Устройство для измерения израсходованного срока службы электрической изоляции

Изобретение относится к технике электрических измерений и может быть использовано для измерения израсходованного ресурса электрической изоляции электрооборудования. Устройство содержит пересчетное устройство с отсчетным устройством, RS-триггер с устанавливающим и восстанавливающим входами, управляемый ключ, генератор импульсов стабильной частоты, генератор линейно изменяющегося напряжения и нуль-компаратор с двумя входами. Вход отсчетного устройства соединен с выходом пересчетного устройства. Выход генератора импульсов стабильной частоты соединен через управляемый ключ с входом пересчетного устройства. Выход триггера соединен с управляющим входом управляемого ключа и входом генератора линейно изменяющегося напряжения. Выход генератора линейно изменяющегося напряжения соединен с первым входом нуль-компаратора, выход которого соединен с восстанавливающим входом RS-триггера. Также в устройство введены генератор тактовых импульсов, нелинейный преобразователь, сумматор с прямым и инверсным входами, датчик измеряемой температуры и задатчик номинальной температуры. Причем выход генератора тактовых импульсов соединен с устанавливающим входом RS-триггера. Выход датчика измеряемой температуры соединен с прямым входом сумматора. Выход задатчика номинальной температуры соединен с инверсным входом сумматора, выход которого соединен с входом нелинейного преобразователя, выход которого соединен со вторым входом нуль-компаратора. Технический результат заключается в возможности учета относительной скорости старения электрической изоляции электрооборудования. 2 ил., 1 табл.

 

Предлагаемое изобретение относится к технике электрических измерений и предназначено для измерения израсходованного ресурса электрической изоляции электрооборудования.

Измерить израсходованный срок службы изоляции можно с помощью счетчика времени, считающего время работы электрооборудования [2, рис.8-19, стр238]. Недостатком такого устройства является то, что израсходованный срок службы или израсходованный ресурс службы не всегда совпадает с временем работы электрооборудования.

Как показано в [1], израсходованный ресурс совпадает с временем работы электрооборудования, например трансформатора, только при нормальной скорости теплового старения электрической изоляции. Нормальная относительная скорость теплового старения ν изоляции силовых трансформаторов, равная единице, обеспечивается при температуре наиболее нагретой точки изоляции (ННТ), равной 98°С. При такой скорости теплового старения изоляция сможет работать в течение всего полного срока службы, который принимается равным 30 годам. При повышении температуры относительная скорость теплового старения ν изоляции увеличивается и срок службы уменьшается, а при уменьшении температуры скорость старения уменьшается, а срок службы увеличивается, Зависимость относительной скорости теплового старения ν изоляции от температуры выражается уравнением, предложенным Монтзингером и которое называется правилом Монтзингера [1, 3]

ν = 2 Q h 98 Δ T = 2 Q h 98 6 . ( 1 )

Здесь Qh - температура наиболее нагретой точки изоляции в градусах цельсия, ΔT=6°С - превышение температуры, вызывающее сокращение срока службы изоляции при тепловом старении в 2 раза.

Как следует из формулы (1), относительная скорость старения изоляции трансформаторов удваивается при каждом увеличении температуры на 6°С, что показано в приведенной таблице.

Qh 80 86 92 98 104 110 116 122 128 134 140
ν 0,125 0,25 0,5 1 2 4 8 16 32 64 128

При температуре меньшей 80°С тепловое старение изоляции пренебрежительно мало.

Потеря срока службы при любой температуре наиболее нагретой точки в течение часа, дня или месяца выражается количеством отработанных нормальных часов, дней или месяцев, в течение которых температура наиболее нагретой точки равна 98°С.

Например, трансформатор проработал один месяц с температурой ННТ, равной 104°С (превышение составило 104-98=6°С). Относительная скорость теплового старения изоляции ν равна 2. Следовательно, израсходованный срок службы будет равен не одному месяцу, а двум месяцам работы в нормальных условиях. Трансформатор, работающий с превышением температуры ННТ на 6°С в течение одного месяца, израсходовал такой ресурс, который он израсходовал бы за два месяца, если бы работал при нормальной температуре 98°С. Если он постоянно будет работать с такой температурой, то срок его службы будет не 30 лет, а в два раза меньше - 15 лет, так как изоляция будет расходовать ресурс в два раза быстрее.

Потеря (расход) L срока службы в течение некоторого времени t составит L=νt. Относительная скорость теплового старения меняется во времени и потеря срока службы на интервале времени от t1 до t2 определяется по формуле

L = t 1 t 2 ν d t . ( 2 )

Если разбить интервал времени на N интервалов, в течение которых температура наиболее нагретой точки не меняется, то формула (2) упростится

L = n = 1 N ν n t n . ( 3 )

Таким образом, чтобы измерить израсходованный срок службы электрической изоляции, необходимо в каждый интервал времени знать относительную скорость ее старения и изменять реальное отработанное время в соответствии со скоростью теплового старения изоляции.

Наиболее близким техническим решением к предлагаемому изобретению является цифровое время-импульсное измерительное устройство, [2, рис.8-22, стр. 241], содержащее пересчетное устройство с отсчетным устройством, RS-триггер с устанавливающим и восстанавливающим входами, управляемый ключ, генератор импульсов стабильной частоты, генератор линейно изменяющегося напряжения и нуль-компаратор с двумя входами, в котором вход отсчетного устройства соединен с выходом пересчетного устройства, выход генератора импульсов стабильной частоты соединен через управляемый ключ с входом пересчетного устройства, выход триггера соединен с управляющим входом управляемого ключа и входом генератора линейно изменяющегося напряжения, выход генератора линейно изменяющегося напряжения соединен с первым входом нуль-компаратора, выход которого соединен с восстанавливающим входом RS-триггера.

Недостаток его заключается в том, что оно позволяет измерять время работы электротехнического устройства, но без учета скорости старения изоляции. По этой причине оно не позволяет объективно судить об израсходованном ресурсе изоляции электрооборудования.

Цель изобретения - расширение функциональных возможностей устройства за счет учета относительной скорости старения электрической изоляции электрооборудования при измерении ее израсходованного срока службы.

Поставленная цель достигается тем, что в цифровое время-импульсное измерительное устройство, содержащее пересчетное устройство с отсчетным устройством, RS-триггер с устанавливающим и восстанавливающим входами, управляемый ключ, генератор импульсов стабильной частоты, генератор линейно изменяющегося напряжения и нуль-компаратор с двумя входами, в котором вход отсчетного устройства соединен с выходом пересчетного устройства, выход генератора импульсов стабильной частоты соединен через управляемый ключ с входом пересчетного устройства, выход триггера соединен с управляющим входом управляемого ключа и входом генератора линейно изменяющегося напряжения, выход генератора линейно изменяющегося напряжения соединен с первым входом нуль-компаратора, выход которого соединен с восстанавливающим входом RS-триггера, введены генератор тактовых импульсов, нелинейный преобразователь, сумматор с прямым и инверсным входами, датчик измеряемой температуры и задатчик номинальной температуры, причем выход генератора тактовых импульсов соединен с устанавливающим входом RS-триггера, выход датчика измеряемой температуры соединен с прямым входом сумматора, выход задатчика номинальной температуры соединен с инверсным входом сумматора, выход которого соединен с входом нелинейного преобразователя, выход которого соединен с вторым входом нуль-компаратора.

Структурная схема предлагаемого устройства приведена на рисунке 1. Временная диаграмма сигналов приведена на рисунке 2.

Устройство содержит датчик измеряемой температуры 1, задатчик номинальной температуры 2, сумматор 3, нелинейный преобразователь 4, генератор линейно изменяющегося напряжения 5, нуль-компаратор 6, генератор тактовых импульсов 7, RS-триггер 8, генератор импульсов стабильной частоты 9, управляемый ключ 10, пересчетное устройство 11 и отсчетное устройство 12.

Устройство работает следующим образом. После включения устройства в работу генератор тактовых импульсов 7, синхронизированный с реальным временем, вырабатывает через определенное заданное время, например через каждые 2 минуты (120 секунд на рисунке 2), тактовые импульсы, устанавливающие RS-триггер 8 по входу S в единичное состояние. Триггер 8 включает управляемый ключ 10 и импульсы стабильной частоты от генератора 9 поступают на вход пересчетного устройства до тех пор, пока открыт ключ 10. Одновременно с включением управляемого ключа 10 триггер 8 запускает генератор линейно изменяющегося напряжения 5. Напряжение на выходе этого генератора, изменяющееся по линейному закону, подается на первый вход нуль-компаратора, который сравнивает этот сигнал с сигналом, поступившим от нелинейного преобразователя 4. Напряжение на выходе нелинейного преобразователя формируется по формуле (1) в зависимости от разности температуры наиболее нагретой точки изоляции и заданной температуры (98°С или другое значение в зависимости от класса изоляции). Если разность этих температур равна нулю, то на выходе нелинейного преобразователя сигнал будет равен единице, например, 1 В. Если разность температур равна 6°С, то сигнал на выходе нелинейного преобразователя будет равен 2В и т.д. Нуль-компаратор отслеживает момент времени, когда напряжение с выхода генератора линейно изменяющегося напряжения станет равным напряжению на выходе нелинейного преобразователя 4. Как только эти напряжения станут равными, единичный сигнал с выхода нуль-компаратора 6 сбрасывает RS-триггер 8 по входу R в исходное состояние. Ключ 10 размыкается и сигналы на пересчетное устройство 11 больше не поступают. В следующем такте процессы повторяются.

На рисунке 2 частота сигналов генератора 9 импульсов стабильной частоты для примера выбрана равной 6 Гц, то есть 6 колебаний в секунду. Напряжение на выходе генератора линейно изменяющегося напряжения 5 изменяется по закону u5=0,05t. Таким образом, напряжение на выходе генератора 5 будет равно 1 В через 20 с (рис.2). Через 20 секунд с начала такта нуль-компаратор сбросит триггер 8. Следовательно, на пересчетное устройство импульсы от генератора 9 стабильной частоты будут поступать в течение 20 секунд. Общее число поступивших импульсов за 20 секунд будет равно 6·20=120, что соответствует времени, равному 120 с или 2 минуты. Значит, если относительная скорость старения изоляции равна 1 (1В), то израсходованный ресурс будет равен времени работы изоляции. За две минуты работы израсходованный ресурс будет также равен двум минутам. Пересчетное устройство 11 пересчитывает минуты в часы, месяцы и годы. Информация с пересчетного устройства выводится на отсчетное устройство 12.

Если же температура наиболее нагретой точки изоляции повысится, и, например, станет равной 116°С, то относительная скорость старения в соответствии с формулой (1) будет равна 3 и напряжение на выходе нелинейного преобразователя будет равно 3В. В этом случае компаратор будет срабатывать в каждом двухминутном такте уже не через 20, а через 60 секунд (рисунок 2). Ключ 10 будет находиться во включенном состоянии 60 секунд. На вход пересчетного устройства 11 в этом случае поступит 6·60=360 импульсов, что соответствует времени 360 секундам, или 6 минутам. Таким образом, каждые 2 минуты изоляция буде расходовать ресурс, равный 6 минутам, то есть расходование ресурса возрастает в три раза. Возможны и другие значения частот, приведенных в качестве примера.

Технико-экономический эффект от предложенного изобретения определяется повышением эксплуатационной надежности электрооборудования за счет объективной оценки израсходованного срока службы изоляции, что позволяет правильно выбирать сроки ремонта электрооборудования, находящегося в эксплуатации, и своевременно заменять его, в случае если срок службы будет израсходован полностью.

Источники информации

1. Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. - М.: Энергоиздат, 2004. - 616 с.

2. Основы метрологии и электрические измерения: Учебник для вузов / Б.Я. Авдеев, Е.М. Антонюк, Е.М. Душин и др. / Под ред. Е.М. Душина - 6-е изд. перераб. и доп. - Л.: Энергоатомиздат. Ленинградское отд-ние. 1987. - 480 с.

3. Серебряков А.С. Электротехническое материаловедение. Электроизоляционные материалы: Учебное пособие для вузов ж.-д. транспорта. - М.: Маршрут, 2005. - 280 с.

Устройство для измерения израсходованного срока службы электрической изоляции, содержащее пересчетное устройство с отсчетным устройством, RS-триггер с устанавливающим и восстанавливающим входами, управляемый ключ, генератор импульсов стабильной частоты, генератор линейно изменяющегося напряжения и нуль-компаратор с двумя входами, в котором вход отсчетного устройства соединен с выходом пересчетного устройства, выход генератора импульсов стабильной частоты соединен через управляемый ключ с входом пересчетного устройства, выход триггера соединен с управляющим входом управляемого ключа и входом генератора линейно изменяющегося напряжения, выход генератора линейно изменяющегося напряжения соединен с первым входом нуль-компаратора, выход которого соединен с восстанавливающим входом RS-триггера, отличающееся тем, что в него введены генератор тактовых импульсов, нелинейный преобразователь, сумматор с прямым и инверсным входами, датчик измеряемой температуры и задатчик номинальной температуры, причем выход генератора тактовых импульсов соединен с устанавливающим входом RS-триггера, выход датчика измеряемой температуры соединен с прямым входом сумматора, выход задатчика номинальной температуры соединен с инверсным входом сумматора, выход которого соединен с входом нелинейного преобразователя, выход которого соединен с вторым входом нуль-компаратора.



 

Похожие патенты:

Изобретение относится к контролю электрических параметров и может быть применено в авиационной технике. Устройство состоит из основного блока и универсального соединителя.

Изобретение относится к электрическим измерениям, а именно к устройствам контроля сопротивления изоляции электрической сети переменного тока. Устройство контроля сопротивления изоляции электрической сети переменного тока содержит фильтр низкой частоты, вход которого подключен к контролируемой сети, источник опорного напряжения, индикатор и компараторы аварийной и предупредительной сигнализации.

Изобретение относится к измерительной технике, предназначено для измерения параметров RC-двухполюсников и может использоваться при физико-химических исследованиях жидкостей, в системах контроля диэлектрических характеристик веществ и материалов с большим удельным сопротивлением, а также при создании измерительных средств контроля качественных показателей моторных масел.

Изобретение относится к измерительной технике, а именно к области измерения и контроля электрофизических параметров полупроводниковых приборов, и может быть использовано для измерения емкости любого двухполюсника.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения сопротивления заземляющего устройства и его составляющих: сопротивления растеканию заземляющего устройства и сопротивления границы раздела металл-грунт.

Изобретение относится к измерительной технике и к технике измерения свойств материалов с помощью электромагнитных средств, в частности к конструкциям измерительных сосудов (ячеек) для проведения таких измерений в жидких средах.

Изобретение относится к датчикам физических параметров на акустических волнах. .

Изобретение относится к электротехнике и может быть использовано для измерения сопротивления заземляющих устройств. .

Изобретение относится к области контактной сварки и может быть использовано при осуществлении контроля состояния поверхности деталей перед сваркой. .

Изобретение относится к электротехнике и может быть использовано при создании переносных устройств поиска присоединений с поврежденной изоляцией сетей постоянного оперативного тока. Сущность изобретения заключается в том, что в способе измерения сопротивлений изоляции и поиска присоединений с поврежденной изоляцией в сети постоянного тока с изолированной нейтралью, основанном на измерении токов, протекающих по присоединениям сети после подключения к полюсам резистивного элемента. Одновременно выравнивают напряжения на полюсах путем включения последовательно соединенных двух одинаковых резисторов, общая точка которых через третий резистор соединена с «землей». Значения эквивалентных сопротивлений изоляции присоединений вычисляют по формуле, использующей в качестве переменной величины только измеренные дифференциальные токи. Технический результат заключается в упрощении определения сопротивлений присоединений и поиска присоединений с поврежденной изоляцией. 1 табл., 6 ил.

Изобретение относится к устройствам для контроля процесса пропитки наполнителя полимерным связующим, в частности преформ, преимущественно в процессе инфузии, и может найти применение при изготовлении изделий из полимерных композиционных материалов как простой, так и сложной геометрической формы и различных размеров, в которых в качестве наполнителя могут быть использованы, например, преформы из стекло- или углеволокна. Датчик для контроля процесса пропитки наполнителя полимерным связующим, содержащий непроводящую подложку, на которую нанесены параллельно расположенные токопроводящие ламели, выполненные в виде параллельных линий и образующие гребенчатую форму. При этом непроводящая подложка выполнена из плоского тонкого полимерного композиционного материала на основе стеклоткани, нанесенные на нее токопроводящие ламели выполнены из меди и образуют два гребня, количество токопроводящих ламелей составляет по меньшей мере 30 на 1 см, ширина каждой из токопроводящих ламелей составляет от 0,1 до 0,2 мм, расстояние между токопроводящими ламелями составляет 0,1 мм. Причем каждый из гребней токопроводящих ламелей соединен с соответствующим ему медным электропроводом в изоляции, сечение каждого из которых составляет 0,03-1,0 мм, а сверху непроводящей подложки расположена проницаемая для полимерного связующего мембрана из полиэфирной ткани Airtech Release Ply Super F с плотностью 114 г/м2, герметично соединенная с ней по контуру. Изоляция электропроводов может быть выполнена из фторопласта. Толщина датчика может составлять 0,1-1,0 мм. Техническим результатом является обеспечение контроля пропитки наполнителя полимерным связующим при изготовлении изделий из ПКМ как простой, так и сложной геометрической формы и различных размеров, в качестве наполнителя в которых используются, например, преформы из стекловолокна или углеволокна. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления. Сущность изобретения заключается в снижении погрешности определения емкости и сопротивления за счет применения нескольких измерений с последующей их статистической обработкой. Измерительный преобразователь емкости и сопротивления в двоичный код содержит микроконтроллер; образцовый резистор; емкостный датчик; измеряемый резистор; конденсатор образцовой емкости; первый резистор делителя напряжения; второй резистор делителя напряжения; третий резистор делителя напряжения; четвертый резистор делителя напряжения; пятый резистор делителя напряжения; выход передачи двоичного кода. Технический результат заключается в повышении точности измерения. 1 ил.

Изобретение относится к технике СВЧ и предназначено для ответвления и регистрации прямой и отраженной микроволновой мощности в квазиоптическом зеркальном тракте большой мощности (1-500 кВт) при длительности импульса СВЧ 1-100 мс, в диапазоне частот 30-80 ГГц. Устройство содержит корпус с цилиндрами, установленными на нижней и верхней стенках, и делитель пучка, размещенный внутри корпуса. При этом стенки корпуса покрыты слоями профилированного поглотителя, а внутри цилиндров установлены коллиматоры из профилированного поглотителя. В конце каждого коллиматора закреплены детекторные головки, каждая из которых состоит из волновода, соответствующего рабочей частоте, и детектора, перед которым установлена диафрагма. Причем перед волноводом размещен дополнительный поглотитель в виде конуса, в вершине которого выполнено отверстие с возможностью изменения диаметра, а перед входной диафрагмой регистратора прямой мощности размещена поляризационная сетка. Технический результат заключается в возможности измерения и определения баланса мощностей - поступающей в нагрузку мощности, отраженной мощности, а также определении спектрального состава отраженного излучения при подавлении фоновых сигналов. 4 з.п. ф-лы, 1 ил.

Техническое решение относится к технике резонансных радиотехнических измерений для вычисления и мониторинга комплексной диэлектрической проницаемости материалов. Сущность: способ для измерения характеристик резонансных структур заключается в том, что генерируют одночастотное зондирующее колебание, преобразуют его в многочастотное, подают его на вход и принимают с выхода резонансной структуры, перестраивают частоту зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры, регистрируют изменения его параметров, по которым определяют резонансную частоту fp, амплитуду Up и добротность Q резонансной структуры. Отличительной особенностью данного способа является то, что зондирующее колебание на входе резонансной структуры формируют как два двухчастотных колебания с двумя парами составляющих равной или попарно равной амплитуды соответственно на частотах f11, f12 и f21, f22 с одинаковой средней частотой fC=(f11+f12)/2=(f21+f22)/2 и разными разностными частотами ΔfP1=f11-f12 и ΔfP2=f21-f22, меньших или одна из которых равна полосе пропускания резонансной структуры, перестраивают среднюю частоту fC, причем в ходе перестройки разностные частоты ΔfP1 и ΔfP2 оставляют неизменными, регистрируют изменение средней частоты зондирующего колебания fC и параллельно измеряют коэффициент модуляции m1 и m2 огибающих сигнала биений между составляющими 1-го и 2-го двухчастотных колебаний на выходе резонансной структуры. По достижении коэффициентом модуляции значения m1=m2=1 измеряют резонансную частоту fP как равную значению средней частоты fC в данный момент времени и измеряют соответствующие ему амплитуды огибающих сигнала биений между составляющими 1-го и 2-го двухчастотных колебаний U1 и U2 на выходе резонансной структуры, далее вычисляют резонансную амплитуду UP резонансной структуры по выражению U p = ( χ 2 U 1 2 − U 2 2 ) / ( χ 2 − 1 ) , где χ=U2ΔfP2/U1ΔfP1, и добротность Q резонансной структуры - Q = f p Δ f P i ( U p / U i ) 2 − 1 , где i равно 1 или 2. В устройство для измерения характеристик резонансных структур, содержащее последовательно соединенные перестраиваемый по частоте генератор, преобразователь одночастотного колебания в многочастотное, коммутатор и детектор, а также контроллер управления и измерения характеристик резонансных структур, последовательно соединенные с коммутатором первую линию передачи, резонансную структуру и вторую линию передачи, где второй выход коммутатора подключен к входу первой линии передачи, а второй вход коммутатора подключен к выходу второй линии передачи, дополнительно введены перестраиваемые избирательные фильтры соответственно первой и второй разностных частот, подключенные входами параллельно к выходу детектора, выходами соответственно к первому и второму входам контроллера управления и измерения характеристик резонансных структур, а перестраиваемый по частоте генератор, преобразователь одночастотного колебания в многочастотное, коммутатор, контроллер управления и измерения характеристик резонансных структур и перестраиваемые избирательные фильтры соответственно первой и второй разностных частот имеют входы/выходы управления, объединенные в шину управления. Технический результат: повышение чувствительности и точности измерений. 2 н.п. ф-лы, 3 ил., 2 прил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными и резистивными датчиками и передачи результата измерения по радиоканалу. Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу содержит микроконтроллер (МК) 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Сх), например, влажности воздуха, резистор 4 (измеряемое сопротивление Rx), например термосопротивление, конденсатор образцовой емкости 5 (Со), резистивный делитель, состоящий из резисторов 6 и 7, выход 8 передачи двоичного кода. Резисторы 2 и 4 первыми выводами подключены к не инвертирующему входу аналогового компаратора МК 1 и первым обкладкам емкостного датчика 3 и конденсатора 5 образцовой емкости, первые выводы резисторов 6 и 7 делителя напряжения подключены к инвертирующему входу аналогового компаратора МК 1, вторые выводы резисторов 2 и 4 подключены, соответственно, к первому и второму выходам МК 1, вторые обкладки емкостного датчика 3 и конденсатора 5 образцовой емкости подключены, соответственно, к третьему и четвертому выходам МК 1, вторые выводы резисторов 6 и 7 делителя напряжения подключены соответственно к пятому и шестому выходам МК 1, выход передачи результата измерения МК 1 подключен к входу приема двоичного кода радиомодуля 8, дискретный выход радиомодуля 8 подключен к входу управления энергосберегающим режимом МК. Технический результат заключается в расширении функциональных возможностей. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с функцией измерения тока в цепи резистивного датчика содержит: (см. чертеж) резистор 1 (R1), резистор 2 (R2), резистор 3 (R3) резистор 4 (R4), т.е. резистивный датчик, резистор 5 (R5) и микроконтроллер 6. Резисторы 1 и 2 первыми выводами подключены к первому входу аналогового мультиплексора микроконтроллера 6, резисторы 3 и 4 первыми выводами подключены ко второму входу аналогового мультиплексора микроконтроллера 6, второй вывод резистора 4 и первый вывод резистора 5 подключены к третьему входу аналогового мультиплексора микроконтроллера 6, вторые выводы резисторов 1 и 3 подключены к первому цифровому выходу микроконтроллера 6, вторые выводы резисторов 2 и 5 подключены ко второму цифровому выходу микроконтроллера 6. Выход аналогового мультиплексора микроконтроллера 6 подключен ко входу аналого-цифрового преобразователя (АЦП), встроенного в микроконтроллер 6. Технический результат заключается в повышении точности. 1 ил.

Изобретение относится к области эксплуатации автомобильной техники и может быть использовано для диагностирования работоспособности электрической проводки автомобильной техники и поиска неисправностей при ремонте. Устройство для диагностирования разъемных электрических контактных соединений содержит мост сопротивлений, одним плечом которого является диагностируемое сопротивление, измерительный прибор, источник электрического тока, соединенный к двум вершинам моста, дополнительно содержит два конденсатора, два ключа, дифференциальный усилитель. При этом конденсаторы соединяют входы усилителя с вершинами моста, ключи соединены параллельно с конденсаторами, а измерительный прибор соединен с выходом дифференциального усилителя. Технический результат заключается в расширении функциональных возможностей за счет возможности диагностирования флуктуации переходного сопротивления контактов по шумовой составляющей тока, а также в повышении чувствительности устройства. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, емкости и напряжения. Микроконтроллерный измерительный преобразователь сопротивления, емкости и напряжения в двоичный код содержит четыре резистора, два генератора, управляемые напряжением и снабженные входами разрешения генерирования, и микроконтроллер; первые выводы резисторов подключены соответственно к первому, второму, третьему и четвертому выходам микроконтроллера, вторые выводы первого и второго резисторов подключены к входу управления напряжением первого генератора, вторые выводы третьего и четвертого резисторов подключены к входу управления напряжением второго генератора, выходы генераторов подключены к счетным входам встроенных в микроконтроллер первого и второго двоичных счетчиков. Техническим результатом является повышение точности преобразования сопротивления, емкости и напряжения в двоичный код. 1 з.п. ф-лы, 1 ил.

Способ определения параметров прибора СВЧ, включающий измерение в n точках рабочей полосы частот его комплексных параметров рассеяния, моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты, определение собственно параметров посредством математической процедуры. Причем эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений Z1, Z2, Z3, при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно, каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci, а определение собственно параметров осуществляют посредством двух математических процедур, при этом в первой определяют три комплексных сопротивления в n точках рабочей полосы частот, во второй - собственно параметры прибора СВЧ Ri, Li и Ci из соответствующих математических формул. Технический результат заключается в существенном упрощении способа и повышении точности определения. 1 з.п. ф-лы.
Наверх