Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом



Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом

 

H03M1/36 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2536377:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU)

Изобретение относится к аналого-цифровым преобразователям. Технический результат заключается в расширении предельного частотного диапазона обрабатываемых сигналов. Преобразователь содержит N идентичных по архитектуре секций. Каждая из секций включает компаратор напряжения, первый вход которого соединен с первым источником входного напряжения через первый эталонный резистор, а второй вход компаратора подключен ко второму источнику входного противофазного напряжения через второй эталонный резистор, причем первый вход компаратора связан с первым источником опорного тока и первым паразитным конденсатором, второй вход компаратора связан со вторым источником опорного тока и вторым паразитным конденсатором. Первый источник опорного тока выполнен в виде первого биполярного транзистора, коллектор которого является выходом первого источника опорного тока, база подключена к источнику вспомогательного напряжения, а эмиттер через первый дополнительный двухполюсник связан с первой шиной источника питания, причем первый вход компаратора соединен с базой первого дополнительного транзистора, коллектор которого подключен ко второй шине источника питания, эмиттер соединен с первой шиной источника питания через второй дополнительный двухполюсник и связан с эмиттером первого биполярного транзистора через первый корректирующий конденсатор. 2 з.п. ф-лы, 5 ил.

 

Предлагаемое изобретение относится к области измерительной и вычислительной техники, радиотехники, связи и может использоваться в структуре различных устройств обработки аналоговой информации, измерительных приборах, системах телекоммуникаций и т.п.

В современной технике широкое применение находят параллельные аналого-цифровые преобразователи (АЦП), обеспечивающие наибольшую скорость преобразования аналоговых сигналов (uвх) в цифровые сигналы [1-27]. С повышением частоты входного напряжения uвх в таких микроэлектронных АЦП возникают существенные погрешности преобразования, обусловленные влиянием паразитных конденсаторов, образуемых емкостями на подложку активных и пассивных компонентов [28-29]. Дальнейшее повышение быстродействия параллельных АЦП - одна из проблем современной информационно-измерительной техники, решение которой позволит осуществить практическую реализацию новых систем связи и телекоммуникаций с более высокими качественными показателями.

Наиболее близким по технической сущности заявляемому устройству является параллельный АЦП (фиг.1, фиг.2), описанный в патенте US 7.394.420 fig. 3. Анализу его предельного частотного диапазона (fв.max), а также попыткам увеличения fв.max за счет оптимизации абсолютных значений R эталонных резисторов, посвящены статьи [28-29], в том числе соавтора настоящей заявки [29].

АЦП-прототип фиг.1 (фиг.2) содержит N идентичных по архитектуре секций фиг.3. Каждая из секций содержит компаратор напряжения 1, первый 2 вход которого соединен с первым 3 источником входного напряжения через первый 4 эталонный резистор, а второй 5 вход компаратора 1 подключен ко второму 6 источнику входного противофазного напряжения через второй 7 эталонный резистор, причем первый 2 вход компаратора 1 связан с первым 8 источником опорного тока и первым 9 паразитным конденсатором, второй 5 вход компаратора 1 связан со вторым 10 источником опорного тока и вторым 11 паразитным конденсатором.

Существенный недостаток АЦП-прототипа (фиг.1), фрагменты которого также показаны на чертежах фиг.2, фиг.3, состоит в том, что его предельный частотный диапазон преобразования входных аналоговых сигналов в цифру (даже при реализации на сверхвысокочастотных транзисторах с fmax=200 ГГц техпроцесса SGB25H1, IHP, Германия [28,29]) ограничен из-за уменьшения на высоких частотах коэффициента передачи сигнала от источников входных напряжений 3 и 6 до входов компараторов напряжения 1.

Основная задача предлагаемого изобретения состоит в расширении в несколько раз предельного частотного диапазона обрабатываемых сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников входных напряжений 3 и 6 ко входам компараторов напряжения 1.

Поставленная задача достигается тем, что в параллельном аналого-цифровом преобразователе с дифференциальным входом (фиг.1, фиг.2), каждая из N-секций которого (фиг.3) содержит компаратор напряжения 1, первый 2 вход которого соединен с первым 3 источником входного напряжения через первый 4 эталонный резистор, а второй 5 вход компаратора 1 подключен ко второму 6 источнику входного противофазного напряжения через второй 7 эталонный резистор, причем первый 2 вход компаратора 1 связан с первым 8 источником опорного тока и первым 9 паразитным конденсатором, второй 5 вход компаратора 1 связан со вторым 10 источником опорного тока и вторым 11 паразитным конденсатором, предусмотрены новые элементы и связи - первый 8 источник опорного тока выполнен в виде первого 12 биполярного транзистора, коллектор которого является выходом первого 8 источника опорного тока, база подключена к источнику вспомогательного напряжения 13, а эмиттер через первый 14 дополнительный токостабилизирующий двухполюсник связан с первой 15 шиной источника питания, причем первый 2 вход компаратора 1 соединен с базой первого 16 дополнительного транзистора, коллектор которого подключен ко второй 17 шине источника питания, эмиттер соединен с первой 15 шиной источника питания через второй 18 дополнительный токостабилизирующий двухполюсник и связан с эмиттером первого 12 биполярного транзистора через первый 19 корректирующий конденсатор.

На чертеже фиг.1 приведена схема АЦП-прототипа, который содержит N-параллельно включенных секций с одинаковой архитектурой фиг.3, но разными абсолютными значениями сопротивлений эталонных резисторов 4 (7) и токов I8 (I10) источников опорных токов 8 (10).

На чертеже фиг.2 представлена схема фиг.1, в которой в каждой из N идентичных по архитектуре секций показаны выходные транзисторы источников опорного тока 8 и 10, имеющие емкость на подложку (Сп) и емкость коллектор-база (Ск). Таким образом, паразитные емкости 9 и 11 в схеме фиг.2 (фиг.3) определяется выходной емкостью транзисторов источников опорного тока 8 и 10 и входными емкостями компаратора напряжения 1.

На чертеже фиг.3 приведена эквивалентная схема одной из секции АЦП фиг.2, соответствующая АЦП-прототипу.

На чертеже фиг.4 показана схема одной секции предлагаемого АЦП, соответствующая пп.1, 2 формулы изобретения.

На чертеже фиг.5 представлена схема заявляемого АЦП на основе секций фиг.4 в среде Cadence на моделях SiGe транзисторов (транзисторы SiGe: npn 200-п; техпроцесса SG25H1, IHP, Ik.max=4 мА. A high-performance 0.25 µm technology with npn-HBTs up to fT/fmax=180/220 GHz). В схеме изменялись емкости корректирующих конденсаторов 19 и 24 Cvar в пределах от 0 до 15фФ. Последовательно с корректирующими конденсаторами введены корректирующие резисторы с сопротивлением R=1Om≈0 (фиг.5), т.е. их влияние в данном эксперименте отсутствует. В схеме также учитываются: емкость на подложку (Сп) эталонных резисторов 4 и 7 (фиг.4), и паразитные емкости коллектор-база, и емкости на подложку всех транзисторов. Использован реальный компаратор напряжения 1 с его паразитными входными и выходными емкостями (фиг.5). Паразитные емкости токостабилизирующих двухполюсников 14, 18, 23, 21 не учитываются, в связи с тем, что они реализованы на резисторах.

На чертеже фиг.6 приведена логарифмическая амплитудно-частотная характеристика коэффициента передачи по напряжению со входов АЦП (от источников входных напряжений 3 и 6, фиг.4) к дифференциальному входу компаратора напряжения №2 (каналы: 32, 48).

Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом содержит N идентичных по архитектуре секций (фиг.4). Каждая из N секций включает компаратор напряжения 1, первый 2 вход которого соединен с первым 3 источником входного напряжения через первый 4 эталонный резистор, а второй 5 вход компаратора 1 подключен ко второму 6 источнику входного противофазного напряжения через второй 7 эталонный резистор, причем первый 2 вход компаратора 1 связан с первым 8 источником опорного тока и первым 9 паразитным конденсатором, второй 5 вход компаратора 1 связан со вторым 10 источником опорного тока и вторым 11 паразитным конденсатором. Первый 8 источник опорного тока выполнен в виде первого 12 биполярного транзистора, коллектор которого является выходом первого 8 источника опорного тока, база подключена к источнику вспомогательного напряжения 13, а эмиттер через первый 14 дополнительный токостабилизирующий двухполюсник связан с первой 15 шиной источника питания, причем первый 2 вход компаратора 1 соединен с базой первого 16 дополнительного транзистора, коллектор которого подключен ко второй 17 шине источника питания, эмиттер соединен с первой 15 шиной источника питания через второй 18 дополнительный токостабилизирующий двухполюсник и связан с эмиттером первого 12 биполярного транзистора через первый 19 корректирующий конденсатор.

На чертеже фиг.4 в соответствии с п.2 формулы изобретения второй 10 источник опорного тока выполнен в виде второго 20 биполярного транзистора, коллектор которого является выходом второго 10 источника опорного тока, база подключена к источнику вспомогательного напряжения 13, а эмиттер через третий 21 дополнительный токостабилизирующий двухполюсник связан с первой 15 шиной источника питания, причем второй 5 вход компаратора 1 соединен с базой второго 22 дополнительного транзистора, коллектор которого подключен ко второй 17 шине источника питания, эмиттер соединен с первой 15 шиной источника питания через четвертый 23 дополнительный токостабилизирующий двухполюсник и связан с эмиттером второго 20 биполярного транзистора через второй 24 корректирующий конденсатор.

Рассмотрим работу аналоговой секции предлагаемого АЦП фиг.4 (фиг.5), включающей эталонные резисторы 4, 7 и источники опорного тока 8, 10.

В АЦП-прототипе фиг.1 - фиг.3 быстродействие аналоговой части (ее предельный частотный диапазон fв.max) определяется паразитными конденсаторами 9 и 11. Практически верхняя граничная частота (по уровню -1 дБ) АЦП-прототипа не превышает 8-9 ГГц (фиг.6, Ск=0), в то время как быстродействие компаратора напряжения 1, реализованного на СВЧ SiGe транзисторах [28,29] с fT=200 ГГц, позволяет работать в более широком частотном диапазоне (20÷50 ГГц).

В заявляемом устройстве за счет введения транзисторов 16 и 22 и дополнительных конденсаторов 19 и 24 предельный диапазон рабочих частот аналоговой секции АЦП расширяется более чем в 3 раза (фиг.6). Это позволяет обеспечить аналого-цифровое преобразование более высокочастотных сигналов.

Введение последовательно с корректирующими конденсаторами 19 и 24 корректирующих резисторов (фиг.5) позволяет оптимизировать неравномерность амплитудно-частотной характеристики аналоговой секции АЦП, что создает условия для дальнейшего расширения частотного диапазона.

Таким образом, заявляемое устройство характеризуется существенными преимуществами в сравнении с прототипом по предельному частотном диапазону обрабатываемых сигналов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6.437.724 fig.4

2. Патент US 6.882.294

3. Патент US 4.229.729 fig.1

4. Патент US 4.058.806 fig.2a

5. Патент US 4.831.379 fig.8

6. Патент US 5.598.161 fig.9

7. Патентная заявка US 2010/0231430 fig.11

8. Патент US 4.912.469 fig. 5, fig.6

9. Патент US 6.437.724 fig.4

10. Патент US 5.175.550 fig.2

11. Патент US 6.847.320 fig.2

12. Патент US 6.882.294 fig.3

13. Патент DE 2009/002062 fig.3

14. Патент US 5.307.067 fig.1

15. Патент US 4.745.393 fig.1

16. Патент US 5.204.679 fig.1

17. Патент US 4.719.447 fig.1

18. Патент US 4.774.498 fig.13

19. Патент US 4.768.016 fig.1

20. Патент US 7.196.649 fig.1

21. Патент US 4.752.766 fig.5

22. Патент DE 2009/002062 fig.1

23. Патент US 5.231.399 fig.2

24. Патент US 4.578.715 fig.4

25. Патент US 4.831.379 fig.4

26. Патентная заявка US 2008/036536

27. Патент US 4.763.106 fig.1

28.Y.Borokhovych. 4-bit, 16 GS/s ADC with new Parallel Reference Network / Y.Borokhovych, H. Gustat, C.Scheytt // COMCAS 2009 - 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems

29.Серебряков А.И. Метод повышения быстродействия параллельных АЦП / А.И.Серебряков, Е.Б. Борохович // Твердотельная электроника. Сложные функциональные блоки РЭА: Материалы научно-технической конференции. - М.: МНТОРЭС им. А.С.Попова, 2012. - С.150-155

1. Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом, каждая из N секций которого содержит компаратор напряжения (1), первый (2) вход которого соединен с первым (3) источником входного напряжения через первый (4) эталонный резистор, а второй (5) вход компаратора (1) подключен ко второму (6) источнику входного противофазного напряжения через второй (7) эталонный резистор, причем первый (2) вход компаратора (1) связан с первым (8) источником опорного тока и первым (9) паразитным конденсатором, второй (5) вход компаратора (1) связан со вторым (10) источником опорного тока и вторым (11) паразитным конденсатором, отличающийся тем, что первый (8) источник опорного тока выполнен в виде первого (12) биполярного транзистора, коллектор которого является выходом первого (8) источника опорного тока, база подключена к источнику вспомогательного напряжения (13), а эмиттер через первый (14) дополнительный токостабилизирующий двухполюсник связан с первой (15) шиной источника питания, причем первый (2) вход компаратора (1) соединен с базой первого (16) дополнительного транзистора, коллектор которого подключен ко второй (17) шине источника питания, эмиттер соединен с первой (15) шиной источника питания через второй (18) дополнительный токостабилизирующий двухполюсник и связан с эмиттером первого (12) биполярного транзистора через первый (19) корректирующий конденсатор.

2. Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом по п.1, отличающийся тем, что второй (10) источник опорного тока выполнен в виде второго (20) биполярного транзистора, коллектор которого является выходом второго (10) источника опорного тока, база подключена к источнику вспомогательного напряжения (13), а эмиттер через третий (21) дополнительный токостабилизирующий двухполюсник связан с первой (15) шиной источника питания, причем второй (5) вход компаратора (1) соединен с базой второго (22) дополнительного транзистора, коллектор которого подключен ко второй (17) шине источника питания, эмиттер соединен с первой (15) шиной источника питания через четвертый (23) дополнительный токостабилизирующий двухполюсник и связан с эмиттером второго (20) биполярного транзистора через второй (24) корректирующий конденсатор.



 

Похожие патенты:

Изобретение относится к области гидроакустики, радиотехники и электротехники и может быть использовано для построения синхронных многоканальных систем аналого-цифрового преобразования при использовании аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД).

Изобретение относится к области измерительной и вычислительной техники. Технический результат - расширение частотного диапазона обрабатываемых сигналов АЦП.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для связи аналоговых источников информации с цифровым вычислительным устройством.

Изобретение относится к области автоматики и вычислительной техники и может найти применение как в цифровых системах наведения и управления огнем, так и в системах определения углового положения.

Изобретение относится к области приборостроения, в частности к аналого-цифровому преобразованию, а именно к преобразователям угла поворота вала в код. Технический результат - повышение информационной надежности преобразователя угол-код.

Изобретение относится к области измерения и может быть использовано при метрологических исследованиях навигационных приборов, содержащих вращающийся трансформатор.

Изобретение относится к области автоматики и вычислительной техники. Технический результат - упрощение конструкции устройства.

Изобретение относится к электронике и может быть использовано в микроэлектронных системах обработки аналоговых сигналов и преобразовании аналоговой информации в цифровую, в частности при разработке аналого-цифровых преобразователей (АЦП) с малым энергопотреблением, многоканальных системах приема и обработки информации с многоэлементных приемников оптического сигнала.

Изобретение относится к области измерительной и вычислительной техники, радиотехники, связи. Технический результатом является расширение в несколько раз предельного частотного диапазона обрабатываемых сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений ко входам компараторов напряжения.

Изобретение относится к области измерительной и вычислительной техники, радиотехники, связи и может использоваться в структуре различных устройств обработки информации, измерительных приборах, системах телекоммуникаций.

Фотоэлектрический преобразователь угловых перемещений относится к области автоматики и вычислительной техники и может быть использован в оптико-электронных приборах. Технический результат заключается в повышении уровня рабочего сигнала за счет установки индикаторного диска между источником излучения и конденсором, в результате чего каждая щель поля считывания стала самостоятельным источником излучения, а рабочий сигнал стал суммой сигналов всех щелей. Содержит источник излучения, индикаторный диск, конденсор, подвижный измерительный диск, установленный на поворотной опоре, фотоприемник, электронный блок управления. На индикаторном диске выполнены поля считывания, каждое из которых имеет пространственный сдвиг относительно предыдущего на 1/4 периода кодовой маски измерительного диска. Конденсор установлен между индикаторным и измерительным дисками с возможностью перемещения вдоль оптической оси. Измерительный диск выполнен гибким и закреплен на поворотной опоре между двух колец, одно из которых упругое, а другое кольцо жесткое. На индикаторном диске выполнено не менее двух полей считывания с щелями разной ширины, наибольшая ширина щели в поле считывания равна щели кодовой маски измерительного диска, а ширина остальных щелей рассчитывается по формуле. 1 ил.

Изобретение относится к области устройств преобразования кода в частоту. Техническим результатом является реализация различных функциональных зависимостей выходной частоты от входного кода и улучшение способности преобразователя корректировать мультипликативную составляющую погрешности датчиков. Устройство содержит два сумматора, два элемента ИЛИ, два элемента задержки, счетчик, дешифратор, память кодов, четыре элемента И, блок памяти весовых коэффициентов, блок обучения, блок памяти весовых коэффициентов, блок обучения, умножитель, блок выбора функции активации. 2 табл., 1 ил.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для управления угловым положением подвижных частей объекта регулирования. Техническим результатом является повышение быстродействия и точности преобразования угла поворота вала в код. Устройство содержит синусно-косинусный вращающийся трансформатор, фильтры нижних частот, АЦП, ЦАП, цифровые умножители, ПЗУ, накапливающие сумматоры, вычислитель арктангенса отношения, счетчик, регистры, синхронизатор, генератор меандра, вычислители квадратного корня из суммы квадратов, вычислитель коррекции угла. 1 ил.

Группа изобретений относится к области радиоэлектроники и может быть использовано при создании высокоскоростных модуляторов/демодуляторов радиотехнических систем проводной и беспроводной цифровой передачи данных. Техническим результатом является увеличение скорости преобразования цифрового сигнала в аналоговый и более точное представление формы аналогового сигнала на выходе цифроаналогового преобразователя. Устройство содержит многоразрядный параллельный преобразователь входных цифровых данных, преобразователь тактовой частоты, резистивную матрицу, аналоговый фильтр. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике, предназначено для обнаружения маломощного излучения в СВЧ диапазоне радиоволн и определения источника излучения. Технический результат - расширение полосы рабочих частот, повышение чувствительности и обеспечение низкой погрешности измерения направления на источник излучения. Для этого устройство представляет собой двухканальный детекторный приемник СВЧ, снабженный двумя вертикальными штыревыми антеннами, однотипными диодными детекторами с удвоением выходного напряжения, однотипными операционными усилителями с цепью отрицательной обратной связи в виде постоянного резистора и цепью стабилизации режима работы усилителей в виде постоянного резистора, а также схемой сравнения выходных напряжений, содержащей измеритель тока, переменные резисторы, переключатель режимов работы измерителя «обнаружение» и «поиск» и визир направления на источник излучения. 5 ил.

Изобретение относится к технике прецизионного измерения однократных интервалов времени. Технический результат заключается в повышении точности цифрового преобразования интервала времени в цифровой код. Технический результат достигается за счет того, что в устройство, содержащее интерполирующий преобразователь время-код, своими первым и вторым входами связанный с зажимами сигналов начала и окончания интервала, введено множество дополнительных аналогичных интерполирующих преобразователей время-код. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области телекоммуникаций и может быть использовано для преобразования цифровых сигналов в аналоговые сигналы. Техническим результатом является повышение технологичности конструкции преобразователя. Устройство содержит первую резистивную лестницу, образованную резисторами, соединенными с ключами, управляющимися входным сигналом в двоичной кодировке, вторую резистивную лестницу, образованную резисторами, соединенными с ключами, управляющимися инвертированным входным сигналом в двоичной кодировке, причем обе лестницы соединены между собой таким образом, что резисторы в перемычках включены параллельно; отношение сопротивлений первой и второй лестницы выбрано в соответствии с выражением: (m+1)/(m-1), где m - отношение напряжения питания к двойной амплитуде выходного сигнала. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в системе остаточных классов (СОК). Технический результат - упрощение конструкции. Аналого-цифровой преобразователь в код СОК содержит вход, первый и второй блоки слежения-хранения, аналого-цифровой преобразователь, цифроаналоговый преобразователь, блок вычитания, источник напряжения смещения, регистры-защелки, выходные шины кодов остатков в СОК. Сущность изобретения заключается в объединении функций идентичных блоков в одном АЦП, одном ЦДЛ и одном блоке вычитания. 7 ил.

Изобретение относится к электроизмерительной и вычислительной технике и может быть использовано в системах управления электроприводами для преобразования аналогового напряжения в код. Техническим результатом является совмещение в одном устройстве преобразования входного напряжения в цифровой код с выполнением определенной математической операции, ускорение и упрощение обработки информации с различных датчиков, выходной сигнал которых имеет нелинейную зависимость от входной величины. Устройство содержит генератор тактовых импульсов, счетчик, цифроаналоговый преобразователь, компаратор, два набора резисторов, ключи. 2 ил.

Изобретение относится к технике первичного измерительного преобразования физических величин в электрические сигналы и касается способа формирования функционально-интегрированных/дифференцированных (ФИД) квадратурных опорных сигналов (КОС). Технический результат заключается в повышении быстродействия за счет простоты сопряжения как с цифровыми системами, так и с аналоговыми, с одновременным формированием КОС в аналоговой форме. Предлагается усовершенствовать известный способ путем одновременного формирования функциональных, интегрированных и дифференцированных производных КОС. Предлагается синхронно по частоте и фазе вращения объекта формировать сначала последовательности "меандров" переменного периода следования, формировать короткие счетные импульсы детектированием их фронтов и производить алгебраический счет импульсов одновременно по трем каналам функций, первообразных и производных, таким образом формируя высокоинформативные ФИД КОС. 6 ил.
Наверх