Способ получения реактивного топлива для сверхзвуковой авиации

Изобретение относится к способу получения реактивного топлива для сверхзвуковой авиации путем гидрирования концентрата ароматических углеводородов в присутствии водородсодержащего газа и катализатора, при повышенных температуре и давлении который характеризуется тем, что в качестве сырья используют высококипящий остаток производства ксилолов без его дополнительной ректификации. В качестве катализатора гидрирования используется алюмоплатиновый катализатор с содержанием платины 0,6 мас.%. Процесс гидрирования осуществляется при давлении до 4 МПа, температуре 250-300ºС, объемной скорости подачи сырья 0,5-1,0 ч-1 и соотношении водородсодержащий газ/сырье до 1500 нм33. Технический результат заключается в расширении сырьевых ресурсов производства дефицитного реактивного топлива для сверхзвуковой авиации, упрощении технологической схемы процесса и увеличении выхода целевого реактивного топлива. 2 з.п. ф-лы, 2 пр.

 

Изобретение относится к способам получения реактивного топлива для сверхзвуковой авиации и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ получения реактивного топлива, включающий гидрогенизационную обработку нефтяных дистиллятов и каталитическую депарафинизацию при повышенных температуре и давлении в присутствии катализаторов. В качестве сырья используется смесь газойлей каталитического крекинга и замедленного коксования в соотношении от 90-10% до 70-30% в сочетании с прямогонным газойлем (в количестве не более 30% от суммарной загрузки сырья). Процесс гидрирования осуществляется с использованием сульфидного никель-вольфрамового катализатора при давлении 26-30 МПа, температуре 330-450°С, объемной скорости подачи сырья 0,2-1,0 ч-1, соотношении ВСГ/сырье 1500-3000 нм33. Процесс гидродепарафинизации осуществляется с использованием молибденового цеолитсодержащего катализатора при давлении 26-30 МПа, температуре 350-370°С, объемной скорости подачи сырья 1,0-2,0 ч-1, соотношении ВСГ/сырье 1500-2000 нм33. Плотность получаемого топлива равна 840 кг/м3, содержание ароматических углеводородов 8-10% мас., его выход составляет 75-80% мас. (Патент РФ №2459859 от 27.08.2012 г.).

Недостатком способа является применение высоких давлений (до 30 МПа), что приводит к значительному увеличению металлоемкости установки и снижению экономических показателей процесса. Применение высоких давлений обусловлено высоким содержанием сернистых соединений в сырье, вследствие чего необходимо применять низкоактивный катализатор гидрирования.

Наиболее близким по технической сути и достигаемому результату является способ получения реактивного топлива для сверхзвуковой авиации путем гидропереработки фракции 230-300°С высококипящего остатка процесса каталитического риформинга. Способ включает в себя предварительное фракционирование сырья и его последующее гидрирование на высокоактивном платиновом катализаторе при давлении 10 МПа, температуре 290-370°С, объемной скорости подачи сырья 0,5-2,0 ч-1, соотношении ВСГ/сырье 1500-3000 нм33. Плотность получаемого топлива равна 870 кг/м3, содержание ароматических углеводородов 0,5% маc., его выход на исходное сырье составляет 30-35% маc. (патент US №31126330 от 24.03.1964 г.).

К недостаткам способа следует отнести ограниченность сырьевых ресурсов, низкий выход целевого продукта, применение высоких давлений.

Задачей изобретения является разработка способа получения реактивного топлива для сверхзвуковой авиации методом гидрирования концентрата ароматических углеводородов, позволяющего расширить сырьевые ресурсы, улучшить технологичность процесса и увеличить выход целевого реактивного топлива.

Указанная задача решается тем, что в способе получения реактивного топлива для сверхзвуковой авиации путем гидрирования концентрата ароматических углеводородов в присутствии водородсодержащего газа (ВСГ) и катализатора, при повышенных температуре и давлении, согласно изобретению, в качестве сырья используется высококипящий остаток производства ксилолов, причем исходное сырье не подвергается предварительному фракционированию, за счет чего значительно снижается давление процесса гидрирования, упрощается технологическая схема, увеличивается выход целевого реактивного топлива.

Реактор гидрирования загружается алюмоплатиновым катализатором с содержанием платины до 0,6% маc. Его использование позволяет проводить процесс при пониженных давлениях по сравнению с низкоактивными катализаторами на основе сульфидов и оксидов никеля и вольфрама.

Процесс гидрирования осуществляется при давлении до 4 МПа, температуре 250-300°С, объемной скорости подачи сырья 0,5-1,0 ч-1, соотношении ВСГ/сырье до 1500 нм33.

В качестве сырья используется высококипящий остаток производства ксилолов, характеризующийся высоким содержанием ароматических углеводородов различных структур и отсутствием серы. Это позволяет решить задачу расширения сырьевых ресурсов при получении дефицитного реактивного топлива для сверхзвуковой авиации.

Качество получаемого топлива после выделения его из гидрогенизата соответствует требованиям ГОСТ 12308-89 на топливо Т-8В (после введения соответствующих присадок).

Предлагаемое техническое решение подтверждено следующими примерами.

Пример 1

Высококипящий остаток производства ксилолов, имеющий плотность 914 кг/м3, содержание ароматических углеводородов моноциклической структуры - 65% маc., бициклической структуры - 30% маc., трициклической структуры - 2% маc., пределы выкипания 180-300°С, содержание серы 0,0004% маc. поступает в реактор гидрирования, который загружен алюмоплатиновым катализатором с содержанием платины 0,6% маc.

Условия процесса гидрирования - температура 250°С, давление 4 МПа, объемная скорость подачи сырья 1 ч-1, соотношение ВСГ/сырье - 1500 нм33.

По завершению процесса гидрирования получают топливную фракцию, выкипающую внутри интервала 165-280°С, характеризующуюся плотностью 838 кг/м3, содержанием моноциклических ароматических углеводородов 15% мас., отсутствием содержания полициклических ароматических углеводородов, содержанием серы 0,0003 мас.% и отвечающую по своим показателям требованиям ГОСТ 12308-89 на топливо Т-8В (после введения соответствующих присадок).

Выход целевого продукта составляет 95% мас. на сырье.

Пример 2

Высококипящий остаток производства ксилолов, имеющий плотность 915 кг/м3, содержание ароматических углеводородов моноциклической структуры - 65% мас., бициклической структуры - 30% мас., трициклической структуры - 2% мас., пределы выкипания 180-300°С, содержание серы 0,0004% мас. поступает в реактор гидрирования, который загружен алюмоплатиновым катализатором с содержанием платины 0,6% мас.

Условия процесса гидрирования - температура 300°С, давление 4 МПа, объемная скорость подачи сырья 0,5 ч-1, соотношение ВСГ/сырье -1500 нм33.

По завершению процесса гидрирования получают топливную фракцию, выкипающую внутри интервала 165-280°С, характеризующуюся плотностью 823 кг/м3, отсутствием содержания моноциклических ароматических углеводородов, отсутствием содержания полициклических ароматических углеводородов, содержанием серы 0,0003% мас. и отвечающую по своим показателям требованиям ГОСТ 12308-89 на топливо Т-8В (после введения соответствующих присадок).

Выход целевого продукта составляет 95% мас. на сырье.

Таким образом, предлагаемый способ позволяет расширить сырьевые ресурсы производства дефицитного реактивного топлива для сверхзвуковой авиации, улучшить технологичность процесса и увеличить выход целевого реактивного топлива.

1. Способ получения реактивного топлива для сверхзвуковой авиации путем гидрирования концентрата ароматических углеводородов в присутствии водородсодержащего газа и катализатора, при повышенных температуре и давлении, отличающийся тем, что в качестве сырья используют высококипящий остаток производства ксилолов без его дополнительной ректификации.

2. Способ по п.1, отличающийся тем, что в качестве катализатора гидрирования используется алюмоплатиновый катализатор с содержанием платины 0,6 мас.%.

3. Способ по п.2, отличающийся тем, что процесс гидрирования осуществляется при давлении до 4 МПа, температуре 250-300°С, объемной скорости подачи сырья 0,5-1,0 ч-1, соотношении водородсодержащий газ/сырье до 1500 нм33.



 

Похожие патенты:

Изобретение относится к противоизносной присадке для малосернистого дизельного топлива на основе карбоновых кислот, при этом она дополнительно содержит полиэтиленполиамин, а в качестве карбоновых кислот используются технические алкил(С16-С18)салициловые кислоты при массовом соотношении полиэтиленполиамин: технические алкил(С16-С18)салициловые кислоты, равном 0,007-0,035:1,0.

Изобретение относится к способу производства дизельного топлива с низкотемпературными свойствами, включающему предварительный подогрев топлива, нагнетание под действием центробежных сил в вихревом аппарате, ввод в топливо депрессионных присадок и подачу топлива к потребителям, заключается в том, что депрессионные присадки вводят в предварительно подогретое топливо перед его нагнетанием под действием центробежных сил в вихревом аппарате, а после нагнетания под действием центробежных сил в вихревом аппарате в смесь топлива с депрессионными присадками перед подачей топлива к потребителям дополнительно вводят авиационный керосин.

Изобретение относится к вариантам способа осуществления процесса Фишера-Тропша для получения жидких углеводородов, содержащих в основном дизельное топливо или дизельную смесь, с получением жидкого углеводородного продукта, содержащего менее 10 мас.% воска (>С23) и более 65% дизельной фракции (С 9-С23).
Изобретение относится к получению топливных композиций, содержащих дистиллятное топливо и определенный тип присадок. .

Изобретение относится к применению флоккулирующего и хелатирующего агента в качестве агента, облегчающего очистку органического раствора, включающего алкильные эфиры жирных кислот, в котором содержание воды в органическом растворе равно или меньше 5% по массе, и где рН органического раствора составляет от 9 до 12, и где флоккулирующий и хелатирующий агент выбирают из группы, состоящей из полиалюминиевых коагулянтов.
Изобретение относится к биохимии. .

Изобретение относится к способу производства компонента топлива из биоизопреновой композиции. Способ включает в себя химическое преобразование изопрена в биоизопреновой композиции до неизопреновых соединений посредством: (a) нагревания биоизопреновой композиции или воздействия на нее каталитическими условиями, подходящими для димеризации изопрена с образованием димера изопрена с последующей каталитической гидрогенизацией этого димера изопрена с образованием С10-насыщенного компонента топлива; или (b) (i) частичной гидрогенизации биоизопреновой композиции для производства изоамилена, (ii) димеризации изоамилена с моноолефином, выбранным из группы, состоящей из изоамилена, пропилена и изобутена, с образованием двойного соединения и (iii) полной гидрогенизации этого двойного соединения с получением компонента топлива.

Изобретение относится к композиции авиационного бензина, содержащей изомеризат, алкилбензин и тетраэтилсвинец, при этом в качестве изомеризата используют изомеризат легкой фракции бензина, преимущественно C5-C6, в качестве алкилбензина используют алкилбензин, полученный алкилированием с применением катализатора фтористого водорода фракции углеводородов C3-C4, являющейся продуктом каталитического крекинга вакуумного газойля, при следующем соотношении компонентов, мас.%: Изомеризат легкой фракции бензина 7-30 Тетраэтилсвинец до 0,1 Алкилбензин до 100 Заявленная композиция авиационного бензина соответствует всем требованиям к авиационному бензину по ТР ТС 013/2011 и по ГОСТ 1012-72, а также перспективным мировым аналогам, например «Авгаз 100 LL».
Изобретение относится к способу получения низкозастывающего дизельного топлива путем гидрогенизационной переработки нефтяного сырья в присутствии катализаторов, при повышенных температуре и давлении, и последующей ректификации гидрогенизата с выделением легкой и тяжелой дизельных фракций, которые в дальнейшем смешивают, где в качестве нефтяного сырья используют смесь газойля прямой перегонки нефти и широкой бензиновой фракции замедленного коксования, в соотношении от 95:5% масс., до 70:30% масс., которую подвергают последовательно гидроочистке, каталитической гидродепарафинизации и дополнительной гидроочистке, при этом объем катализаторов от общей загрузки составляет: гидроочистки - 45-65% масс., каталитической гидродепарафинизации - 20-35% масс., дополнительной гидроочистки - 10-30% масс.

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в проточном реакторе при регулировке подачи реагентов в соотношении глицерин: ацетон (1):(5-20) и поддержании в реакторе температуры от 35°С до 55°С, объемной скорости 0.5-1.5 ч-1 и атмосферного давления с получением золькеталя как основного продукта, и возвращении непрореагировавшего ацетона в реактор.

Изобретение относится к способу получения реактивного топлива из биоэтанола. Способ осуществляют путем конверсии биоэтанола на первой стадии на цеолитном катализаторе, содержащем железо, при температуре 300-350°С и объемной скорости 2 ч-1 по жидкому исходному этанолу, затем на второй стадии гидрированием полученного продукта конверсии этанола на промышленном 3% или 5% платиносодержащем катализаторе при температуре 250-300°С в течение 1,5-3 часов в автоклаве с периодической подачей водорода, с последующей разгонкой полученного после гидрирования продукта и выделением целевой фракции, выкипающей после 135°С, плотностью при 20°С не менее 790 кг/м3 и содержащей нафтеновые продукты.
Изобретение относится к углеводородной композиции, которую можно использовать в качестве топлива и/или горючего, и способу ее получения. Способ гидроочистки для получения углеводородных композиций включает гидроочистку смеси, содержащей: - компонент (А) - газойль в количестве от 20 до 95 масс.%, - компонент (А1) - бензин в количестве от 1 до 40 масс.%, - компонент (В) биологического происхождения, содержащий сложные эфиры жирных кислот, возможно, включающий свободные жирные кислоты; количество биологического компонента составляет от 4 до 60 масс.%, причем все процентные содержания отнесены к общей массе суммы всех компонентов.
Изобретение относится к композициям авиационного бензина с октановым числом не менее 91 и сортностью по богатой смеси не менее 115 на основе автомобильного бензина, которая содержит смесь изопарафиновых углеводородов С6-C8 15-40% масс., гидрированную фракцию C8 с остаточным содержанием бензола (не более 3% масс.) до 10% масс., тетраэтилсвинец 0,15-0,35% масс.

Изобретение относится к способу получения присадки к жидкому топливу, содержащему введение природного алюмосиликата в остаточный нефтепродукт, введение воды, перемешивание, при этом в качестве природного алюмосиликата используют слюду, преимущественно измельченный вермикулит, который подвергают обжигу с последующей последовательной многократной выдержкой в растворах карбоновых кислот сильной концентрации, преимущественно муравьиной и уксусной, неорганической сильной кислоты сильной концентрации, после выдержки слюды в кислотах осуществляют фильтрацию слюды от используемых кислот, полученный остаток обработанной слюды после последней выдержки в кислоте нейтрализуют, к полученной слюде дополнительно вносят тонко измельченные оливинит, водоросли и кальцийсодержащий природный компонент, которые берут в следующем количестве: оливинит 5-20 мас.%, водоросли 10-20 мас.%, кальцийсодержащий компонент 5-15 мас.% от исходного количества вермикулита, полученную композицию компонентов заливают водой, которую затем испаряют до получения влажной композиционной смеси, последнюю смешивают с остаточным нефтепродуктом, в качестве которого используют керосин, в соотношении 1:5, выдерживают, затем диспергируют.

Изобретение относится к котельному топливу, содержащему тяжелую нефтяную фракцию и стабилизатор, в качестве которого используют отход производства растительных масел - карбоксилат натрия, при следующем соотношении компонентов, % масс.: карбоксилат натрия 20-30 тяжелая нефтяная фракция - остальное.
Изобретение относится к топливной композиции, состоящей из легкого вакуумного погона мазута с температурой выкипания 96 об.% до 400°С, негидроочищенного легкого газойля каталитического крекинга, 8-оксихинолина, диспергирующей присадки С-40 и гидроочищенного дизельного топлива.
Изобретение относится к способу получения низкозастывающего дизельного топлива путем гидрогенизационной переработки нефтяного сырья в присутствии катализаторов, при повышенных температуре и давлении, и последующей ректификации гидрогенизата с выделением легкой и тяжелой дизельных фракций, которые в дальнейшем смешивают, где в качестве нефтяного сырья используют смесь газойля прямой перегонки нефти и широкой бензиновой фракции замедленного коксования, в соотношении от 95:5% масс., до 70:30% масс., которую подвергают последовательно гидроочистке, каталитической гидродепарафинизации и дополнительной гидроочистке, при этом объем катализаторов от общей загрузки составляет: гидроочистки - 45-65% масс., каталитической гидродепарафинизации - 20-35% масс., дополнительной гидроочистки - 10-30% масс.

Изобретение относится к способу получения реактивного топлива для сверхзвуковой авиации путем гидрирования концентрата ароматических углеводородов в присутствии водородсодержащего газа и катализатора, при повышенных температуре и давлении который характеризуется тем, что в качестве сырья используют высококипящий остаток производства ксилолов без его дополнительной ректификации. В качестве катализатора гидрирования используется алюмоплатиновый катализатор с содержанием платины 0,6 мас.. Процесс гидрирования осуществляется при давлении до 4 МПа, температуре 250-300ºС, объемной скорости подачи сырья 0,5-1,0 ч-1 и соотношении водородсодержащий газсырье до 1500 нм3м3. Технический результат заключается в расширении сырьевых ресурсов производства дефицитного реактивного топлива для сверхзвуковой авиации, упрощении технологической схемы процесса и увеличении выхода целевого реактивного топлива. 2 з.п. ф-лы, 2 пр.

Наверх