Пирометрический датчик координат очага возгорания с полевой диафрагмой


 


Владельцы патента RU 2536355:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) (RU)

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации и взрывоподавления, и предназначено для обнаружения очага возгорания в газодисперсных средах по излучению источника повышенной температуры и определения двумерных координат очага возгорания по тепловому излучению. Техническим результатом изобретения является: обеспечение возможности регистрации излучения очагов возгорания, смещенных относительно оптической оси датчика; повышение вероятности правильного обнаружения очага возгорания; повышение быстродействия датчика и надежности определения координат очага возгорания; повышение чувствительности, надежности и помехозащищенности датчика, что позволяет повысить эффективность системы пожаротушения или взрывоподавления. Пирометрический датчик содержит последовательно установленные и оптически связанные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания и приемники излучения, дополнительно содержит полевую диафрагму с изменяемым законом распределения прозрачных и непрозрачных участков, установленную после разделителя светового потока в одном из оптических каналов, исполнительная схема дополнительно содержит блок управления диафрагмой, а в качестве приемников излучения использованы одноэлементные некоординатные приемники излучения. 1 ил.

 

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации и взрывоподавления, и предназначено для обнаружения очага возгорания в газодисперсных средах по излучению источника повышенной температуры и определения двумерных координат очага возгорания по тепловому излучению. Пирометрический датчик в составе активной системы пожаротушения или взрывоподавления может использоваться во всех областях производства, опасных по пожарам и взрывам газодисперсной среды. К таким производствам относятся угледобывающее, мукомольное, деревообрабатывающее, лакокрасочное, металлургическое, нефтегазовое.

В связи с широким распространением потенциально опасных производств возникает необходимость в разработке датчиков, способных регистрировать очаг возгорания по его излучению на ранней стадии, который находится в любой зоне углового поля датчика.

Известны фотоэлектронные сканирующие системы, осуществляющие сканирование изображений в пространстве [1]. Объектив приемной оптической системы строит изображение всего поля обзора в плоскости чувствительного слоя приемника излучения фотоэлектронной сканирующей системы.

Недостатками указанных сканирующих систем являются невысокое быстродействие, связанное с продолжительным временем считывания электрического сигнала с координатного фотоэлектрического приемника излучения, а также влияние оптических характеристик среды на правильность определения яркости (температуры) объекта. Это делает невозможным использование подобных датчиков в системах взрывоподавления в газодисперсных средах.

Известен пирометрический датчик координат очага возгорания [2, прототип], в котором перечисленные недостатки устранены. Датчик содержит последовательно установленные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания, однокоординатные приемники излучения (ОПИ), расположенные перпендикулярно друг другу и оптической оси датчика, причем выходы приемников соединены с входом исполнительной схемы, но и у этого датчика недостатком является то, что изображение от точечного излучателя (например, возгорания на начальной стадии), смещенного относительно оптической оси датчика, не попадает (не проецируется) на один или оба ОПИ, что приводит к пропуску начального момента возгорания.

Известен пирометрический датчик координат очага возгорания с цилиндрическими линзами [3], построенный на основе ОПИ. Недостатком этого датчика является то, что в результате внесения в оптическую систему двух цилиндрических линз уровень поступающей на ОПИ энергии, при определении начальной стадии возгорания, сопоставим с собственными шумами приемника, что значительно снижает вероятность правильного обнаружения сигнала и может привести к пропуску факта возгорания или к обнаружению возгорания через неприемлемо длительный промежуток времени.

Кроме того, прототип и аналоги обладают рядом недостатков, обусловленных использованием в них многоэлементных ОПИ [1]. При этом использование многоэлементных ОПИ с полной электрической развязкой отдельных чувствительных элементов приводит к возникновению следующих недостатков датчика:

- низкая разрешающая способность, вызванная значительными габаритными размерами отдельных элементов ОПИ;

- снижение надежности датчика из-за большого количества независимых элементов ОПИ;

- необходимость введения поправочных коэффициентов для обеспечения идентичности параметров отдельных элементов ОПИ.

Использование многоэлементных ОПИ с внутренними электрическими связями приводит к возникновению следующих недостатков датчика:

- снижение достоверности работы датчика вследствие необходимости учета взаимовлияния и разброса параметров отдельных элементов ОПИ, наличия коммутационных переходных процессов и утечек по токоведущим шинам и подложкам, а также влияния специфических шумов ОПИ;

- снижение надежности датчика вследствие выхода из строя всего ОПИ в случае потери чувствительности одного из элементов ОПИ;

- ограничение на выбор алгоритма опроса ОПИ вследствие невозможности произвольной выборки сигнала с любого элемента.

Суть предлагаемого технического решения заключается во введении в пирометрический датчик координат очага возгорания полевой диафрагмы с измененяемым законом распределения прозрачных и непрозрачных участков, расположенной после разделителя светового потока в одном из оптических каналов. Полевая диафрагма представляет собой совокупность независимо управляемых устройств, обеспечивающих временное перекрытие и последующее пропускание светового потока в течение определенного промежутка времени - оптических затворов.

Предлагаемый пирометрический датчик координат очага возгорания с полевой диафрагмой представлен на схеме (фиг.1).

Устройство содержит оптическую систему 1, предназначенную для фокусировки светового потока на чувствительных окнах приемников излучения, разделитель светового потока 2, полевую диафрагму с изменяемым законом распределения прозрачных и непрозрачных участков 3, светофильтры 4 и 4' с разными спектрами пропускания, одноэлементные некоординатные приемники излучения 5, исполнительную схему 6, содержащую блок управления диафрагмой (БУД), блок вычислений (БВ) и блок формирования электроимпульсов (БФЭ).

Пирометрический датчик координат очага возгорания с полевой диафрагмой работает следующим образом.

Излучение контролируемой области собирается при помощи оптической системы 1 и разделяется разделителем светового потока 2 на два потока (оптических канала). Каждый из этих потоков фокусируется на одноэлементных некоординатных приемниках излучения, одновременно происходит выделение узкого спектра энергии светофильтрами 4 и 4' для обеспечения возможности определения температуры очага возгорания методом спектрального отношения. Определение координат очага возгорания осуществляется при помощи полевой диафрагмы 3, установленной в одном из оптических каналов, каждый оптический затвор которой, по определенному алгоритму, пропускает или перекрывает световой поток. Координаты источника излучения определяются по номеру оптического затвора полевой диафрагмы, при открытии которого сигнал на выходе приемника излучения достигает максимального значения.

Сигналы с некоординатных одноэлементных приемников излучения подаются в исполнительную схему 6 на блок вычислений (БВ), который преобразует их в цифровые значения, выполняет программную фильтрацию помех, вычисляет координаты очага возгорания, вычисляет отношение электрических сигналов с одноэлементных некоординатных приемников излучения и сравнивает полученное отношение с заранее заданным значением для принятия решения о возникновении (или отсутствии) возгорания. Блок управления диафрагмой (БУД) осуществляет управление оптическими затворами полевой диафрагмы в соответствии с алгоритмом, заданным блоком вычислений (БВ). В случае возникновения возгорания исполнительная схема 6 формирует управляющий сигнал на соответствующее взрывоподавляющее устройство при помощи блока формирования электроимпульсов (БФЭ).

Примером оптического затвора, удовлетворяющего требованию по быстродействию, является жидкокристаллический оптический затвор, построенный на основе двойной пи-ячейки. Период срабатывания двойной пи-ячейки (время открытия, время в открытом состоянии и время закрытия) составляет 0,25 мс [4]. Согласно техническим требованиям, предъявляемым к оптико-электронному датчику обнаружения очага возгорания на ранней стадии, время принятия решения датчиком о факте возникновения (отсутствия) возгорания не должно превышать 3 мс [5, 6]. Таким образом, время опроса полевой диафрагмы, составленной из девяти независимых оптических затворов, построенных на основе двойной пи-ячейки, удовлетворяет техническому требованию по быстродействию.

Введение полевой диафрагмы и блока управления диафрагмой обеспечивает избирательное пропускание излучения заданных участков контролируемого объекта (сканирование объекта). В результате сканирования:

- появляется возможность регистрации координат излучения очагов возгорания, смещенных относительно оптической оси датчика, некоординатными приемниками излучения, что повышает вероятность правильного обнаружения очага возгорания на ранней стадии и его местоположения;

- повышается быстродействие датчика и надежность определения координат очага возгорания за счет использования полевой диафрагмы, позволяющей осуществлять произвольную выборку сигнала.

Применение одноэлементных некоординатных приемников излучения обладает рядом неоспоримых преимуществ, а именно повышает чувствительность, надежность и помехозащищенность датчика.

Отсутствие влияния промежуточной среды (таких ее характеристик, как влажность и запыленность) и расстояния до очага возгорания на достоверность срабатывания датчика позволят использовать прибор в средах, характеризующихся сложными оптическими условиями.

Пирометрический датчик координат очага возгорания с полевой диафрагмой успешно прошел лабораторные испытания.

В настоящее время БТИ АлтГТУ активно сотрудничает с угольными шахтами Кемеровской области в области разработки и внедрения датчиков обнаружения очага возгорания.

Источники информации

1. Якушенков Ю.Г. Теория и расчет оптико-электронных приборов. [Текст] // Ю.Г. Якушенков. - 3-е изд. - М.: Машиностроение 1989. 360 с: ил.

2. Патент РФ №2318242.

3. Патент РФ №2459269.

4. Продукция НИИ «Фотон» [Электронный ресурс] / Режим доступа: http://lcd-foton.com/products/konstrukciya/.

5. Оптико-электронный прибор обнаружения начальной стадии развития взрыва в газодисперсных системах. Диссертация на соискание ученой степени кандидата технических наук. Сыпин Е.В. - Бийск: 2007. - 144 с.

6. Оптико-электронная система определения трехмерных координат очага взрыва в газодисперсных системах на начальной стадии. Диссертация на соискание ученой степени кандидата технических наук. Павлов А.Н. - Бийск: 2010. - 134 с.

Пирометрический датчик координат очага возгорания, содержащий последовательно установленные и оптически связанные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания и приемники излучения, выходы приемников излучения соединены с входом исполнительной схемы, отличающийся тем, что дополнительно содержит изменяемую полевую диафрагму, установленную после разделителя светового потока в одном из оптических каналов и представляющую собой совокупность независимо управляемых оптических затворов, исполнительная схема дополнительно содержит блок управления диафрагмой с возможностью осуществления управления оптическими затворами полевой диафрагмы по произвольному алгоритму, а в качестве приемников излучения использованы одноэлементные некоординатные приемники излучения.



 

Похожие патенты:

Изобретение относится к пожарно-охранной сигнализации. Технический результат заключается в упрощении конструкции и снижении электропотребления.

Группа изобретений относится к средствам для обнаружения пламени с помощью детекторов. Технический результат заключается в создании средств обнаружения пламени, обеспечивающих точный результат обнаружения и сокращение времени реакции для обнаружения пламени.

Изобретения относятся к области пожарной безопасности и могут быть использованы для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение достоверности раннего обнаружения пожара одновременно на нескольких объектах пожарной безопасности путем передачи сигналов тревоги на разных частотах, поиска.

Изобретение относится к системам обеспечения безопасности на железнодорожном транспорте. Система пожаро-охранной предупредительной сигнализации для железнодорожных поездов содержит пульты контроля и управления в первом и втором головных вагонах поезда, обеспечивающие опрос вагонных контроллеров, а также звуковую и световую сигнализацию, соединенную с контроллерами.

Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов тревоги на удаленный пункт контроля. Технический результат - повышение помехоустойчивости и избирательности приемника путем подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам.

Настоящее изобретение предусматривает цифровой линейный тепловой извещатель с системой определения температуры на основе термопары. Технический результат - расширение функциональных возможностей за счет различения вида короткого замыкания - вследствие перегрева или механического повреждения.

Изобретение относится к устройствам аварийной пожарной сигнализации, приводимым в действие тепловым воздействием очага возгорания, и предназначено для использования в системах распределенного контроля протяженных пожароопасных объектов.

Изобретение относится к противопожарной технике. Техническим результатом настоящего изобретения является повышение надежности обнаружения пожара и оптимизация количества пожарных извещателей в укрытиях газотурбинных газоперекачивающих агрегатов и на других опасных промышленных объектах, где для контроля загазованности в технологических помещениях повышенной взрывопожароопасности используются инфракрасные газоанализаторы горючих газов, связанные с пожарной автоматикой объекта, а также применяются другие промышленные газоанализаторы для обнаружения газов, имеющих плотность ниже плотности воздуха, принцип действия которых основан на поглощении молекулами определяемого газа энергии светового потока и вычислении концентрации определяемого газа по отношению опорного и измерительного сигналов.

Изобретение относится в целом к области видеонаблюдения и более конкретно к способу управления системой мониторинга леса. Технический результат заключается в повышении надежности обнаружения (вероятности обнаружения), уменьшении вероятности ложного срабатывания, или ложного обнаружения объекта, уменьшении времени, необходимого на обнаружение, на осмотр и анализ информации о территории.

Изобретение относится к противопожарной технике. .

Изобретение относится к устройству для контроля и подрыва последовательных цепей пиропатронов. Технический результат заключается в повышение надежности, что увеличивает уровень безопасности, а также обеспечение возможности длительного запоминания факта срабатывания пиропатронов при штатной эксплуатации и возможности подрывать пиропатроны поодиночке. Устройство содержит пиропатроны с двумя нитями, каждая из которых зашунтирована полупроводниковым прибором восстановления целостности электрической цепи с переходом из состояния закрытого в открытое, коммутирующие узлы тока подрыва, контрольный элемент, каждый коммутирующий узел выполнен на двух ключевых элементах, при этом введены управляемые ключи, параллельно каждой первой и каждой второй нити пиропатронов включен индификационный резистор, контрольный элемент выполнен в виде первого и второго омметра, выходы омметров являются контрольными выходами устройства, точки соединения первых и вторых ключевых элементов с последовательными цепями нитей пиропатронов являются технологическими цепями контроля пиропатронов устройства. 1 ил.

Изобретение относится к пожарной технике, конкретно к устройствам пожарной сигнализации для бортовых систем автоматизированного пожаротушения транспортных средств. Устройство содержит не менее одной адресной линии сигнализации о пожаре, соединенной через устройство контроля линии сигнализации, блок оптоэлектронных ключей гальванической развязки и линию связи с микроконтроллером. Каждая линия сигнализации выполнена в виде контролируемого шлейфа аналоговых датчиков пожара с добавочными резисторами и оконечным диодом. Устройство контроля линии сигнализации выполнено по схеме зеркала тока с возможностью выработки сигналов «внимание», «короткое замыкание», «пожар», «обрыв». Выходы устройств контроля линий сигнализации через соответствующий оптоэлектронный ключ и его оптическую линию связи соединены с соответствующим входным портом микроконтроллера. Микроконтроллер выполнен в виде адаптивного цифрового обнаружителя пожара и снабжен цифровым адаптером для соединения с датчиками технологических параметров бортовой аппаратуры транспортного средства, с дисплеем, устройством звуковой сигнализации и часами реального времени, а также встроенной и/или съемной флэш-памятью с программой управления порогами адаптивного цифрового обнаружения пожара. Технический результат - повышение надежности распознавания сигналов пожара. 2 ил.

Группа изобретений относится к области защиты от возгорания движущихся и неподвижных наземных транспортных средств в случаях возгорания или взрыва энергоносителя в топливном баке. Технический результат - повышение эффективности защиты наземного транспортного средства от возгорания путем быстрого удаления источника возгорания, топливного бака, на безопасное расстояние от транспортного средства. В функции защитного устройства входит инициация сигнала возгорания или взрыва и передача его на пиропатроны, которая осуществляется с помощью следящих датчиков и блока управления, питающихся от бортовой сети транспортного средства. При срабатывании датчика первым отстреливается и с помощью обратного клапана перекрывается топливопровод подачи топлива от бака к потребителям. Затем с небольшим замедлением отстреливаются ленточные хомуты крепления топливного бака. Последним с замедлением срабатывает пиропатрон механизма выстреливания топливного бака, который выталкивает посредством опорной плиты бак из каркаса, где он на полозах с роликами располагался в рабочем положении, и отбрасывает его на безопасное расстояние от транспортного средства. 2 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов, в том числе и контейнерных базовых несущих конструкций (КБНК), устанавливаемых в труднодоступных местах и в районах Крайнего Севера, и одновременной передачи сигналов тревоги на удаленный пункт контроля. Технический результат - повышение помехоустойчивости и достоверности передачи сигналов тревоги с КБНК на пункт контроля, удаленный на значительное расстояние, путем использования ретрансляторов, размещенных на космических аппаратах спутниковой системы связи, и увеличения динамического диапазона входных сигналов и отношения сигнал/шум приемника пункта контроля. Указанная система содержит автономную сигнально-пусковую систему пожаротушения, установленную на КБНК, приемник, установленный на пункте контроля, ИСЗ-ретрансляторы, размещенные на космических аппаратах (КА) спутниковой системы связи, и канал радиосвязи, работающий в симплексном режиме. 8 ил.

Изобретение относится к системе пожарной защиты в помещениях различного типа. Технический результат - снижение опасности возникновения пожара в помещении. В изобретении предлагается система пожарной защиты, предназначенная для снижения опасности пожара, которая имеет топливный элемент для выработки обогащенного азотом отработанного воздуха катода. Топливный элемент снабжают воздухом и топливом. Затем в топливном элементе содержание кислорода в воздухе снижают до заданного уровня. Отработанный воздух подают в защищаемое помещение. 4 н. и 22 з.п. ф-лы, 9 ил.

Изобретение относится к области пожарной безопасности и электроэнергетике, а именно к способам и устройствам предупреждения пожара (взрыва) и отказа систем, приводящих к катастрофам и авариям в сооружениях, зданиях, самолетах, судах, железнодорожном транспорте и др. объектах. Технический результат - повышение достоверности в определении уровня пожарной опасности и надежности системы, в целом. Способ базируется на определении параметров сопротивления искрового промежутка путем измерения тока высокочастотных составляющих, характеризующих цикл "возникновение - гашение искры" при переходе тока искрения через нуль. Уровень пожарной взрывобезопасности и безотказности систем оценивается по интегральному показателю их зависимости от величины тока искрения с учетом воздействия шунтирующего тока, от ширины искрового промежутка и от интенсивности искрения, а также от характеристики теплоотводящих свойств электрооборудования и окружающей среды. По результатам контроля формируется предупреждающий сигнал или команда на отключение электрической сети (электроустановки). 2 н.п. ф-лы, 5 ил.

Изобретение относится к области пожарной безопасности и электроэнергетике, а именно к способам и устройствам тестирования устройств предупреждения пожара (взрыва) от искрения (дефектная дуга), возникающего в месте нарушения целостности электрической цепи. Технический результат - повышение достоверности оценки уровня опасности контролируемого объекта устройством предупреждения пожара (взрыва, проявления скрытого отказа) от искрения в электрической цепи и (или) от других неисправностей за счет повышения достоверности результата тестирования устройства. Способ базируется на имитации параметров сопротивления искрового промежутка путем имитации высокочастотных составляющих тока искрения, характеризующих образующие и затухающие стадии цикла "возникновение-гашение искры" на границе области нулевых значений тока искрения, и ширины искрового промежутка. Уровень пожаро- взрывобезопасности и безотказности систем оценивается по имитируемому интегральному показателю в зависимости от суммы имитируемых тока искрения и шунтирующего тока, ширины искрового промежутка и интенсивности искрения, а также от характеристики имитируемых теплоотводящих свойств электрооборудования и окружающей среды. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области судостроения, конкретнее - к автоматизации процессов обнаружения пожарной опасности на подводных лодках. Осуществляют контроль процентного содержания кислорода в воздушной среде отсека подводной лодки и при повышении процентного содержания кислорода выше установленного значения определяют зоны, где возможен контакт горючего вещества и источника зажигания, температура которого достаточна для начала возгорания горючего вещества при текущем повышенном процентном содержании кислорода, и сигнализируют об этом как о возникновении пожарной опасности. Использование изобретения позволит повысить безопасность, безаварийность эксплуатации технических средств, охраняемых помещений подводной лодки, а также принять меры к устранению причин, вызвавших пожарную опасность в отсеке в условиях повышенной концентрации кислорода в отсеке подводной лодки, и избежать пожар и его последствия. 1 ил.

Изобретение относится к области устройств пожарной сигнализации. Технический результат заключается в снижении энергопотребления. В данном изобретении предложены схема возбуждения и способ возбуждения для системы аварийной сигнализации. Схема возбуждения содержит: схему генерирования тока, выполненную с возможностью избирательной подачи либо первого тока IN1, либо второго тока IАварийн в шину, причем первый ток IN1 используется в качестве тока оперативного контроля шины в нормальном рабочем состоянии, а второй ток IАварийн больше, чем первый ток IN1; и схему обнаружения, предназначенную для управления схемой генерирования тока с целью подачи второго тока IАварийн в шину, когда обнаруживают, что напряжение шины, Vшины, на шине меньше, чем порог Vп, причем порог Vп меньше, чем нормальное напряжение шины, но больше, чем максимальное аварийное напряжение, указываемое в шине, когда автоматический пожарный извещатель выдает аварийный сигнал. 3 н.п., 11 з.п.ф-лы, 9 ил.

Изобретение относится к техническим средствам для обнаружения и устранения пожара внутри воздушного судна. Технический результат заключается в расширении арсенала технических средств указанного назначения. Согласно изобретению выполняется определение того, превышают ли данные от множества датчиков предварительно установленные пороговые значения, указывающие на наличие пожара внутри воздушного судна. В случае превышения данными датчиков предварительно установленных пороговых значений, указывающих на наличие пожара, технические средства определяют место пожара внутри воздушного судна на основании данных датчиков и обесточивают компоненты воздушного судна, имеющие отношение к пожару. Затем технические средства запускают механизм пожаротушения внутри воздушного судна, направленный на место пожара. 3 н. и 17 з.п. ф-лы, 3 ил.
Наверх