Способ определения механических микроповреждений зерна

Способ определения механических микроповреждений зерна включает покрытие зерна металлическим нанопорошком с размером частиц 5-15 нм, очистку поверхности зерна от металлического порошка, определение количества порошка, оставшегося в микротрещинах зерна, для определения степени микроповреждения зерна. Использование данного способа позволяет более точно определить степень механического повреждения семян.

 

Изобретение относится к сельскому хозяйству, в частности к способу определения механических микроповреждений зерна.

Для определения степени механических микроповреждений зерна существуют несколько способов.

Органолептический способ заключается в том, что каждое зерно просматривают под лупой. Зерно, имеющее микротравмы, выделяют. Однако мелкие микроповреждения зерна часто остаются незамеченными даже под лупой, для чего применяют окрашивание зерна анилиновыми и другими красителями, которые облегчают обнаружение микроповреждений, но затрудняют выделение поверхностных и глубоких микроповреждений. Этот недостаток окрашивания устраняют применением двойного окрашивания зерна в 0,5%-ном растворе йода, в йодистом калии, затем зерна промывают водой и для осветления поверхности зерна в течение полминуты обрабатывают 0,1%-ным раствором едкого калия и вновь промывают водой. После двойного окрашивания все зерна просматривают под лупой.

Наряду с окрашиванием используют способ обесцвечивания в кипящих растворах некоторых химических соединений (2%-ный раствор гипохлорита натрия или 2-3%-ный раствор едкого калия). После кипячения зерно промывают водой и просматривают через лупу.

Степень повреждения поверхности зерен определяют при помощи измерительного микроскопа. Каждое зерно со всех сторон рассматривают под микроскопом, устанавливают тип микроповреждений и измеряют величину нарушенной поверхности зерна, площадь которой выражают в квадратных микронах. Степень травмирования выражают в процентах поврежденной площади к суммарной площади зерна средней исходной пробы. Определение степени травмирования зерна таким способом является относительно точным, однако требуются тщательные и трудоемкие замеры, а также дополнительные расчеты. Способы окрашивания и обесцвечивания зерна перед просмотром его под лупой повышают точность определения количества микроповреждений зерна, их применяют только в специальных исследованиях при небольших объемах работ, так как они требуют большого времени на проведение анализа и специального оборудования, красящих и других химических соединений (Методика определения механических повреждений зерна машинами и влияние их на посевные качества семян. М.: Россельхозиздат, 1972).

Органолептический способ не позволяет определить степень скрытых внутренних повреждений (вмятины, ушибы, внутренние трещины), которые можно определить только косвенным путем, по величине снижения всхожести.

Биологический способ заключается в том, что о степени микроповреждений судят по лабораторной или полевой всхожести зерна. Недостатками этого способа является то, что он дает только относительное значение степени микроповрежденного зерна в образце или партии, так как снижение всхожести чаще всего может быть вызвано другими причинами (наличие беззародышевых, недоразвитых, поврежденных вредителями или болезнями зерен, условиями проращивания), а не только механическими повреждениями. К тому же этот способ не дает возможности установить типы микроповреждений отдельных зерен, а определение всхожести требует большого времени и специального оборудования (Методика определения механических повреждений зерна машинами и влияние их на посевные качества семян. М.: Россельхозиздат, 1972).

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретения является способ определения механических микроповреждений в партиях зерна при уборке урожая комбайнами (Патент РФ №2257703).

Данный способ реализован с использованием энтолейтор-стерилизатора зерна или муки, который работает следующим образом. Для определения скрытых внутренних механических микроповреждений оболочки и эндосперма берут пробу зерна влажностью 16-17% из партии массой 10,0 кг в пятикратной повторности по общеизвестным методикам. В каждой пробе отбирают пять контрольных проб, посредством которых определяют количество дробленого зерна в пробах массой 10,0 кг. Далее это зерно массой 10,0 кг пропускают через энтолейтор-стерилизатор зерна или муки (скоростной режим которого более жесткий до 3000 мин-1), работающих на устойчивом технологическом режиме. После пропуска проб зерна массой 10,0 кг через энтолейтор-стерилизатор муки (зерна) в каждой пробе отбирают пять контрольных проб, в которых определяют количество дробленого зерна по общеизвестным методикам.

Недостаток данного способа заключается в том, что он не дает точных результатов о степени механических микроповреждений зерна.

Целью изобретения является разработка способа определения степени механических микроповреждений в зерне.

Технический результат - более точное определение степени механических микроповреждений зерна.

Поставленная цель достигается тем, что в предлагаемом способе применяют цифровой аппаратный комплекс, предназначенный для точного определения степени микроповреждений зерна. Цифровой аппаратный комплекс состоит из аппарата обработки зерна металлическими нанопорошками с размером частиц 5…15 нм, модуля очистки поверхности зерна, аппарата для сканирования пробы и центрального процессорного устройства.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что степень микроповреждений зерна определяют посредством обработки его металлическим нанопорошком с размером частиц 5…15 нм, которым покрывают поверхность зерна, заполняя все его микротрещины. Пройдя через модуль очистки поверхности зерна, металлический нанопорошок с размером частиц 5…15 нм остается только в микротрещинах, а его количество, определяющее степень микроповреждений, зависит от их общего объема.

В аппарате сканирования пробы определяется количество металлического нанопорошка с размером частиц 5…15 нм в пробе зерна. Данные обрабатываются в центральном процессорном устройстве и выводятся на экран в виде показателя степени микроповреждений.

Способ осуществляется следующим образом. Для определения степени механических микроповреждений зерна берут пробу согласно известным методикам (ГОСТ 13586.3-83 Зерно. Правила приемки и методы отбора проб). Далее проба зерна обрабатывается металлическим нанопорошком с размером частиц 5…15 нм, который покрывает поверхность и заполняет все микротрещины. После этого, пройдя через модуль очистки, поверхность зерна очищается, а металлический нанопорошок с размером частиц 5…15 нм остается только в микротрещинах, причем объем оставшегося металлического нанопорошка с размером частиц 5…15 нм будет зависеть от степени микроповреждений зерна.

Объем металлического нанопорошка с размером частиц 5…15 нм, оставшегося в микротрещинах пробы зерна, определяется с помощью аппарата сканирования, полученные данные о степени микроповреждений обрабатываются в центральном процессорном устройстве, записываются в память и выводятся на экран в виде показателя степени микроповреждений.

Способ определения механических микроповреждений зерна, характеризующийся тем, что зерно покрывают металлическим нанопорошком с размером частиц 5…15 нм, очищают поверхность зерна от металлического порошка, определяют количество порошка, оставшегося в микротрещинах зерна, для определения степени микроповреждения зерна.



 

Похожие патенты:

Настоящее изобретение относится к детектору микроволнового излучения для измерения внутренней температуры образца белковосодержащего вещества, например мяса. Заявлено устройство тепловой обработки, предназначенное для тепловой обработки белковосодержащих пищевых продуктов (3) и включающее детектор (1) микроволнового излучения для измерения внутренней температуры белковосодержащего пищевого продукта (3), средство перемещения для транспортировки продуктов (3) через устройство в направлении перемещения (y-направление), так что продукты (3) проходят под неподвижным детектором (1), и средства воздействия на тепловую обработку, управляемые по сигналу детектора (1).

Изобретение относится к пищевой промышленности, в частности к кондитерской отрасли, и может быть использовано для контроля качества пастильного изделия - зефира. Способ определения предусматривает взвешивание 2,0-5,0 г образца зефира.

Изобретение относится к способам стандартизации лекарственных препаратов, биологически активных добавок, премиксов, лекарственного растительного сырья, растительных масел, масляных экстрактов, изделий пищевой, химической и косметологической отраслей промышленности по содержанию основных жирорастворимых витаминов и может быть использовано в фармацевтической, химической, косметологической и пищевой отраслях промышленности для определения подлинности и степени чистоты жирорастворимых витаминов A, D2, E и β-каротина при совместном присутствии в одно- и многокомпонентных препаратах.

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения металлов в водных средах и бензинах с помощью реагентных индикаторных трубок на основе хромогенных дисперсных кремнеземов.

Изобретение относится к чайной промышленности и может быть использовано при анализе черного и зеленого чая. Способ предусматривает экстрагирование полифенолов из измельченной пробы чая, определение концентрации полифенолов в экстракте колориметрическим методом с применением реактива Folin-Ciocalteu, причем при получении экстракта берут измельченную пробу чая массой 1,0-1,5 г и 50-75 см3 воды с температурой 95-100°С, настаивают в течение 5 мин при комнатной температуре и фильтруют, полученный экстракт разбавляют водой в 25 раз, отбирают 0,5-0,6 см3 разбавленного экстракта, добавляют к нему 3,0 см3 0,5 М раствора Na2CO3 и 0,3 см3 реактива Folin-Ciocalteu и через 2-3 мин измеряют оптическую плотность раствора при длине волны 765 нм, концентрацию полифенолов в разбавленном экстракте определяют по градуировочному графику зависимости оптической плотности раствора танина от массовой концентрации танина в растворе, количество полифенолов чая, перешедших в водный экстракт, выражают их массовой долей в анализируемой пробе чая X, % на сухое вещество, которую рассчитывают по формуле.

Изобретение относится к области пищевой промышленности и предназначено для выявления «картофельной» болезни хлеба. Способ включает выпекание хлеба и отбор проб мякиша от свежевыпеченного хлеба и хлеба, инкубированного при 37°C в течение 16-20 ч.
Изобретение относится к области анализа биологической ценности объектов пищевого и медицинского назначения, в частности животного сырья и продукции на его основе, и может быть использовано в медицине, пищевой и парфюмерной промышленности, а также сельском хозяйстве.

Изобретение относится к пищевой промышленности и может быть использовано для определения массовой доли яблочного пюре в мармеладе или желейном корпусе конфет. Для этого проводят взвешивание образца мармелада или корпуса желейной конфеты.
Предложен экспрессный, безопасный и экономичный способ определения микотоксинов в продуктах животного и растительного происхождения. Определение проводят из 2 г пробы, очищенный экстракт по QuEChERS делят на три части по 2 мл и используют в качестве диспергатора 300 мкл хлороформа в дисперсионной жидкостно-жидкостной микроэкстракции.

Изобретение относится к области экологии и предназначено для экологической проверки продуктов питания на предмет их химической безопасности для человеческого организма.

Группа изобретений относится к сельскому хозяйству и может быть использована при регулировании числа оборотов двигателя самоходной сельскохозяйственной машины.

Изобретение относится к способу управления вспомогательной системой «ассистент водителя» и может быть использовано для оптимизации параметров эффективности рабочих органов сельскохозяйственной уборочной машины.

Группа изобретений относится к сельскому хозяйству. Для координирования работ по уборке урожая определяют в реальном времени уровни наполнения одного или более зерновых бункеров одной или более уборочных машин.

Изобретение относится к области сельскохозяйственной уборочной техники. Система перемещения зерна содержит систему выгрузки, сенсорную систему, систему моделирования, дисплейную систему и контроллер.

Группа изобретений относится к сельскому хозяйству и может быть использована при уборке сельскохозяйственных культур. Сельскохозяйственная уборочная машина включает ленточную платформенную жатку и тяговую единицу, несущую ленточную платформенную жатку.

Группа изобретений относится к сельскому хозяйству. При создании банка графических данных для процесса оценки изображений отдельные изображения для банка графических данных генерируют в процессе уборки сельскохозяйственной рабочей машиной с помощью по меньшей мере одной камеры, предназначенной для сельскохозяйственной машины.

Изобретение относится к блоку индикации для отображения эксплуатационных параметров сельскохозяйственной машины. Блок индикации выполнен с возможностью изображения множества секций (701, 702, 706), с каждой из которых соотнесен эксплуатационный параметр.

Группа изобретений относится к сельскому хозяйству. Самоходная уборочная машина содержит по меньшей мере одно подвижное по высоте приемное устройство, перемещаемое с помощью по меньшей мере одного подъемного цилиндра.

Группа изобретений относится к сельскохозяйственному машиностроению. Уборочная машина содержит тяговое средство и соединенную с ним жатку, содержащую основную раму с правой и левой сторонами.

Группа изобретений относится к мониторингу уровня заполнения бункера. Система мониторинга включает датчик уровня, соединенный с бункером, для определения конкретного контрольного уровня сельскохозяйственного продукта в бункере и генерирования калибровочного показателя.

Изобретение относится к сельскому хозяйству и может быть использовано для оценки качества работы зерноуборочного комбайна. Способ включает суммирование потерь зерна, выделенного из проб на двух ограниченных участках. Первую пробу берут из зерносоломистой массы с участка на поверхности коврика, уложенного перед проходом комбайна. Вторую пробу берут из несрезанных колосков участка стерни. Длина коврика и ширина участка стерни соответствуют ширине захвата хедера комбайна, а длина участка стерни равна ширине коврика. Предложенный способ обеспечивает повышение точности и снижение трудоемкости определения механических потерь зерна зерноуборочным комбайном. 2 ил.

Способ определения механических микроповреждений зерна включает покрытие зерна металлическим нанопорошком с размером частиц 5-15 нм, очистку поверхности зерна от металлического порошка, определение количества порошка, оставшегося в микротрещинах зерна, для определения степени микроповреждения зерна. Использование данного способа позволяет более точно определить степень механического повреждения семян.

Наверх