акватории. Биогибридный материал, имеющий указанный состав, обладает сорбционной емкостью 70 г нефтепродукта на грамм материала, плавучестью не менее трех суток. За это время происходит биодеградация сложных токсичных компонентов нефти бактериями биогибридного материала до более простых соединений (спиртов, альдегидов, кетонов, органических кислот), способных потребляться аборигенными микроорганизмами очищаемой среды. При эксплуатации биогибридного материала концентрация углеводородов снижается на 85%.

Биоразложение композиционного материала на короткие фрагменты происходит на 90 сутки эксперимента.

Пример 2.

Для деградации нефти и нефтепродуктов донных отложений используют биогибридный композиционный материал на основе сополимера акрилонитрила с метилакрилатом. Данный композиционный сорбент содержит 10% высушенного и измельченного растения рода Сфагнум (Sphagnum) - Сфагнума компактного (Sphagnum compactum) от массы термопластичного полимера и 100% иммобилизованных клеток ассоциаций бактерий-нефтедеструкторов, в качестве которых используют двухкомпонентную биологическую ассоциацию, основу которой составляют грамположительные бактерии рода Rhodococcus sp. шт.7 и подвижные грамотрицательные бактерии рода Pseudomonas.

Указанный материал, благодаря низкой плавучести, погружается на донный участок загрязненной акватории, адсорбируя при этом нефть и нефтепродукты с водной поверхности. Биогибридный материал, имеющий указанные характеристики, обладает сорбционной емкостью 40 г нефтепродукта на г материала. Биодеградация сложных токсичных компонентов нефти бактериями биогибридного материала до более простых соединений (спиртов, альдегидов, кетонов, органических кислот), способных потребляться микроорганизмами очищаемой среды, происходит благодаря соокислению биогенных питательных компонентов клеточных структур растений рода Сфагнум (Sphagnum).

При эксплуатации биогибридного материала концентрация углеводородов снижается на 70%.

Биоразложение композиционного материала на короткие фрагменты происходит на 90 сутки эксперимента.

Использование в сорбенте других видов термопластичных полимеров, других, оговоренных выше, концентраций наполнителя, а также использование иных представителей рода Сфагнум (Sphagnum) в структуре биогибридного материала и иммобилизованных клеток бактерий-нефтедеструкторов приводят к аналогичным результатам.

Таким образом, указанный материал, обладающий более простым, чем известный материал составом, сохраняет высокие эксплуатационные показатели при очистке различных поверхностей.

Так, описываемый биогибридный композиционный материал обладает высокой сорбционной емкостью, в частности позволяет собирать нефть и нефтепродукты с твердых поверхностей, с поверхности и со дна акваторий в количестве, превышающем не менее чем в 40-70 раз собственный вес, высокой степенью биодеградации углеводородов нефти ассоциациями бактерий-нефтедеструкторов, а также биоразложения нетканых полимерных волокон микроорганизмами (иммобилизованными и аборигенными) на короткие фрагменты. В результате исключается необходимость утилизации отработанных материалов.

1. Биогибридный композиционный материал для сбора и деструкции нефти и нефтепродуктов, содержащий термопластичный полимер с волокнообразующими свойствами, полученный методом аэродинамического формования, наполнитель, представляющий собой нестерильные растения рода Сфагнум (Sphagnum), инкорпорированный в термопластичный полимер в процессе его аэродинамического формования в количестве 10-50% от массы термопластического полимера, и иммобилизованные клетки ассоциаций бактерий-нефтедеструкторов.

2. Биогибридный композиционный материал по п.1, отличающийся тем, что термопластичный полимер имеет объемную плотность 50-220 кг/м3, диаметр волокон 4-41 мкм и выбран из группы, включающей полипропилен или сополимеры пропилена, сополимер акрилонитрила с метилакрилатом.



 

Похожие патенты:

Изобретение относится к способу очистки технологического конденсата со способа парового риформинга или способа парового крекинга. В способе очистки технологического конденсата (17) со способа парового риформинга или способа парового крекинга упомянутый технологический конденсат подают в способ электродеионизации (7).

Изобретение относится к горнодобывающей промышленности и может быть использовано для извлечения тонкодисперсных сапонитсодержащих взвешенных веществ из слива хвостохранилищ оборотной воды.

Изобретение относится к обработке воды и может быть использовано в промышленных системах охлаждения. Способ включает стадии хранения воды в контейнере (а); ее обработки (б); активации операций для поддержания воды в контейнере в пределах параметров качества воды (в) и поставки обработанной охлаждающей воды из контейнера в промышленный процесс (г).

Изобретение относится к разделению водного раствора и суспендированных в нем твердых веществ. Водная композиция, имеющая значение рН в диапазоне от 6,0 до 9,0, содержит соли угольной кислоты, или сложные эфиры угольной кислоты, или и соли и сложные эфиры угольной кислоты в концентрации по меньшей мере 0,01 мас.% от общей массы водной композиции, а также флокулянты, выбранные из группы, включающей катионный полиакриламид, полиэтиленимин или крахмал, коагулянты, выбранные из группы, включающей водорастворимое соединение, содержащее алюминий, амин или диаллилдиметиламмония хлорид, или микрочастицы, содержащие кремний, или их смесь в качестве удерживающих средств в концентрации по меньшей мере 0,01 мас.% от общей массы водной композиции.
Изобретение относится к технологии очистки воды, в частности к очистке сточных вод от ионов металлов сорбцией. В способе очистки сточных вод от ионов металлов, включающем обработку реагентом, перемешивание и отделение осадка, в качестве реагента используют четырехкальциевый алюмоферрит в количестве 100 мг/л.

Изобретение относится к области обработки сточных вод. Способ электрохимического удаления загрязнителей из сточных вод по изобретению осуществляют в установке электрокоагулирования для удаления загрязнителей, включающей, по меньшей мере, один анод и, по меньшей мере, один катод, и в установке электроокисления для окисления загрязнителей, включающей, по меньшей мере, один анод и, по меньшей мере, один катод, где электрохимически получают окислители.

Изобретение относится к сорбционной очистке сточных вод от катионов меди из проточных водных растворов и может быть использовано на заводах металлоизделий и предприятиях цветной металлургии, горнорудной, химической, машиностроительной и электронной промышленности, а также в коммунальном хозяйстве.

Изобретение относится к способам обработки воды и может быть использовано в промышленных процессах. Способ получения воды для промышленного процесса включает очистку воды и удаление взвешенных в воде твердых частиц посредством фильтрации небольшой части общего объема воды, включающий: а) сбор воды; б) хранение воды; в) обработку воды в течение 7 суток посредством периодического добавления в нее дезинфицирующих веществ; г) активацию одной и более операций (1)-(5) с помощью средства, выполненного с возможностью получения информации, относящейся к параметрам качества воды, регулируемым указанным средством для приведения параметров качества воды в их пределы: 1) введение в воду окисляющих веществ; 2) введение коагулянтов, флокулянтов или их смеси; 3) всасывание части воды, содержащей осевшие частицы и полученной в операциях (1) и/или (2); 4) фильтрацию этой части всасываемой воды; 5) возврат отфильтрованной воды и д) использование обработанной воды в процессе ниже по потоку.
Изобретение относится к области биотехнологии. Предложен материал-носитель биомассы для фильтрации нефтезагрязненных сточных вод.

Изобретение предназначено для получения доброкачественной питьевой воды. Фильтрующий патрон состоит из последовательно соединенных: узла подачи очищаемой воды, включающего оболочку с радиальными прорезями и снабженного средством крепления; узла фильтрации, выполненного в виде полого цилиндра, на основаниях которого установлены сетки, и снабженного смесью гранулированных адсорбирующих компонентов и слоем нетканого фильтрующего полотна; узла вывода очищенной воды, выполненного в виде воронки с тупым углом и отверстием посредине.

Изобретение относится к способам обезвреживания и утилизации нефтесодержащих отходов и фильтровочных и поглотительных отработанных масс стадии винтаризации процесса рафинации растительного масла и может быть использовано на предприятиях нефтегазового комплекса и организациях по переработке отходов. Способ утилизации включает перемешивание нефтесодержащих отходов с обезвреживающими компонентами, одним из которых является негашеная известь (оксид кальция), с введением воды, реагирующей с негашеной известью, количество которой определяют с учетом воды, имеющейся в нефтесодержащих отходах. В качестве второго обезвреживающего компонента используют фильтровочные и поглотительные отработанные массы, являющиеся отходами масложировой промышленности на стадии винтаризации процесса рафинации растительного масла. Причем сначала перемешивают предварительно разогретые до температуры 60-70ºC нефтесодержащие отходы с отходами масложировой промышленности в пропорции 1:(0,2-0,4), затем добавляют порционно при перемешивании негашеную известь в количестве 43-83 мас.% от полученной массы до образования однородного гидрофобного сыпучего мелкодисперсного порошка. Результатом является снижение концентрации вредных веществ в водной вытяжке продукта утилизации. 1 з.п. ф-лы, 1 ил., 1 табл., 6 пр.
Изобретение может быть использовано в области нефтедобывающей промышленности. Способ переработки жидких нефтешламов в гидратированное топливо включает нагрев и очистку нефтешлама. Очищенную нагретую смесь углеводородов с водой подают в рабочую емкость с разделением по крайней мере на два потока. Разделенные потоки для их гомогенизации непрерывно подают в виброкавитационный гомогенизатор с разницей величины расхода одного из потоков по отношению к другому не менее 1,5. Гомогенизацию проводят в виброкавитационном гомогенизаторе с вращающимся ротором с перфорированной поверхностью и неподвижным статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с. Обработку проводят троекратно: первичную обработку ведут до полученния топливной эмульсии гидратированного топлива с размером капель воды не более 15 мкм, повторные обработки проводят до получения капель воды с размером не более 5 мкм. Изобретение позволяет повысить стабильность эмульсии гидратированного топлива. 3 з.п. ф-лы, 7 пр.

Изобретение относится к области электрохимической технологии обработки воды и может быть использовано при очистке сточных вод в различных отраслях промышленности, например медицинской, фармацевтической, химической промышленности. Электрокоагулятор содержит корпус, внутри которого закреплены плоскопараллельные электроды, собранные в кассету, положительный и отрицательный токоподводы, трубопроводы, штуцера ввода и вывода жидкости, над кассетой и под ней жестко закреплены верхняя и нижняя насадки. Электрокоагулятор дополнительно содержит устройство для очистки межэлектродного пространства, которое включает сепаратор с эжектором и центробежный насос, причем сепаратор верхним патрубком соединен через трубопровод со всасывающим патрубком насоса, нижним патрубком - с верхней насадкой, горловина сепаратора соединена со всасывающим патрубком эжектора, сопло эжектора соединено с нагнетательным патрубком насоса, а диффузор эжектора - с нижней насадкой. Технический результат - повышение срока службы кассеты плоскопараллельных электродов. 1 ил.

Изобретение относится к устройству для очистки питьевой воды и может быть использовано в промышленности, для бытовых нужд и в очистных сооружениях. Фильтрующий элемент содержит центральную перфорированную трубу (3), на которую намотан фильтрующий материал. Фильтрующий материал состоит из наложенных друг на друга слоев (1) волокнистых материалов и слоя (2) эластичного тканевого сорбента на основе вискозной технической ткани, горизонтальные волокна которого ориентированы перпендикулярно центральной перфорированной трубе (3). Указанные слои закреплены на трубе (3) и между собой вертикальными прижимными разъемными приспособлениями (7, 8), которые установлены на начальном, промежуточных и конечном участках намотки фильтрующего материала с возможностью регулирования необходимого усилия натяжения слоя (2) эластичного тканевого сорбента в горизонтальном и вертикальном направлениях на каждом участке намотки для создания заданной плотности фильтрующего материала. Слои (1) волокнистых материалов состоят из углеродного волокнистого сорбента, волокнистого ионообменного материала и волокнистого материала механической очистки. Технический результат изобретения заключается в создании эффективного фильтрующего элемента для очистки питьевой воды с высоким ресурсом работы за счет возможности регулирования необходимой плотности фильтрующих материалов и их регенерации на протяжении всего срока службы. 1 з.п. ф-лы, 4 ил. очищаемой воды (не показан), и подают воду через патрубок (11). Жидкость от промывки сливается. Для осуществления процесса регенерации слоев (5, 6, 2) разъемные вертикальные прижимные приспособления (7, 8) снимают с фиксированного положения и перемещают по часовой стрелке до снятия натяжения в слоях (1, 2). Слои (5, 6) регенерируют без извлечения с помощью электрического тока (может быть применен и другой метод), при этом материал слоя (6) должен быть термостойким, в противном случае он должен быть извлечен из фильтра перед регенерацией. Регенерацию слоя (5) производят отдельно, 1 з.п., 4 илл.
Изобретение может быть использовано для обработки воды, промышленных и бытовых сточных вод или отстоя сточных вод, содержащих нефть или нефтепродукты. Коагулянт содержит алкилированный органический полимер, в качестве которого используют карбоксиметилцеллюлозу со степенью замещения от 5% до 25% и степенью полимеризации от 90 до 400 ед. Коагулянт используют в виде водно-щелочного раствора с концентрацией карбоксиметилцеллюлозы 3-8 мас.% и при pH не менее 9. Заявляемый коагулянт может быть использован для улавливания капель нефти, неорганических частиц, малых молекул и ионов металлов. Технический результат изобретения состоит в том, что при его использовании становится возможным возврат товарного продукта, улавливаемого коагулянтом, и самого коагулянта для повторного использования. Кроме того, значительно упрощается процесс утилизации шламов, полученных после коагуляции. 6 з.п. ф-лы, 3 табл., 12 пр.

Изобретение относится к термической деаэрации жидкости. Это достигается тем, что в деаэраторе преимущественно для питательной воды турбоустановки, содержащем бак-аккумулятор с патрубком отсоса неконденсирующихся газов и установленную над ним колонку в виде водоструйного эжектора с водоподающим устройством, выполненным в виде равномерно размещенных по сечению колонки центробежных форсунок и пароподводящим коллектором, выполненным кольцевым и соединенным с колонкой радиальными перемычками, а в баке на выходе из колонки установлен конусообразный каплеотбойник, каждая из форсунок выполнена с распылительным диском и содержит цилиндрический корпус со штуцером, жестко связанным с корпусом и соосно расположенным в верхней части корпуса и имеющим цилиндрическое отверстие для подвода жидкости, соединенное с диффузором, осесимметричным корпусу и штуцеру, а к корпусу, в его нижней части, посредством по крайней мере трех спиц подсоединен распылитель, расположенный перпендикулярно оси корпуса и выполненный в виде сплошного диска. Технический результат - уменьшение гидравлического сопротивления и повышение степени распыла жидкости. 1 з.п. ф-лы, 2 ил.

Изобретение относится к оборудованию для продажи жидких продуктов и оплаты услуг и может быть использовано для розлива и продажи питьевой воды в тару потребителя. Технический результат - повышение бактерицидной защиты воды. Устройство для розлива воды, включающее корпус со смонтированными внутри резервуаром для воды, датчиком уровня, устройством очистки воды, устройством озонирования, насосом с водоотводом, узлом розлива жидкости, ультрафиолетовой лампой, устройством управления - контроллером и устройством оплаты, при этом трубопроводы подвода и отвода воды смонтированы под резервуаром, снабжены запорными клапанами и закольцованы друг с другом, в кольце которых смонтированы насос для перекачивания и подачи воды и средство для ее озонирования, при этом ультрафиолетовая лампа смонтирована над узлом розлива жидкости, световой поток которой направлен на выступающую часть отводящего воду трубопровода и на поверхность узла налива, контактирующего с окружающей средой. 1 з.п. ф-лы, 1 ил.

Изобретение относится к сельскому хозяйству и переработке отходов. Предложенный биокомплекс содержит животноводческий комплекс 1, пиролизную печь 4 с патрубками отвода полукокса 5, неочищенного пиролизного газа 6, избыточного тепла 7 и дымовых газов 8, блок подготовки печного топлива 12, блок выращивания микроводорослей, комплекс производства зерна 34, комплекс производства удобрений, блок очистки пиролизного газа 9 с патрубками отвода пиролизного дистиллята 10 и очищенного пиролизного газа 11, комплекс глубокой переработки зерна 37, газгольдер 16, когенерационную установку 18, установку производства диоксида углерода 22. Животноводческий комплекс 1 сообщен с накопителем органических отходов 2. Блок подготовки печного топлива 12 снабжен патрубками 13-15 отвода печного топлива в блок подготовки сырья 3, в пиролизную печь 4 и потребителю. Когенерационная устновка 18 оборудована системой отвода дымовых газов в установку производства диоксида углерода 22 и сообщена по теплу и электричеству со всеми объектами биокомплекса. Блок выращивания микроводорослей состоит из блока культуральной жидкости 26 и фотореактора 27, блока переработки микроводорослей 29, сообщенного с кормоприготовительным цехом 39. Комплекс производства зерна 34 связан с комплексом производства удобрений транспортером подачи удобрений, с кормоприготовительным устройством и накопителем органических отходов соответственно линиями транспортировки зерна и соломы, а также линиями транспортировки зерна 36 с комплексом глубокой переработки зерна 37, включающим микробиологический цех 38, и сообщенным трубопроводами подачи продуктов переработки зерна в кормоприготовительное устройство. Установка производства диоксида углерода 22 состоит из абсорбера 23 и десорбера 24, снабженная патрубком отвода диоксида углерода 25 в блок выращивания микроводорослей. Установка сжижения диоксида углерода 28 связана патрубком отвода сжиженной углекислоты в блок переработки микроводорослей 29. Комплекс производства удобрений 30 включает патрубки подвода полукокса 31 и микроводорослей 32 и патрубки отвода удобрений 33. Изобретение обеспечивает повышение эффективности работы комплекса, снижение загрязненности окружающей среды, исключение образования канцерогенных и загрязняющих веществ. 2 з.п. ф-лы, 1 ил.

Изобретение относится к биоцидам. Биоцидная композиция содержит 2,2-дибромомалонамид и орто-фенилфенолят натрия. Изобретение позволяет повысить эффективность обработки.2 н. и 4 з.п. ф-лы, 3 табл.

Изобретение относится к биоцидам. Биоцидная композиция для борьбы с микроорганизмами в водных и водосодержащих системах содержит 2,2-дибромомалонамид и поверхностно-активный биоцид, выбранный из группы, состоящей из хлорида С12-С16-алкилдиметилбензиламмония, хлорида диоктилдиметиламмония, полигексаметиленбигуанида, гидрохлорида додецилгуанидина и хлорида дидецилдиметиламмония. Изобретение позволяет повысить эффективность обработки при пониженных температурах. 2 н. и 8 з.п. ф-лы. 10 табл. 5 пр.
Наверх