Способ получения высококачественного магнетитового концентрата



Способ получения высококачественного магнетитового концентрата
Способ получения высококачественного магнетитового концентрата
Способ получения высококачественного магнетитового концентрата
Способ получения высококачественного магнетитового концентрата

 


Владельцы патента RU 2535722:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится к области технологических процессов в горноперерабатывающей промышленности и может быть использовано в технологии получения высококачественных магнетитовых концентратов с пониженной массовой долей вредных примесей для производства металлизованных продуктов, в электрометаллургическом переделе, порошковой металлургии, других отраслях промышленности. Способ получения магнетитового концентрата включает классификацию, доизмельчение, магнитную сепарацию и магнитную дешламацию с получением магнетитового концентрата и отвальных хвостов. Перед доизмельчением рядового магнетитового концентрата осуществляют его предварительную подготовку путем уплотнения и дезактивации, магнитно-гравитационное концентрирование в восходящем потоке и электромагнитном поле с получением отвальных хвостов и чернового концентрата и классификацию чернового концентрата на крупный и тонкий продукты. Крупный продукт доизмельчают перед объединением с тонким с последующей дешламацией и магнитной сепарацией. Технический результат - повышение эффективности процесса получения высококачественных магнетитовых концентратов, снижение массовой доли вредных примесей. 1 з.п. ф-лы, 3 ил., 2 табл., 2 пр.

 

Изобретение относится к области технологических процессов в горноперерабатывающей промышленности и может быть использовано в технологии получения высококачественных магнетитовых концентратов с пониженной массовой долей вредных примесей для производства металлизованных продуктов, в электрометаллургическом переделе, порошковой металлургии, других отраслях промышленности.

Из технического уровня известен способ получения высококачественных магнетитовых концентратов, включающий измельчение рядового концентрата в шаровой мельнице, его последующую магнитную сепарацию, классификацию, дешламацию и магнитную сепарацию с получением готового высококачественного магнетитового концентрата и отвальных хвостов [К.А. Разумов, В.А. Перов. Проектирование обогатительных фабрик. М.: Недра, 1982, с.172-173].

Недостатком способа является низкая эффективность обогащения, связанная с переизмельчением и ошламованием рудных минералов нерудными.

Также известен способ дообогащения магнетитовых концентратов, включающий классификацию рядового концентрата, магнитную сепарацию песков классификатора, дешламацию слива классификатора и магнитную сепарацию песков дешламации [авторское свидетельство СССР №1351677].

Недостатком этого способа является низкая эффективность процесса обогащения. Из грубозернистых песков классификации и песков дешламации выделяют промежуточный продукт с низкой массовой долей железа общего (до 50-62%), состоящий из труднораскрываемых и труднообогатимых сростков, который направляют в первичный передел. Возврат в первичный передел большого количества труднораскрываемого и трудноизмельчаемого минерального сырья, с одной стороны, приводит к росту циркулирующей нагрузки в цикле измельчения, с другой стороны, ошламованию концентрата нерудными, увеличению массовой доли сростков и, как следствие, увеличению массовой доли вредных примесей и снижению массовой доли железа в исходном рядовом магнетитовом концентрате. Полученный высококачественный магнетитовый концентрат имеет низкий выход от исходного (до 16%) против полученного промпродукта (до 22%).

Также известен способ разделения материалов с целью повышения эффективности процесса за счет образования в результате наложения магнитного поля напряженностью 2,8-8,0 кА/м на ферромагнитную суспензию, подвергаемую воздействию восходящих водно-воздушных потоков.

Основным недостатком данного способа являются высокие удельные затраты на производство при сравнительно низкой селективности процесса.

Известен способ разделения магнитных материалов, заключающийся в одновременном воздействии на материал восходящего водовоздушного потока и магнитного поля при его напряженности 8-16 кА/м и скорости восходящего потока 2,5-4,0 см/с, процесс осуществляется в электромагнитном сепараторе [авторское свидетельство СССР №831182].

Основным недостатком данного способа являются высокие удельные энергетические и удельные затраты на производство при сравнительно низкой селективности процесса.

Также известен способ обогащения каолина, включающий сушку каолина перед дроблением и его измельчение (дезинтеграцию) при массовой доле твердого 40-70% в присутствии пептизаторов [авторское свидетельство СССР №526385].

Применение пептизаторов при дезинтеграции в данном способе дает другой эффект в связи с другими природными физико-механическими свойствами минерального сырья.

Известен способ обогащения железных руд, включающий усреднение, уплотнение, доизмельчение рядового концентрата в шаровой мельнице, последующую магнитную сепарацию доизмельченного продукта с выделением отвальных хвостов и промежуточного продукта, классификацию промежуточного продукта на крупный и тонкий продукт и возвратом крупного на доизмельчение, дешламацию тонкого продукта и его магнитную сепарацию с получением готового магнетитового концентрата и отвальных хвостов [Совершенствование технологии дообогащения концентрата на ОФ-3 Лебединского ГОКа с внедрением новых технических решений. Отчет о НИР Механобрчермет, руков. Г.К. Смышляев, Белгород, 1989, рис.1.5, с.13].

Недостатком способа является низкая эффективность обогащения (эффективность обогащения по формуле Хенкока-Луйкена 45,67%), высокие удельные и материальные затраты на технологический передел. Низкая эффективность вызвана тем, что исходный магнетитовый концентрат, содержащий раскрытые зерна магнетита, после уплотнения направляют на доизмельчение и последующие стадии магнитной сепарации, что вызывает переизмельчение и ошламование раскрытых рудных зерен. Полученный магнетитовый концентрат характеризуется непостоянным химическим составом, связанным с переизмельчением и ошламованием рудных минералов нерудными (кварцем). Повышенная физико-химическая активность в совокупности с пьезоэффектом доизмельченного материала вызывает появление зарядов на поверхности частиц кварца, что приводит к их закреплению на поверхности частиц магнетита и снижению контрастности разделительных признаков. Это в последствии затрудняет процесс получения кондиционного концентрата (массовая доля железа в концентрате составила 69,63% против 68,63%).

В известном техническом уровне известен ближайший аналог (патент на изобретение RU №2083291) по совокупности существенных признаков, включающий измельчение исходного материала, грубую классификацию измельченного материала, магнитную сепарацию измельченного материала с получением промежуточного продукта и хвостов, двухстадийное доизмельчение промежуточного продукта, тонкую классификацию доизмельченного промежуточного продукта на крупный и тонкий продукты, крупный продукт доизмельчают перед объединением с тонким, объединенный продукт подают на магнитную дешламацию после каждой стадии доизмельчения, сгущенный продукт подают на магнитную сепарацию. После каждой стадии магнитной сепарации хвосты сепаратора направляют в отвальные хвосты. Магнитный продукт последней стадии сепараторов является конечным продуктом - магнетитовым концентратом. Подаваемую на классификацию первой стадии воду заменяют сливом дешламации тонкого продукта доработки промежуточного продукта.

Основным недостатком данного способа являются высокие удельные расходы на производство при сравнительно низкой селективности процесса магнитной сепарации (эффективность обогащения по формуле Хенкока-Луйкена составила 36,82%). Данный способ обогащения включает одну стадию измельчения, две стадии доизмельчения, грубую и тонкую классификации, две стадии дешламации и пять стадий магнитной сепарации, что приводит к значительным эксплуатационным и капитальным затратам. Кроме того, повышенная физико-химическая активность слива дешламации тонкой фракции в совокупности с пьезоэффектом доизмельченного материала вызывает появление зарядов на поверхности частиц нерудных минералов (кварца), что приводит к их закреплению на поверхности частиц магнетита и снижению контрастности разделительных признаков и впоследствии затрудняет процесс получения кондиционного продукта. Достигаемый технический результат незначителен (массовая доля в полученном концентрате увеличилась на 0,27%) и не позволяет получить высококачественный продукт, так как зерна магнетита покрыты шламами и присыпками из нерудных минералов и они находятся в них как в "рубашке" (рис.1а).

Общим недостатком всех предшествующих аналогов и прототипа является работа с получаемой пульпой, имеющей массовую долю твердого 35-40%, что не позволяет повысить эффективность магнитной сепарации, в результате чего получают незначительную суммарную эффективность процесса, а также ни одним способом по физической сущности перечисленных операций невозможно достичь резкого нарастания качества конечного продукта. Кроме того, недостатком ближайшего аналога является его низкая эффективность, связанная с тем, что из технологического процесса стадийно выводят только отвальные хвосты, направляя оставшуюся часть пульпы по схеме, где раскрытые рудные минералы переизмельчаются, ошламоваются и обводняются.

Задачей изобретения является повышение эффективности за счет подготовки пульпы к обогащению, выделения раскрытых зерен магнетита в конечный концентрат, начиная с головы процесса, предотвращения переизмельчения и ошламования рудных зерен при дальнейшем доизмельчении и последующем обогащении, повышение производительности и снижение эксплуатационных затрат путем сокращения стадий измельчения и обогащения, т.е. создание оптимального способа получения кондиционных магнетитовых концентратов, пригодных для металлизации.

Техническим результатом, который может быть получен при реализации изобретения, является:

- повышение качества магнетитовых концентратов пригодных для металлизации;

- снижение массовой доли вредных примесей (диоксида кремния);

- повышение производительности оборудования;

- снижение удельных норм расхода мелющих тел и электроэнергии.

Решение поставленной задачи и достижение вышеперечисленных результатов стало возможным благодаря тому, что в известном способе получения магнетитового концентрата, включающем классификацию, доизмельчение, магнитную сепарацию и магнитную дешламацию с получением магнетитового концентрата и отвальных хвостов, перед доизмельчением рядового магнетитового концентрата осуществляют его предварительную подготовку путем уплотнения и дезактивации, магнитно-гравитационное концентрирование в восходящем потоке и электромагнитном поле с получением отвальных хвостов и чернового концентрата и классификацию чернового концентрата на крупный и тонкий продукты, при этом крупный продукт доизмельчают перед объединением с тонким с последующей дешламацией и магнитной сепарацией.

В частном примере выполнения способа предварительную подготовку рядового магнетитового концентрата перед доизмельчением осуществляют с применением реагента-пептизатора.

Заявленный способ иллюстрируют таблица 1 «Параметры раскрытия рудной и нерудной фаз в рядовом и высококачественном магнетитовом концентрате», таблица 2 «Распределение железа и диоксида кремния в высококачественном магнетитовом концентрате» и фиг. 1-3.

На фиг.1. показана схема способа получения высококачественного магнетитового концентрата.

На Фиг.2. показана схема способа получения высококачественного магнетитового концентрата с добавлением реагента-пептизатора.

НА Фиг.3 показаны снимки магнетитового концентрата, полученные на электронном микроскопе: а) адгезия кварца (светлое) на поверхности зерна магнетита (темное), увел. 1200; б) то же, после реализации способа, увел. 1000.

Изобретательским шагом является предварительная подготовка рядового магнетитового концентрата путем его уплотнения до массовой доли твердого 60-70% и дезактивация для отделения шламистых частиц нерудных минералов с поверхности рудных, что позволяет избежать в дальнейшем налипания минералов пустой породы на крупные зерна рудного минерала за счет сил адгезии, которые обволакивают их и переходят в концентрат, а также магнитно-гравитационное концентрирование подготовленного продукта в восходящем потоке и электромагнитном поле напряженностью не более 24 кА/м с выделением отделенных нерудных шламистых частиц в отвальные хвосты и чернового концентрата. Благодаря тому, что магнитно-гравитационная концентрация осуществляется по трем физическим признакам: крупности, плотности и магнитным свойствам минеральных комплексов, стало возможным селективное разделение рудной и нерудной фаз. Результаты проведенных исследований раскрытия рудной и нерудной фаз в рядовом и высококачественном концентрате (таблица 1) показывают, что степень раскрытия нерудной фазы изменилась незначительно, как и количество свободных нерудных зерен, что в конечном итоге сказывается на количестве диоксида кремния в полученном концентрате. Как правило, доизмельчение рядового концентрата в шаровой мельнице без предварительной подготовки и поверочной классификации магнетитовой пульпы приводит к переизмельчению, ошламованию и потерям полезного компонента при последующей магнитной дешламации и магнитной сепарации. Уплотнение и дезактивация магнетитовой пульпы и последующее магнитно-гравитационное концентрирование позволяет удалить часть свободного нерудного материала со сливом концентратора в отвальные хвосты, черновой концентрат классифицируют на крупный и тонкий продукты, крупный продукт доизмельчают перед объединением с тонким, что позволит предотвратить переизмельчение свободных рудных частиц, раскрыть сростки без ошламования рудных частиц и при магнитной дешламации выделить их со сливом дешламации в отвальные хвосты.

Результаты гранулометрического анализа и распределения железа общего и диоксида кремния по классам крупности магнетитового концентрата, полученного до и после реализации способа (таблица 2) показывают, что шламистые минералы пустой породы налипают на крупные зерна рудного минерала за счет сил адгезии, обволакивают их и переходят с ними в концентрат, тем самым, засоряя его и уменьшая его металлургическую ценность (массовая доля диоксида кремния должна быть менее 3,0%).

Применение в заявляемом способе подготовки рядового магнетитового концентрата уплотнением и дезактивацией, с пептизатором или без него, и концентрирование и классификация дезактивированного материала перед доизмельчением позволяет исключить переизмельчение раскрытых рудных минералов, а также снять шламистые покрытия из минералов пустой породы с рудных минералов, их дезактивировать, а также свободные нерудные частицы, и вывести в процессе разработанного способа в отвальные хвосты, что способствует снижению массовой доли свободного диоксида кремния на 1,03-1,26%. Это наглядно подтверждается и просмотром поверхности частиц магнетита на электронном микроскопе (фиг.3).

Заявленный способ осуществляется следующим образом (см. фиг.1).

Исходный магнетитовый концентрат с массовой долей твердого 35-40% подают на уплотнение до массовой доли твердого 60-70% и дезактивацию в дезактиватор при включенном импеллере, вращающемся со скоростью 1750 об/мин. Полученный таким образом продукт после дезактивации подают на магнитно-гравитационное концентрирование во вращающемся магнитном поле. Восходящим потоком дезактивированные нерудные частицы выносятся в слив концентратора и далее в отвальные хвосты. Затем черновой магнетитовый концентрат подают на тонкую классификацию в гидроциклоны. Крупный продукт классификации подают на доизмельчение в шаровую мельницу и далее возвращают на тонкую классификацию в гидроциклоны. Тонкий продукт после гидроциклонов подают на магнитную дешламацию. Сгущенный продукт, полученный после дешламации, подают на магнитную сепарацию на сепараторы. Слив магнитной дешламации и хвосты магнитной сепарации направляют в отвальные хвосты. Магнитный продукт сепарации является конечным продуктом - высококачественным магнетитовым концентратом.

В частном примере исполнения способа в дезактиватор подают реагент-пептизатор (см. фиг.2).

Практическая применимость заявленного способа показана на следующих примерах конкретного исполнения.

Пример 1

Исходный рядовой магнетитовый концентрат с массовой долей железа общего 68,5; диоксида кремния общего 4,5 и свободного 3,75% и массовой долей твердого не менее 35-40% подают на уплотнение до массовой доли твердого 60%, а уплотненный продукт направляют в дезактиватор со скоростью вращения импеллера не менее 1750 об/мин на дезактивацию. Продукт дезактивации подают на магнитно-гравитационное концентрирование во вращающемся электромагнитном поле, откуда дезактивированные нерудные минералы восходящим потоком выносятся в слив концентратора и далее в отвальные хвосты. После концентрирования черновой концентрат подают на тонкую классификацию в гидроциклонах ГЦ-250. Крупный продукт гидроциклонов подают на доизмельчение в шаровой мельнице МШЦ 45×60, разгрузку которой возвращают на классификацию в гидроциклонах ГЦ 250.

Тонкий продукт гидроциклонов ГЦ 250 подают на магнитную дешламацию в дешламаторы МД-9, далее сгущенный продукт подают на мокрую магнитную сепарацию на сепараторы ПБМ 120×300. Слив дешламатора МД-9 и хвосты сепараторов ПБМ 120×300 направляют в отвальные хвосты. Магнитный продукт сепараторов ПБМ 120×300 является высококачественным магнетитовым концентратом. Полученный высококачественный магнетитовый концентрат содержит железа общего 69,7, диоксида кремния 2,56 и свободного 2,06%, в классе крупности плюс 0,045 мм - 5,23 против 15,16% без реализации способа. Эффективность обогащения при реализации способа, рассчитанная по формуле Хенкока-Луйкена с учетом диоксида кремния, составила 72,77 против 34,11 без реализации способа.

Кроме того, реализация заявленного способа позволила уменьшить удельный расход мелющих тел на 15, электроэнергии на 5%, увеличить производительность мельницы на 22%.

Пример 2

Исходный рядовой магнетитовый концентрат с массовой долей железа общего 68,5; диоксида кремния общего 4,5 и свободного 3,75% и массовой долей твердого не менее 35-40% подают на уплотнение до массовой доли твердого 60%, а уплотненный продукт направляют в дезактиватор со скоростью вращения импеллера не менее 1750 об/мин, куда подают реагент-пептизатор в виде 1% раствора с расходом не менее 500 г/т и производят дезактивацию магнетитовой суспензии. Продукт дезактивации подают на магнитно-гравитационное концентрирование во вращающемся электромагнитном поле, откуда дезактивированные нерудные минералы восходящим потоком выносятся в слив концентратора и далее в отвальные хвосты. После концентрирования черновой магнетитовый концентрат подают на тонкую классификацию в гидроциклонах ГЦ-250. Крупный продукт гидроциклонов подают на доизмельчение в шаровой мельнице МШЦ-45×60, разгрузка которой поступает на классификацию в гидроциклонах ГЦ-250.

Тонкий продукт гидроциклонов ГЦ-250 подают на магнитную дешламацию в дешламаторах МД-9, сгущенный продукт подают на мокрую магнитную сепарацию на сепараторы ПБМ-120×300. Слив дешламатора МД-9 и хвосты сепараторов ПБМ-120×300 направляют в отвальные хвосты. Магнитный продукт сепараторов ПБМ-120×300 является высококачественным магнетитовым концентратом. Полученный высококачественный магнетитовый концентрат содержит железа общего 69,8, диоксида кремния общего 2,42, свободного 1,83%, в классе крупности плюс 0,045 мм - 4,32 против 15,16 без реализации способа. Эффективность обогащения при реализации, рассчитанная по формуле Хенкока-Луйкена с учетом диоксида кремния, составила 82,5 против 34,11 без реализации способа.

Кроме того, реализация заявленного способа позволила уменьшить удельный расход мелющих тел на 17, электроэнергии на 11%, увеличить производительность мельницы на 32%.

Реализация заявленного способа может быть осуществлена с использованием в качестве классифицирующего оборудования тонкой классификации вибрационных грохотов тонкого грохочения, а доизмельчение в мельницах как горизонтального, так и вертикального типа.

Как видно из примеров 1 и 2, только совокупность заявляемых признаков, а именно уплотнение и дезактивация и последующее магнитно-гравитационное концентрирование, позволяет решить поставленную задачу и достигнуть ожидаемых результатов.

Так в результате реализации заявляемого способа получения магнетитового концентрата снижается количество рудного материала, подаваемого на доизмельчение, что приводит к снижению переизмельчения рудного материала и удельных норм расхода мелющих тел, увеличению удельной производительности мельниц по готовому классу крупности, увеличивается производительность по готовому классу, уменьшается нагрузка по объемному питанию в циклах магнитной дешламации и снижаются потери рудного минерала в циклах обогащения, в целом, повышается эффективность процесса обогащения и металлургическая ценность магнетитового концентрата. Предварительная подготовка рядового магнетитового концентрата, введение операций уплотнения и дезактивации с последующим магнитно-гравитационным концентрированием позволяют достичь эффекта не суммарного, как в аналогах, а синергетического, что говорит о творческом характере заявляемого способа.

Реализация заявляемого способа позволяет снизить массовую долю диоксида кремния общего на 0,76-0,9 и свободного диоксида кремния на 1,63-1,86%, тем самым повысить металлургическую ценность полученного продукта и достичь уменьшения удельной нормы расхода мелющих тел на 15-17% и уменьшить потребление электроэнергии на 5-11% на производство 1 т высококачественного магнетитового концентрата.

1. Способ получения магнетитового концентрата, включающий классификацию, доизмельчение, магнитную сепарацию и магнитную дешламацию с получением магнетитового концентрата и отвальных хвостов, отличающийся тем, что перед доизмельчением рядового магнетитового концентрата осуществляют его предварительную подготовку путем уплотнения и дезактивации, магнитно-гравитационное концентрирование в восходящем потоке и электромагнитном поле с получением отвальных хвостов и чернового концентрата и классификацию чернового концентрата на крупный и тонкий продукты, при этом крупный продукт доизмельчают перед объединением с тонким с последующей дешламацией и магнитной сепарацией.

2. Способ по п.1, отличающийся тем, что дезактивацию рядового концентрата перед доизмельчением осуществляют с применением реагента-пептизатора.



 

Похожие патенты:

Способ включает приведение семян в возвратно-колебательное движение и воздействие на семена постоянным магнитным полем при одновременном фракционировании и импакции семян.

Изобретение относится к обогащению полезных ископаемых и может быть использовано в горной и металлургической промышленности. Способ получения коллективного концентрата из железистых кварцитов включает измельчение исходной руды, ее гидравлическую классификацию с получением сливного и пескового продуктов, стадиальную магнитную сепарацию и гравитационное обогащение хвостов магнитной сепарации.

Изобретения относятся к области промышленной переработки отходов, утилизация которых затруднена из-за высокой стабильности их физико-химических свойств, и могут быть использованы, в частности, при утилизации шламовых вод, шламов доменных, гальванических и других производств, при очистке бытовых сточных вод, иловых полей, золоуносов ТЭЦ, ГРЭС, террикоников и т.д., а также для разделения нейтрализованных соединений металлов по молекулярным весам.
Изобретение относится к одновременной очистке замасленных чугунной/стальной стружки и окалины шламов прокатного производства от масла. В способе замасленную окалину шламов прокатного производства, замасленную чугунную/стальную стружку размером не более 15 мм и технически чистую воду смешивают в соотношении 2:1:6, после чего их обрабатывают в реакторе с магнитным полем частотой 50 Гц и напряженностью от 200 А/м до 1100 А/м до получения очищенных от масла окалины и стружки.

Изобретение относится к области обогащения твердых полезных ископаемых, а именно к способам обогащения редкометаллических руд. Способ обогащения эвдиалитовых руд включает применение электромагнитной сепарации в сильном поле с выделением в немагнитную фракцию нефелин-полевошпатового концентрата и последующую электрическую сепарацию магнитных фракций с получением эгиринового и эвдиалитового концентратов.
Изобретение относится к комбинированным методам разделения твердых материалов, а именно к переработке радиоэлектронного скрапа. Способ включает преимущественно двустадийное измельчение скрапа молотковыми дробилками до необходимой крупности, магнитную и ситовую сепарации измельченного скрапа с последующей пневматической классификацией по объемной плотности отдельно надрешетного и подрешетного продуктов ситовой классификации.
Изобретение относится к горно-перерабатывающей промышленности, в частности к области обогащения железных руд для получения товарного железорудного концентрата, предназначенного для металлургической промышленности, и может быть использовано при обогащении некондиционной окисленной железной руды, которая добывается открытым и подземным способом.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении сырья техногенного характера, золошлаковых отходов и различных объектов схожего состава, содержащего железо.
Изобретение относится к цветной металлургии, а именно к комплексной переработке красных шламов глиноземного производства. .

Изобретение относится к устройству для осаждения ферромагнитных частиц из суспензии. .

Изобретения (варианты) относятся к переработке высокомагнезиальных сидеритовых руд. Способы включают дробление и грохочение исходной руды, магнетизирующий обжиг в условиях без поступления атмосферного кислорода для разложения карбонатов железа и магния, сухую магнитную сепарацию, доизмельчение извлеченной магнитной фракции и выщелачивание из нее оксида магния раствором угольной кислоты. Затем проводят нагрев полученного после выщелачивания раствора до температуры, обеспечивающей выделение из него карбоната магния, и последующее разложение карбоната магния до оксида магния путем нагрева свыше 650°C. При этом по первому варианту обжиг проводят при 500-700°C, после чего осуществляют активацию при 400-700°C парами воды с последующим охлаждением. Магнитной сепарации подвергают активированный продукт, а выщелачивание ведут в течение 30-60 минут из фракции 0,2-0 мм. По второму варианту обжиг проводят при 500-700°C, после чего осуществляют активацию обожженного продукта охлаждением его до температуры ниже 100°C, а затем нагревом охлажденного продукта до 350-500°C и последующей изотермической выдержкой в течение 60-90 минут. Магнитной сепарации подвергают активированный продукт, а выщелачивание ведут в течение 30-60 минут из фракции 0,2-0 мм. Заявляемые варианты позволяют получить два продукта высокого качества: железорудный концентрат с содержанием железа 60,3% и оксид магния чистотой не менее 98%. 2 н.п. ф-лы, 4 табл.
Изобретение относится к способу обогащения высокосернистых магнетитовых руд. Способ доводки чернового высокосернистого магнетитового концентрата заключается в том, что черновой высокосернистый магнетитовый концентрат без предварительного механического тонкого измельчения подвергают биовскрытию с использованием комплекса тионовых микроорганизмов. Полученный кек биовскрытия подвергают мокрой магнитной сепарации с получением серосодержащего раствора, высококачественного магнетитового концентрата и отвальных хвостов. При этом биовскрытие проводят с использованием адаптированных к железным рудам штаммов ацидофильных тионовых микроорганизмов, присущих собственному биоценозу месторождения, при соотношении твердой и жидкой фаз Т:Ж=1:5-1:7, температуре в интервале 15-45°C, начальных значениях Eh 650 мВ, pH 1,5-2,15 и атмосферном давлении. Техническим результатом является повышение эффективности обогащения железосодержащих магнетитовых руд за счет упрощения схемы переработки с сокращением стадий измельчения, снижение капитальных и эксплуатационных затрат. 6 з.п. ф-лы, 2 пр.

Предложенное изобретение относится к способу для обработки содержащих масло частиц, таких как шлам завода, и может быть использовано для обезмасливания отходов сталелитейной промышленности и других загрязненных маслом отходов. Способ обработки содержащих масло частиц, при котором вводят раствор для обработки в подаваемый поток частиц с образованием обработанной суспензии, где раствор для обработки содержит от 20 до 70 мас. % основанного на нефти размягчающего вещества; от 2 до 50 мас. % смягчителя; от 5 до 25 мас. % солюбилизатора; и от 1 до 10 мас. % связывающего агента; применяют механический разрушитель в отношении обработанной суспензии для уменьшения среднего размера частиц; применяют магнитный разделитель в отношении обработанной суспензии с образованием потока твердого железа и применяют температурный разделитель в отношении потока твердого железа для экстракции углеводородной части и получения потока продукта железа. Технический результат - повышение эффективности обезмасливания отходов, а также повышение содержания железа в шламе. 9 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области горнорудной промышленности и может быть использовано при утилизации отходов производства горно-обогатительных предприятий вольфрам-молибденовых руд, содержащих редкие и ценные металлы. Способ обогащения минерального сырья, содержащего ценные включения, путем последовательных технологических операций, включающих механическое измельчение указанного сырья, классификацию измельченной массы с отбором для последующей обработки мелкой фракции частиц размером менее установленного максимального предела и магнитную сепарацию отобранной части измельченной массы в магнитных полях различной интенсивности с получением промежуточных продуктов переработки, характеризующихся различной степенью наличия магнитных свойств вплоть до их полного отсутствия. Крупную фракцию классифицированного после механического измельчения минерального сырья дополнительно измельчают методом кавитационного гидравлического удара. Полученную дополнительную измельченную массу перед магнитной сепарацией смешивают с предварительно отобранной мелкой фракций механически измельченной массы или указанные измельченные массы сырья направляют на магнитную сепарацию раздельно. После каждого этапа магнитной сепарации дополнительно производят гравитационную сепарацию полученных промежуточных продуктов с получением на выходе каждой ветви технологического процесса целевых продуктов различной массовой плотности. Способ осуществляют на технологической линии, содержащей последовательно установленные по ходу технологического процесса механический измельчитель с вибрационным грохотом и по меньшей мере два магнитных сепаратора с магнитными полями различной интенсивности. Линия дополнительно содержит кавитационно-гидравлический измельчитель не прошедшей через вибрационный грохот крупной фракции минерального сырья, измельченного указанным механическим измельчителем, и гравитационные сепараторы, каждый из которых установлен за одним из указанных магнитных сепараторов. Технический результат - повышение степени извлечения металлических и минеральных включений из бедной минеральной руды или отходов производства горно-обогатительных предприятий. 2 н. и 6 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области магнитного разделения и может быть использовано, в частности, при решении вопросов о возможности технологического применения золоотходов теплоэнергетических объектов и других сред, характерной особенностью которых является высокая дисперсность частиц среды и присутствие (зачастую - повышенное) железистых примесей в качестве заменяющих компонентов строительных материалов и изделий. Способ магнитоконтроля ферропримесей сыпучей среды тонкого класса включает неоднократные операции мокрого магнитного выделения частиц ферропримесей из суспензии пробы этой среды. Операции выделения осуществляют путем пропускания суспензии пробы через многооперационный, имеющий полюсные зоны осаждения феррочастиц, магнитный анализатор с наклонным желобом, при эффективной, ограничиваемой устанавливаемым верхним значением скорости. Выделенные операционные массы суспендируют и образовавшиеся, обогащенные частицами ферропримесей, суспензии дополнительно подвергают магнитному воздействию для дообогащения выделенных масс ферропримесями и получения концентрата этих примесей. Суммарную массу ферропримесей, содержащихся в пробе, исходя из допускаемой погрешности, определяют на основании получаемой, функционально устанавливаемой и экстраполируемой опытной зависимости данных операционных масс концентрата ферропримесей от порядкового номера операции. Технический результат - повышение точности контроля содержания (массовой доли, концентрации) ферропримесей сыпучей среды, прежде всего среды тонкого класса. 2 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области магнитного разделения и может быть использовано в различных отраслях промышленности, в частности в производстве стекла и керамики, для анализа сырьевых сыпучих сред на содержание в них весьма нежелательных железистых примесей, обладающих магнитоактивными свойствами (ферропримесей): их массовой доли (концентрации). Способ определения содержания ферропримесей сыпучей среды заключается в проведении многократной операции выделения из пробы сыпучей среды массы материала, содержащего ферропримеси, путем взаимного перемещения этой пробы и магнитной системы, а также в выполнении дополнительного приема магнитного воздействия на выделенную массу материала для разделения содержащихся в этом материале фракции ферропримесей и фракции вовлеченных частиц анализируемой среды. Взаимное перемещение пробы и магнитной системы осуществляется при ограничиваемой скорости, обеспечивающей эффективный захват ферропримесей из пробы. Дополнительный прием магнитного разделения фракций выделенного материала выполняется посредством мокрого магнитного разделения каждой из операционных масс выделяемого материала, осуществляя для этого их смачивание в жидкости как дисперсионной среде для получения соответствующих суспензий, подвергаемых магнитному воздействию. Скорость перемещения пробы, например, для варианта использования магнитных элементов Nd-Fe-B, устанавливается из условия: где: а - эмпирический параметр, характеризующий используемую магнитную систему (при традиционном использовании магнитных элементов Nd-Fe-B, в частности, диаметром 25 мм и толщиной 10 мм: а≅0,6 Н/мм), ρ - плотность вещества феррочастицы, x - удаленность движущейся феррочастицы от полюса магнитной системы. Технический результат - повышение точности контроля ферропримесей сыпучей среды.
Наверх