Устройство для измерения динамических деформаций

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор, блок управления, аналоговую программируемую многофункциональную плату с программным обеспечением, подключенную к ЭВМ. Программируемая плата может быть подключена к ЭВМ интерфейсом USB или путем установки в слот расширения PCI или PCIExpress, а устройство может быть снабжено устройством сопряжения, при этом подключение источника питания к первому аналоговому входу платы, второго вывода усилителя к аналоговому выходу платы, входа блока управления к цифровому выходу платы, выхода усилителя к аналоговому входу платы производится через соответствующие входы и выходы устройства сопряжения, связанного интерфейсом с совместимым разъемом указанной платы. Технический результат - расширение диапазона измеряемых величин и линейности выходной характеристики, повышение надежности функционирования устройства. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения динамических деформаций в системах автоматического контроля, в цифровых приборах специального и универсального назначения.

Известно «Устройство для измерения динамических деформаций на вращающемся объекте» (Патент RU №2404410, МПК10 G01D 5/12, опубл. 20.11.2010, Бюлл. №32), которое содержит закрепленные на различных элементах конструкции ротора первичные преобразователи, усилитель, фильтр нижних частот, селектор, микроконтроллер с блоком питания, аналого-цифровой преобразователь (АЦП), цифроаналоговый преобразователь (ЦАП), подвижный и неподвижный инфракрасные приемопередатчики, персональный компьютер, связанный при помощи преобразователя интерфейса с неподвижным приемопередатчиком. Селектор непосредственно подсоединен к первичным преобразователям с возможностью выбора измерительного канала и к управляемому усилителю, подключенному к источнику тока для усиления с него напряжения, усилитель через фильтр нижних частот подключен к АЦП. Устройство для измерения динамических деформаций на вращающемся объекте дополнительно снабжено ЦАП, подключенным к микроконтроллеру и усилителю.

Недостатком данного устройства является невысокий частотный диапазон измеряемых величин, ограничиваемый приемопередатчиками, невысокая частота дискретизации, сложность архитектуры, включающей большое количество дискретных элементов и узлов, выполняющих основные функции преобразования.

Наиболее близким к изобретению по технической сущности и достигаемому техническому результату является измерительный комплекс для измерения напряженно-деформированного состояния состава и пути (БВК-6) (Ж. «Датчики и системы», 2011 г., №5, стр.20-24, «Измерительный преобразователь «одиночного» тензодатчика с компенсационным тензорезистором»), содержащий измерительные тензодатчики (тензорезисторы), закрепленные на различных элементах конструкции объекта, компенсационный тензорезистор, опорный резистор с заземленным выводом, дифференциальный усилитель, стабилизированный источник тока, измерительные усилители, электронно-вычислительную машину (ЭВМ) с программным обеспечением, линии питания и информационные линии. Данное устройство выбрано в качестве прототипа.

Недостатками данного устройства являются: невозможность функционирования комплекса при размыкании цепи питания одного из датчиков; высокие требования к стабильности источника питания; параллельный опрос датчиков, который приводит к увеличению числа усилителей и каналов регистратора и увеличивает стоимость данного устройства.

Заявляемое изобретение направлено на решение технической задачи создания многоканального устройства измерения динамических деформаций.

Технический результат заявляемого изобретения заключается в обеспечении динамического режима работы устройства в широком диапазоне измеряемых величин и линейности выходной характеристики, в надежном функционировании многоканального устройства вне зависимости от длины линии связи, в возможности использования одного регистрирующего канала аналоговой программируемой многофункциональной платы.

Технический результат достигается тем, что заявляемое устройство для измерения динамических деформаций, содержащее измерительные тензорезисторы, опорный резистор, усилитель, электронно-вычислительную машину (ЭВМ) с программным обеспечением, в отличие от прототипа снабжено дополнительными опорными резисторами, источником постоянного напряжения, эталонным резистором, коммутатором, блоком управления, источником напряжения, аналоговой программируемой многофункциональной платой (АПМП) с программным обеспечением. Положительный вывод источника напряжения соединен с первыми выводами опорных резисторов и с первым аналоговым входом АПМП. Второй вывод одного опорного резистора подключен к первому выводу эталонного резистора, вторые выводы остальных опорных резисторов подключены к первым выводам измерительных тензорезисторов, отрицательный вывод источника питания. Вторые выводы эталонного резистора и измерительных тензорезисторов заземлены, вторые выводы опорных резисторов соединены с отдельными входами коммутатора. Выход блока управления подключен к одному или нескольким управляющим входам коммутатора, вход блока управления для подачи управляющих сигналов подключен к цифровому выходу АПМП, выход коммутатора соединен с первым входом усилителя, второй вход усилителя подключен к аналоговому выходу АПМП, выход усилителя для регистрации сигнала подключен ко второму аналоговому входу АПМП.

В заявляемом устройстве АПМП может быть подключена к ЭВМ как интерфейсом USB, так и путем установки АПМП в слот расширения PCI или PCIExpress. При установке АПМП в слот расширения положительный вывод источника питания подключен к первому аналоговому входу АПМП, второй вход усилителя подключен к аналоговому выходу АПМП, вход блока управления подключен к цифровому выходу АПМП, выход усилителя подключен ко второму аналоговому входу АПМП через соответствующие входы и выходы устройства сопряжения, подключенного интерфейсом к совместимому разъему указанной АПМП.

Использование АПМП позволяет существенно упростить схему устройства за счет использования измерительных и управляющих каналов, погрешность которых определяется погрешностью АПМП.

За счет подключения первого выхода источника питания к первому аналоговому входу АПМП обеспечивается контроль платой величины напряжения внешнего источника питания, что позволяет повысить точность измерений и не накладывает ограничений по стабильности на внешний источник питания.

Снабжение устройства аналоговой программируемой многофункциональной платой с программным обеспечением обеспечивает широкий диапазон измеряемых величин на высоких частотах, а также использование ЭВМ с программным обеспечением позволяет вести измерение не только в динамическом, но и в квазистатическом режимах.

Синхронизация всех элементов измерительной схемы за счет использования АПМП позволяет производить регистрацию сигналов с тензодатчиков с высокой точностью по временным параметрам.

Соединение положительного вывода источника напряжения с первыми выводами опорных резисторов и с первым аналоговым входом АПМП, подключение второго вывода одного опорного резистора к первому выводу эталонного резистора, вторых выводов остальных опорных резисторов к первым выводам измерительных тензорезисторов, вторых выводов опорных резисторов к отдельному входу коммутатора, выхода блока управления к одному или нескольким управляющим входам коммутатора, входа блока управления к цифровому выходу АПМП, выхода коммутатора к первому входу усилителя, второго входа усилителя к аналоговому выходу АПМП, выхода усилителя ко второму аналоговому входу АПМП, подключенной к ЭВМ, позволяет осуществлять последовательный опрос измерительных тензорезисторов, упростить схему и снизить стоимость устройства.

Подключение остальных опорных резисторов последовательно с измерительными тензорезисторами (вторые выводы остальных опорных резисторов соединены с первыми выводами измерительных тензорезисторов) обеспечивает линейность выходной характеристики.

Снабжение заявляемого устройства эталонным резистором обеспечивает устройство меткой для определения нумерации каналов и используется для учета потерь, обусловленных сопротивлением линии, что повышает точность измерений.

Использование источника постоянного напряжения обеспечивает надежность функционирования заявляемого устройства, т.к. обрыв любого из датчиков не влияет на работу измерительной цепи.

Кроме того, в состав заявляемого устройства, снабженного программным обеспечением, входит усилитель, который повышает чувствительность, смещение усилителя регулируется за счет АПМП, что также повышает точность измерений.

Сущность данного изобретения поясняется чертежами.

На фиг.1 изображена схема устройства для измерения динамических деформаций с АПМП, подключенной к ЭВМ интерфейсом USB; на фиг.2 изображена схема заявляемого устройства с устройством сопряжения, с АПМП, установленной в слот расширения PCI или PCIExpress в системном блоке ЭВМ.

Заявляемое устройство для измерения динамических деформаций содержит измерительные тензорезисторы 11-1n с заземленными вторыми выводами, идентичные опорные резисторы 20-2n, усилитель 3, электронно-вычислительную машину (ЭВМ) 4 с программным обеспечением, эталонный резистор 5, коммутатор 6, блок управления 7, аналоговую программируемую многофункциональную плату (АПМП) 8 с программным обеспечением, источник напряжения (не показан).

Первые выводы опорных резисторов 20-2n подключены к положительному выводу источника напряжения, их вторые выводы и группа выходов блока управления подключены к отдельным входам коммутатора 6. Второй вывод одного опорного резистора 20 подключен к первому выводу эталонного резистора, вторые выводы остальных опорных резисторов подключены к первым выводам измерительных тензорезисторов 11-1n. Положительный вывод источника напряжения соединен с первым аналоговым входом АН АПМП 8.

Группа выходов блока управления 7 подключена к отдельному входу коммутатора 6, вход блока управления 7 для подачи управляющих сигналов подключен к цифровому выходу DO АПМП 8, выход коммутатора 6 соединен с первым входом усилителя 3, второй вход усилителя 3 подключен к аналоговому выходу АО АПМП 8. Выход усилителя 3 для регистрации сигнала подключен ко второму аналоговому входу AI2 АПМП 8, подключенной к ЭВМ 4, в частности, интерфейсом USB 9.

При подключении АПМП 8 к ЭВМ 4 путем установки в слот расширения PCI или PCIExpress в системном блоке ЭВМ 4, заявляемое устройство снабжено устройством сопряжения 10, источник питания подключен к первому аналоговому входу АПМП, второй вход усилителя 3 подключен к аналоговому выходу АПМП, вход блока управления 7 подключен к цифровому выходу АПМП, выход усилителя подключен ко второму аналоговому входу АПМП через соответствующие входы и выходы устройства сопряжения 10, связанного интерфейсом 9 с совместимым разъемом АПМП 8.

Аналоговая программируемая многофункциональная плата 8, например, PCI-6255 фирмы National Instruments, работает с частотой не ниже 1 МГц в диапазоне ±10 В.

Заявляемое устройство для измерения динамических деформаций работает следующим образом.

Измерительные тензорезисторы 11-1n закрепляют на различных элементах конструкции объекта (не показано).

В процессе работы заявляемого устройства программное обеспечение ЭВМ 4 и АПМП 8 обеспечивает начальный контроль состояния измерительных тензорезисторов 11-1n с учетом сопротивления линии, осуществляет определение очередности каналов и первичный перевод зарегистрированных сигналов в величину деформации.

Коммутатор 6, управляемый АПМП 8 и ЭВМ 4 при помощи установленного программного обеспечения, последовательно переключает каналы, на которых находятся измерительные тензорезисторы 11-1n, с эталонным резистором 5 и опорные резисторы 20-2n, при этом напряжение снимается с выхода коммутатора 6, усиливается и подается через АПМП 8 на ЭВМ 4. Напряжение смещения усилителя 6 регулируется АПМП 8 за счет программного обеспечения, что повышает точность измерений. Полученное напряжение на втором аналоговом входе AI2 АПМП 8 пропорционально изменению сопротивления измерительного тензорезистора 1n, подключенного в данный момент. Нумерацию каналов и учет потерь, обусловленных сопротивлением проводов, осуществляют при помощи эталонного резистора 5, используемого в качестве метки, что повышает точность измерений.

Расчет деформации ΔEn в месте установки тензорезистора 1n осуществляется ЭВМ 4 по следующей формуле:

Δ E n = ( Δ R n R 0 n ) 1 k n ,

где R0n - начальное сопротивление измерительного тензорезистора 1n;

kn - чувствительность измерительного тензорезистора 1n;

ΔRn - изменение сопротивления измерительного тензорезистора 1n.

Изменение сопротивления определяется по формуле:

ΔRn=Rdn-R0n, где

Rdn - вычисленное по нижеприведенной формуле значение сопротивления измерительного тензорезистора 1n:

R d n = U d n U n U d n R 0 R p ,

R p = U d э U n U d э R 0 R э ,

U э = U 0 d э k u + U s m ,

U d n = U 0 d n k u + U s m , где

Rdn - вычисленное значение сопротивления измерительного тензорезистора 1n;

Udn - вычисленное значение напряжения на выходе коммутатора при опросе измерительного тензорезистора 1n;

R0 - номинальное сопротивление опорных резисторов 20-2n;

Rp - сопротивление потерь, обусловленных сопротивлением линии;

U - вычисленное значение напряжения на выходе коммутатора при опросе эталонного резистора;

Un - напряжение питания, измеренное на первом аналоговом входе AI1 АПМП;

Rэ - номинальное значение сопротивления эталонного резистора;

U0dn - напряжение, измеренное на втором аналоговом входе AI2 АПМП при опросе измерительного тензорезистора 1n;

U0dэ - напряжение, измеренное на втором аналоговом входе AI2 АПМП при опросе эталонного резистора;

ku - коэффициент усиления усилителя;

Usm - напряжение смещения, подаваемое АПМП на второй вход усилителя, заданное программным обеспечением.

Таким образом, обеспечивается достижение технического результата: динамический режим работы устройства в широком диапазоне измеряемых величин и линейность его выходной характеристики, надежность функционирования (выход из строя одного из датчиков не будет влиять на работу всего устройства).

1. Устройство для измерения динамических деформаций, содержащее измерительные тензорезисторы, опорный резистор, усилитель, электронно-вычислительную машину (ЭВМ) с программным обеспечением, отличающееся тем, что снабжено дополнительными опорными резисторами, источником постоянного напряжения, эталонным резистором, коммутатором, блоком управления, аналоговой программируемой многофункциональной платой (АПМП) с программным обеспечением, подключенной к ЭВМ, при этом положительный вывод источника напряжения соединен с первыми выводами опорных резисторов и с первым аналоговым входом АПМП, второй вывод одного опорного резистора подключен к первому выводу эталонного резистора, вторые выводы остальных опорных резисторов подключены к первым выводам измерительных тензорезисторов, отрицательный вывод источника питания, вторые выводы эталонного резистора и измерительных тензорезисторов заземлены, при этом вторые выводы опорных резисторов соединены с отдельными входами коммутатора, выход блока управления подключен к одному или нескольким управляющим входам коммутатора, вход блока управления для подачи управляющих сигналов подключен к цифровому выходу АПМП, выход коммутатора соединен с первым входом усилителя, второй вход усилителя подключен к аналоговому выходу АПМП, выход усилителя для регистрации сигнала подключен ко второму аналоговому входу АПМП.

2. Устройство по п.1, отличающееся тем, что АПМП подключена к ЭВМ интерфейсом USB.

3. Устройство по п.1, отличающееся тем, что снабжено устройством сопряжения, АПМП подключена к ЭВМ путем установки в слот расширения PCI или PCIExpress, при этом положительный вывод источника питания подключен к первому аналоговому входу АПМП, второй вход усилителя подключен к аналоговому выходу АПМП, вход блока управления подключен к цифровому выходу АПМП, выход усилителя подключен ко второму аналоговому входу АПМП через соответствующие входы и выходы устройства сопряжения, подключенного интерфейсом к совместимому разъему указанной АПМП.



 

Похожие патенты:

Изобретение относится к способу измерения прогиба металлических, деревянных и других по материалу балок при поперечном изгибе от эксплуатационной нагрузки и других причин в процессе эксплуатации балки.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов. Способ измерения деформаций из немагнитных материалов характеризуется тем, что на поверхности или внутри объекта размещают постоянные дипольные источники магнитного поля, например на основе магнитов из сплава неодим-железо-бор, при этом для вычисления параметров линейной (вдоль прямой линии) деформации используют как минимум два магнита не лежащие в одной точке, для вычисления параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для вычисления параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости.

Изобретение относится к измерительной технике, а именно к способам измерения деформаций и напряжений на поверхности деталей машин, подвергающихся циклическому нагружению.

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к измерительной технике. Способ заключается в том, что определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к измерительной технике. Способ заключается в том, что определяют ТКЧ мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и при температуре t+, и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи .

Изобретение относится к измерительной технике и может быть использовано в прочностных испытаниях для определения напряженного состояния конструкций и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.).

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. В диагональ питания мостовой цепи устанавливают термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαm устанавливают перемычку. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. На основе проведенных измерений вычисляют ТКЧ тензорезисторов мостовой цепи α ∂  изм + и α ∂  изм − при температурах t+ и t- соответственно, а также нелинейность ТКЧ тензорезисторов мостовой цепи ( Δ α ∂  изм = α ∂  изм + − α ∂  изм − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Ri=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе проведенных измерений вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Ri и снимают перемычку с резистора Rαm. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе выполненных измерений вычисляют ТКС технологического термозависимого резистора Rαm при температурах t+ и t-. Если ТКЧ тензорезисторов мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂ с использованием полученных значений ТКЧ тензорезисторов мостовой цепи, ТКС входного сопротивления и ТКС технологического термозависимого резистора. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности температурной характеристики выходного сигнала датчика с использованием широко распространенной измерительной аппаратуры. 1 з.п. ф-лы

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαm устанавливают перемычку. Измеряют выходное сопротивление мостовой цепи Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. Повторяют измерения после подключения датчика к низкоомной нагрузке R н ' = R в ы х . На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКЧ мостовой цепи α д   и з м + , и α д   и з м − и ТКС выходного сопротивления при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α д   и з м = α д   и з м + − α д   и з м − ). Снимают перемычку с резистора Rαm. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКС термозависимого резистора Rαm при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования резистора Rαm. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат: повышение точности компенсации. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. В диагональ питания мостовой цепи устанавливают термозависимый технологический резистор Rαт, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαт устанавливают перемычку. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. На основе проведенных измерений вычисляют ТКЧ тензорезисторов мостовой цепи α д   и з м + и α д   и з м − при температурах t+ и t- соответственно, а также нелинейность ТКЧ тензорезисторов мостовой цепи ( Δ α д   и з м = α д   и з м + − α д   и з м − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Ri=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе проведенных измерений вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Ri и снимают перемычку с резистора Rαт. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе выполненных измерений вычисляют ТКС технологического термозависимого резистора Rαт при температурах t+ и t-. Если ТКЧ тензорезисторов мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора Rш с использованием полученных значений ТКЧ тензорезисторов мостовой цепи, ТКС входного сопротивления и ТКС резистора Rαт. Резистор Rαт заменяют резистором Rα путем частичного задействования. Шунтируют входное сопротивление мостовой цепи термонезависимым резистором Rш. Технический результат заключается в повышении точности компенсации мультипликативной температурной характеристики выходного сигнала датчика. 1 з.п. ф-лы.

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор Rαт, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαт устанавливают перемычку. Измеряют выходное сопротивление мостовой цепи Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. Повторяют измерения после подключения датчика к низкоомной нагрузке R н ' = R в ы х . На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКЧ мостовой цепи α д  изм + и α д  изм − и ТКС выходного сопротивления при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α д  изм = α д  изм + − α д  изм − ). Снимают перемычку с резистора Rαт. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКС термозависимого резистора Rαт при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора Rш. Технологический термозависимый резистор Rαт заменяют резистором Rα путем частичного задействования резистора Rαт. Шунтируют выходное сопротивление мостовой цепи термонезависимым резистором Rш. Технический результат: повышение точности компенсации. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций в условиях однородных деформационных полей в процессе прочностных испытаний. Сущность: датчик включает в себя носитель 1 из тонкой металлической фольги. В носителе 1 посредством прямоугольных отверстий 2 образованы две тонкие нити 3 и площадка 4 между ними. На носитель 1 осаждена в вакууме тонкая разделительная диэлектрическая пленка 5, которая повторяет форму носителя 1. На диэлектрическую пленку 5 осаждены тензочувствительные элементы 6, 7 из моносульфида самария, которые соединены в мост Уитстона, и металлические контактные площадки 8, которые являются входными и выходными контактами датчика. В носителе 1 могут быть дополнительно выполнены две сквозные прорези, каждая из которых начинается от середины соответствующего крайнего прямоугольного отверстия 2 и перпендикулярна ему, образуя площадки, на которых выполнены металлические контактные площадки. Технический результат: увеличение выходного сигнала, температурная независимость. 1 з.п. ф-лы, 4 ил.

Способ определения напряжений в конструкции без снятия статических нагрузок может быть использован для оценки прочности конструкции и прогнозирования ее несущей способности. Измерения поверхностных деформаций ε производят в контролируемых точках на конструкции, находящейся в напряженно-деформированном состоянии. Контролируемые точки выбирают таким образом, что они имеют возможность дополнительного нагружения независимо от конструкции. В контролируемых точках создают с помощью известной внешней силы P дополнительные напряжения, совпадающие по направлению с измеряемыми, ступенчато увеличивают деформацию на Δε, измеряют изменение внешней силы ΔPi. Нагружение увеличивают до тех пор, пока K = | Δ P i + 1 Δ P i − 1 | * Δ ε не увеличится до значения, соответствующего нормированному отклонению от закона Гука механической характеристики материала конструкции. Деформацию конструкции определяют, вычитая из известного значения деформации для заранее известной механической характеристики материала конструкции измеренную дополнительную деформацию. Техническим результатом изобретения является упрощение процесса измерения и ненарушение целостности исследуемой конструкции. 2 з.п. ф-лы, 3 ил.

Использование: для определения параметров высокоскоростного движения метательных тел, например измерения перегрузок, скорости соударения, и для исследования параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность изобретения заключается в том, что при регистрации электромагнитного поля, возникающего при динамическом деформировании тел, полезный сигнал регистрируют, используя исследуемый образец, подключенный через коаксиальное соединение к устройству измерения, при этом исследуемый образец является первичным физическим преобразователем ударного воздействия в полезный сигнал. Технический результат: обеспечение возможности прямого измерения без больших инструментальных и статистических погрешностей. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике. Датчик подключают к нагрузке Rн>500 кОм, измеряют начальный разбаланс и выходной сигнал при нормальной температуре t0, а также температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазона температур. Вычисляют ТКЧ мостовой цепи α ∂ o + и α ∂ o − при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α ∂ o = α ∂ o + − α ∂ o − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Rm=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал при температурах t0, t+ и t-. Вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Rm. Если α ∂ o + и Δα∂o принадлежат области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то вычисляют номинал резистора Ri. В диагональ питания мостовой цепи включают термонезависимый резистор Ri с вычисленным номиналом. Измеряют выходное сопротивление мостовой цепи датчика Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα, устанавливают в выходную диагональ мостовой цепи. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Повторяют измерения после шунтирования резистора Rαm термонезависимым резистором Rш1=1,25·Rαm. Повторяют измерения после замены резистора Rш1 термонезависимым резистором Rш2=0,25·Rαm. Вычисляют ТКЧ мостовой цепи после преобразования нелинейности ТКЧ мостовой цепи α ∂ o ' + и α ∂ o ' − , а также ТКС выходного сопротивления и ТКС резистора Rαm при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи Δ α ∂ o ' = α ∂ o ' + − α ∂ o u ' − . Если α ∂ o ' + и Δ α ∂ o ' принадлежат области компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования резистора Rαm. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности. 1 з.п. ф-лы, 1 табл.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. Датчик подключают к нагрузке Rн>500 кОм, измеряют начальный разбаланс и выходной сигнал при нормальной температуре t0, а также температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазона температур. Вычисляют ТКЧ мостовой цепи , и при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи. Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Rmвх=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Rmвх. Термозависимый технологический резистор Rαmвх, номинал которого больше значений компенсационного термозависимого резистора Raex, устанавливают в диагональ питания. Измеряют начальный разбаланс и выходной сигнал при температурах t0, t+ и t-. Вычисляют ТКС технологического термозависимого резистора Rαmвх при температурах t+ и t-. Если и принадлежат области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то вычисляют номинал резистора Rαвх. Технологический термозависимый резистор Rαmвх заменяют резистором Rαвх путем частичного задействования резистора Rαmвх. Измеряют выходное сопротивление мостовой цепи датчика Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Термозависимый технологический резистор Rαmвых, номинал которого больше возможных значений компенсационного термозависимого резистора Rαвых, устанавливают в выходную диагональ мостовой цепи соответственно. При температурах t0, t+ и t- измеряют значения как начального разбаланса, так и значения выходного сигнала датчика при номинальном значении измеряемого параметра. В выходную диагональ последовательно с нагрузкой включают термонезависимый резистор Rm1=Rвых, повторяют измерения значений начального разбаланса и выходного сигнала датчика. Резистор Rm1 заменяют резистором Rm2=2·Rвых, повторяют измерения значений начального разбаланса и выходного сигнала датчика. Отключают резистор Rm2, вычисляют значения ТКС выходного сопротивления, резистора, ТКЧ мостовой цепи после преобразования нелинейности ТКЧ мостовой цепи и , а также нелинейность ТКЧ мостовой цепи . Если и принадлежат области компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, то вычисляют номинал термозависимого резистора Rαвых и термонезависимого резистора R∂. Технологический термозависимый резистор Rαmвых заменяют резистором Rαвых путем частичного задействования резистора Rαmвых. Шунтируют резистор Rαвых термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности. 1 з.п. ф-лы, 1 табл.

Изобретение относится к измерительной технике. Сущность: датчик подключают к высокоомной нагрузке RH>500 кОм, измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазона температур. Вычисляют ТКЧ мостовой цепи и при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый технологический резистор Rm=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Rm. Термозависимый технологический резистор Rαmвх, номинал которого больше возможных значений компенсационного термозависимого резистора Rαвх, устанавливают в диагональ питания мостовой цепи. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Вычисляют ТКС технологического термозависимого резистора Rαmвх при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то принимают номинал термонезависимого резистора Ri равным 0,1·Rвх, вычисляют номиналы резисторов Rαвх и Rдвх. Технологический термозависимый резистор Rαmвх заменяют резистором Rαвх путем частичного задействования резистора Rαmвх. Входное сопротивление мостовой цепи шунтируют резисторами Rαвх и Rдвх, соединенными друг с другом последовательно. В диагональ питания мостовой цепи включают резистор Ri=0,1·Rвх. Измеряют выходное сопротивление мостовой цепи датчика Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвыx. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Повторяют измерения после шунтирования выходного сопротивления мостовой цепи термонезависимыми резисторами Rш=Rвых. Вычисляют ТКЧ мостовой цепи после преобразования нелинейности ТКЧ мостовой цепи и а также ТКС выходного сопротивления мостовой цепи при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи Термозависимый технологический резистор, номинал которого больше возможных значений компенсационного термозависимого резистора Rαвых, устанавливают в выходную диагональ мостовой цепи. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Вычисляют ТКС термозависимого резистора Rαmвых при температурах t+ и t-. Если и принадлежат области компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, то вычисляют номинал термозависимого резистора Rαвых и термонезависимого резистора Rдвых. Технологический термозависимый резистор Rαmвых заменяют резистором Rαвых путем частичного задействования резистора Rαmвых. Шунтируют резистор Rαвыx термонезависимым резистором Rдвых. Технический результат: повышение точности компенсации. 1 з.п. ф-лы, 1 табл.

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор, блок управления, аналоговую программируемую многофункциональную плату с программным обеспечением, подключенную к ЭВМ. Программируемая плата может быть подключена к ЭВМ интерфейсом USB или путем установки в слот расширения PCI или PCIExpress, а устройство может быть снабжено устройством сопряжения, при этом подключение источника питания к первому аналоговому входу платы, второго вывода усилителя к аналоговому выходу платы, входа блока управления к цифровому выходу платы, выхода усилителя к аналоговому входу платы производится через соответствующие входы и выходы устройства сопряжения, связанного интерфейсом с совместимым разъемом указанной платы. Технический результат - расширение диапазона измеряемых величин и линейности выходной характеристики, повышение надежности функционирования устройства. 2 з.п. ф-лы, 2 ил.

Наверх