Система восстановления состава и давления газа в лазере



Владельцы патента RU 2536095:

Федеральное Государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссиский научно-исследовательский институт экспериментальной физики -ФГУП "РФЯЦ-ВНИИЭФ" (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU)

Изобретение относится к устройствам для восстановления давления газа в лазере в процессе его работы. Система восстановления давления газа в лазере состоит из устройства регулирования подачи газа и трубопроводов. Устройство регулирования содержит баллон с газом, соединенный трубопроводом с лазером через регулятор давления, соединенный с устройством контроля давления. Внутри лазера размещены два коаксиально расположенных и заглушенных с торцов трубопровода, образующих общую полость с трубопроводом, соединяющим регулятор давления с лазером. Во внутреннем коаксиально расположенном трубопроводе выполнено отверстие, при этом наружный трубопровод содержит отверстия, выходящие в полость лазера. Технический результат заключается в обеспечении возможности повышения времени работы лазера и обеспечении требуемых энергетических и спектральных параметров лазерного излучения. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к устройствам для восстановления состава и давления смеси газов в химическом лазере в процессе его работы. Химические лазеры, работающие, например, на смеси SF6 и Н2, имеют существенный недостаток, заключающийся в изменении давления газа и соотношения компонентов рабочей смеси в процессе работы из-за протекающих химических реакций и необходимости очистки рабочей смеси от продуктов химической реакции, что приводит, по меньшей мере, к снижению мощности и времени работы лазера.

Известен активный элемент газового лазера (авт. свид. СССР №1099806, H01S 3/036, опубл. 27.04.1997), содержащий рабочий объем с основными электродами и балластный резервуар, в котором расположен дополнительный электрод, отличающийся тем, что, с целью обеспечения возможности саморегулирования давления газа, уменьшения времени выхода на рабочий режим и повышения надежности, балластный резервуар соединен с рабочим объемом со стороны основного электрода, имеющего одинаковую полярность с дополнительным электродом, дополнительный электрод подключен через стабилизатор напряжения к другому основному электроду, при этом объем балластного резервуара составляет не менее 80% объема активного элемента лазера.

Основной недостаток известной конструкции активного элемента газового лазера с рабочим объемом и балластным резервуаром заключается в том, что он малоэффективен для использования в импульсных электроразрядных газовых лазерах из-за сложности формирования электрических разрядов, достигающих нескольких сотен киловольт, в двух объемах одновременно. Данная конструкция не обеспечит равномерную подачу газа из балластного объема в корпус лазера, что приведет к уменьшению мощности генерируемого лазерного излучения. К тому же, согласно названному авторскому свидетельству, балластный резервуар должен быть достаточно объемным (не менее 80% объема активного элемента лазера), что приведет к существенному увеличению массы и габаритов всего лазера.

Наиболее близким к заявляемому устройству является система восстановления давления (патент РФ №2222849, H01S 3/00, опубл. 27.01.2004), которая содержит соединенные между собой сверхзвуковой диффузор, теплообменник и сверхзвуковой эжектор с газогенератором горячего газа и системами подачи компонент и охлаждения. Длина каналов горла сверхзвукового диффузора, образованного пилонами, сечение горла диффузора и толщина пилонов выбираются из определенных условий.

Недостатком прототипа является сложность конструкции, обусловленная необходимостью обеспечивать сверхзвуковой и дозвуковой режимы течения газа с их охлаждением и подачей газа из газогенератора. Вследствие этого названная система восстановления давления обладает низкой надежностью работы и имеет большие габаритно-массовые показатели и высокую стоимость изготовления.

Задачей, решаемой заявляемым устройством, является восстановление состава и давления смеси газов, изменяющихся вследствие протекающих химических реакций и необходимости очистки газовой смеси от продуктов химической реакции в процессе работы лазера.

Техническим результатом является повышение времени работы лазера при сохранении требуемых энергетических и спектральных параметров лазерного излучения с помощью заявляемого устройства при его минимальной массе и габаритах, простоте конструкции и малой стоимости изготовления.

Технический результат достигается тем, что в заявляемой системе, состоящей из устройства регулирования подачи газа и трубопроводов, устройство регулирования подачи газа содержит баллон с газовой смесью с заданным соотношением компонентов, соединенный трубопроводом с лазером через регулятор давления, соединенный, в свою очередь, с устройством контроля давления, внутри лазера размещены два коаксиально расположенных и заглушенных с торцов трубопровода, образующих общую полость с трубопроводом, соединяющим регулятор давления с лазером, во внутреннем коаксиально расположенном трубопроводе выполнено, по меньшей мере, одно отверстие, наружный трубопровод содержит, по меньшей мере, два выходящие в полость лазера отверстия. Отверстия в трубопроводах могут быть выполнены в виде диффузора.

Коаксиально расположенные трубопроводы могут быть соединены между собой перегородками, содержащими отверстия.

В баллоне может содержаться газовая смесь из H2 и SF6, находящаяся под давлением до 3-3,5 МПа в соотношении объемов компонентов (2…3):1 соответственно.

Устройство контроля давления может содержать, по меньшей мере, один датчик измерения давления газа в корпусе лазера.

Регулятор давления, соединенный трубопроводом с баллоном с газом и лазером, обеспечивает требуемое давление в лазере в процессе его работы путем подачи необходимого количества газа из баллона в лазер. При более интенсивной работе лазера, сопровождаемой существенной убылью газа, а значит, и резким падением давления, регулятор давления увеличит подачу газа в лазер. И, наоборот, если давление в лазере не изменяется, исполнительный механизм регулятора давления закроется, подача газа в лазер прекратится.

В зависимости от решаемых задач требуется изменение параметров лазерного излучения, регулируемых с помощью давления газа в лазере. Необходимая величина давления обеспечивается в заявляемой системе с помощью устройства контроля давления, которое соединено с регулятором давления, и имеет возможность управлять им для осуществления указанной функции. Устройство контроля давления для получения информации по величине давления в лазере может использовать сигнал от регулятора давления. Однако, учитывая относительную удаленность регулятора давления от лазера, измеряемое в нем давление будет несколько отличаться от давления в лазере. Более достоверную информацию по давлению газа в лазере устройство контроля давления может получить от содержащегося в ней датчика давления, вмонтированного непосредственно в корпус лазера.

Для устойчивой генерации лазерного излучения важно, чтобы газ по всему объему, где происходит генерация, имел как можно более равномерное значение давления. Наличие внутри лазера двух трубопроводов, размещенных коаксиально и заглушенных с торцов, образующих общую полость с трубопроводом, соединяющим регулятор давления с лазером, содержащих во внутреннем трубопроводе, по меньшей мере, одно отверстие, в наружном трубопроводе, по меньшей мере, два выходящих в полость лазера отверстия, позволяет подать газ с равномерным распределением давления по объему лазера. Это достигается тем, что газ из внутреннего трубопровода, поступая в наружный трубопровод, распространяется по всему его объему, «теряя турбулентность», а затем равномерно, без вихрей истекает из отверстий в полость лазера, обеспечивая практически одинаковое давление по всему объему области генерации лазерного излучения. Выполнение отверстий в трубопроводах в виде диффузора направлено на более равномерное распределение давления газа в лазере.

Более равномерному распределению давления газа способствуют содержащие отверстия перегородки, соединяющие коаксиально расположенные трубопроводы между собой. Это обусловлено наличием гидравлического сопротивления, которое снижает турбулентность газового потока. Кроме того, перегородки повышают прочность и жесткость конструкции, делая ее более долговечной.

В импульсно-периодических электроразрядных лазерах, осуществляющих генерацию лазерного излучения в инфракрасном диапазоне спектра, используется смесь газов H2 и SF6, находящаяся в соотношении объемов компонентов SF6:H2=(6…9):1. Так как в процессе химической реакции скорость выработки H2 превышает скорость выработки SF6, то для восстановления состава названной смеси в процессе работы лазера целесообразно использовать смесь этих же газов, находящихся в соотношении объемов компонентов (2…3):1 соответственно. С целью обеспечения работоспособности системы восстановления давления газа в лазере в диапазоне температур выше 0°C давление газовой смеси в баллоне не должно превышать 3-3,5 МПа. В противном случае при температурах, близких к 0°C, газ SF6 начинает преобразовываться в жидкое агрегатное состояние, в результате чего его уже невозможно будет подавать в лазер.

На фиг.1 приведена схема заявляемого устройства:

1 - лазер с электродами;

2 - баллон с газом;

3 - регулятор давления;

4 - устройство контроля давления;

5 - внутренний коаксиальный трубопровод;

6 - наружный коаксиальный трубопровод;

7 - отверстие во внутреннем коаксиальном трубопроводе;

8 - отверстие в наружном коаксиальном трубопроводе;

9 - датчик измерения давления;

10 - трубопровод;

11 - перегородка;

12 - отверстие в перегородке.

В качестве примера конкретного исполнения можно рассмотреть систему восстановления давления для химического электроразрядного импульсно-периодического лазера с энергией в импульсе до 50 Дж. Лазер наполнен смесью газов H2 и SF6, находящейся под давлением от 7 до 20 кПа.

В состав системы входят (см фиг.1) размещенный в непосредственной близости от лазера поз.1 баллон поз.2 со смесью газов H2 и SF6. Объем баллона равен 40 л. Давление газовой смеси в баллоне составляет 3-3,5 МПа при соотношении объемов компонентов H2 и SF6 (2…3):1 соответственно. В системе используются регулятор давления поз.3 и устройство контроля давления поз.4 голландской фирмы «Бронхорст», питающиеся от электрической сети постоянного тока напряжением 24 В. Трубопроводы поз.10, герметично соединяющие баллон с газом поз.2, регулятор давления поз.3 и лазер поз.1, выполнены из коррозионностойкой стали 12Х18Н10Т, с внутренним диаметром 8-10 мм. Внутренний коаксиальный трубопровод поз.5 имеет внутренний диаметр 6-7 мм, а наружный 10-11 мм. У наружного коаксиального трубопровода поз.6 внутренний диаметр составляет 34-35 мм, наружный 40-41 мм. И первый, и второй трубопроводы выполнены из стали 12Х18Н10Т, заглушены с торцов и образуют общую полость с трубопроводом 10. Диаметры отверстий, выполненных в указанных трубопроводах для прохода газа в полость лазера, составляют во внутреннем 5-7 мм, в наружном 18-25 мм. Следует отметить, что названные отверстия могут иметь специальный профиль, например, в виде диффузора, позволяющий более равномерно распределять газ по объему лазера поз.1. Трубопроводы поз.5 и 6 соединены перегородками поз.11, в которых выполнены отверстия поз.12. Для измерения давления в лазере используется датчик поз.9 типа АИР-10-S-ДИ, входящий в состав устройства контроля давления поз.4.

Система восстановления давления газа работает следующим образом. В зависимости от требований к параметрам лазерного излучения в устройство контроля давления поз.4 вводится то значение давления газа в лазере поз.1, которое необходимо поддерживать в процессе его работы (например, 15 кПа). Возможен ввод в устройство контроля давления поз.4 алгоритма, предусматривающего изменение давления газа в процессе работы лазера. Во время работы лазера поз.1 на электроды подаются высоковольтные импульсы электрического тока, инициирующие генерацию лазерного излучения. С датчика измерения давления поз.9 в устройство контроля давления поз.4 поступают данные по давлению газа в лазере поз.1. Как только в лазере поз.1 давление газа снизится из-за выработки газа и осаждения вредных компонентов на фильтре (на фиг.1 не показан) ниже допустимого значения, устройство контроля давления поз.4 подаст команду на срабатывание регулятора давления поз.3, в результате чего газовая смесь из баллона поз.2 в необходимом количестве начнет поступать через трубопровод поз.10 и через отверстия поз.7, 12 и 8 в полость лазера поз.1. Давление газа восстановится до нужного значения.

Такая схема подачи газа обеспечит равномерное распределение газа по всему объему межэлектродного промежутка, в результате чего произойдет надежная генерация лазерного излучения с требуемыми параметрами луча.

Масса рассматриваемой системы составляет всего 100-150 кг при массе лазера 3-4 т, а стоимость менее 1% стоимости изготовления лазера.

1. Система восстановления состава и давления газа в лазере, состоящая из устройства регулирования подачи газа и трубопроводов, отличающаяся тем, что устройство регулирования подачи газа содержит баллон с газовой смесью с заданным соотношением компонентов, соединенный трубопроводом с лазером через регулятор давления, соединенный, в свою очередь, с устройством контроля давления, внутри лазера размещены два коаксиально расположенных и заглушенных с торцов трубопровода, образующих общую полость с трубопроводом, соединяющим регулятор давления с лазером, во внутреннем коаксиально расположенном трубопроводе выполнено, по меньшей мере, одно отверстие, наружный трубопровод содержит, по меньшей мере, два выходящие в полость лазера отверстия.

2. Система по п.1, отличающаяся тем, что в баллоне содержится газовая смесь из Н2 и SF6 в соотношении объемов компонентов (2…3):1 соответственно.

3. Система по п.1, отличающаяся тем, что устройство контроля давления содержит, по меньшей мере, один датчик измерения давления газа, установленный в корпусе лазера.

4. Система по п.1, отличающаяся тем, что коаксиально расположенные трубопроводы соединены между собой перегородками, содержащими отверстия.

5. Система п.2, отличающаяся тем, что газовая смесь в баллоне находится под давлением до 3-3,5 МПа.

6. Система по п.1, отличающаяся тем, что отверстия в трубопроводах выполнены в виде диффузора.



 

Похожие патенты:

Изобретение относится к квантовой электронике, в частности к области лазерной техники, и предназначено для использования при создании высокоэффективных и компактных газовых лазеров высокой мощности для индустриального применения, например для высокоточной сварки и резки металлов.

Изобретение относится к области квантовой электроники и может быть использовано в сверхзвуковых газовых лазерах смесевого типа, в частности газодинамическом и химическом лазерах.

Изобретение относится к квантовой электронике и может быть использовано в им пул ьсно-перио дичее ких С02-лазерах. .

Изобретение относится к области квантовой электроники, в частности к конструкциям газоразрядных проточных лазеров. .
Изобретение относится к квантовой электронике и может быть использовано при создании активных элементов лазеров (АЭЛ) на парах щелочно-земельных металлов как импульсного, так и непрерывного действия.

Изобретение относится к квантовой электронике и позволяет увеличить мощность излучения лазера на парах химических элементов путем выравнивания концентрации паров химического элемента в полости катода прокачкой газовой смеси.

Изобретение относится к лазерной технике. Способ контроля герметичности отсоединенных от вакуумного поста моноблочных газовых лазеров включает использование для оценки герметичности пробного газа, выбор аналитических пар спектральных линий пробного и рабочего газов, для оценки концентрации пробного газа, построение калибровочной зависимости относительной интенсивности выбранной аналитической пары от концентрации пробного газа, регистрацию спектра излучения тлеющего разряда контролируемого лазера, определение по калибровочной зависимости концентрации пробного газа, создание замкнутого объема вокруг контролируемой оболочки лазера, заполнение указанного замкнутого объема пробным газом, накопление в контролируемом лазере пробного газа, регистрацию линий пробного газа в спектре излучения тлеющего разряда после хранения в среде пробного газа, определение по калибровочной зависимости концентрации пробного газа и оценку герметичности изделия по разности измеренных концентраций пробных газов до и после контрольного времени хранения. В качестве пробного используют газ, не являющийся рабочим газом для данного лазера или типичным примесным газом и имеющий в выбранной спектральной области линии, не перекрывающиеся линиями основных газов или молекулярных полос типичных примесных газов, обладающих высокой интенсивностью при низких концентрациях пробного газа. При этом время, в течение которого выдерживают контролируемое изделие в среде этого газа, определяют по формуле: где Δt - время выдержки в среде пробного газа, сек; Pмин - минимальное давление пробного газа, которое можно зарегистрировать, Па; V - объем газовой смеси моноблочного газового лазера, м3; Q - минимальный поток натекания, который необходимо зарегистрировать, Па·м3/сек. Технический результат заключается в сокращении времени контроля. 2 ил.

Изобретение относится к области контроля герметичности изделий. Способ масс-спектрометрического контроля герметичности моноблочных газовых лазеров включает создание замкнутых объемов с обеих сторон контролируемой оболочки лазера, откачку внутреннего объема вместе с анализатором пробного газа до высокого вакуума, накопление в контролируемой оболочке, соединенной с анализатором, пробного газа путем прекращения откачки пробного газа при откачке остальных газов и регистрацию изменения фоновой величины пика пробного газа за контрольное время Tк, выбираемое при выходе на линейный участок нарастания величины пика пробного газа, которое определяется до тех пор, пока зависимость интенсивности фонового потока пробного газа от времени при соседних измерениях не будет совпадать по крутизне и интенсивности с точностью до 10%, но не менее 3 раз. Осуществляют возобновление откачки контролируемого объема вместе с газоанализатором, подачу пробного газа во внешний замкнутый объем, выжидают время не меньше установления стационарного потока пробного газа через дефекты поверхностей, соединяемых вакуумно-плотно способом оптического контакта, накопление пробного газа в контролируемом объеме, регистрацию изменения суммарного пика давления пробного газа за контрольное время Tк путем прекращения откачки из газоанализатора пробного газа при откачке остальных газов. Оценку герметичности изделия производят по разности суммарной и фоновой величин пика пробного газа в момент времени Tк. Накопление пробного газа во внутреннем объеме контролируемой оболочки проводят с откачивающимся газоанализатором, отключенным от контролируемого объема. Регистрацию накопленного пробного газа проводят через время Tp, определяющееся конструкцией лазера, пробным газом и являющееся большим, чем время установления стационарного потока пробного газа через дефекты поверхностей, минимум в четыре раза. Технический результат заключается в повышении процента определения течей, а также в повышении точности определения их местоположения.

Изобретение относится к лазерной технике. Двухконтурный газовый лазер содержит лазерную камеру, внутри которой размещены полая кювета с окнами, прозрачными к оптическому излучению и снабженными затвором с датчиком положения и устройством охлаждения, управляемым блоком. Два контура циркуляции активной среды проходят через полость кюветы, каждый из которых включает нагнетатель с блоком управления и участки нагрева с нагревателем и датчиком температуры, подключенным к блоку управления нагревом. Один из контуров снабжен датчиком давления. Вне лазерной камеры размещены источники накачки с блоком управления, система фокусировки и доставки излучения в полость кюветы. Кювета содержит расположенные на одной оптической оси с окнами кюветы оптические средства, исполнительные механизмы с датчиками положения и юстировочный лазер. Блоки управления нагнетателями активной среды контуров, нагревом, источниками накачки излучения и охлаждением окон кюветы объединены в единую автоматизированную систему управления, в которую также входит контроллер для управления блоками в соответствии с программным обеспечением и соединенный к нему по каналу ввода/вывода через сетевой коммутатор вычислительный модуль. К контроллеру последовательно подключены модуль питания, модуль связи с блоком управления источниками накачки излучения, модуль аналогового ввода, связанный с датчиком давления и температуры, модуль релейного вывода, связанный с контактором блока управления нагревом, модуль дискретного вывода, связанный с твердотельным реле блока управления нагревом и реле юстировочного лазера, а также с контактором блока управления охлаждением окон кюветы, модуль дискретного ввода, связанный с сигнальным проводником датчиков положения, исполнительных механизмов и затвора окон кюветы. Реле протока устройства охлаждения окон кюветы соединено с модулем дискретного ввода. Модуль размножения потенциала соединен с общим проводником датчиков положения. Технический результат заключается в обеспечении возможности упрощения процедуры эксплуатации лазера. 2 н. и 2 з.п. ф-лы, 1 ил.
Наверх